
RESEARCH ARTICLE

Temperature effect on memristive ion channels
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Abstract
Neuron shows distinct dependence of electrical activities on membrane patch temperature, and the mode transition of

electrical activity is induced by the patch temperature through modulating the opening and closing rates of ion channels. In

this paper, inspired by the physical effect of memristor, the potassium and sodium ion channels embedded in the membrane

patch are updated by using memristor-based voltage gate variables, and an external stimulus is applied to detect the variety

of mode selection in electrical activities under different patch temperatures. It is found that each ion channel can be

regarded as a physical memristor, and the shape of pinched hysteresis loop of memristor is dependent on both input voltage

and patch temperature. The pinched hysteresis loops of two ion-channel memristors are dramatically enlarged by

increasing patch temperature, and the hysteresis lobe areas are monotonously reduced with the increasing of excitation

frequency if the frequency of external stimulus exceeds certain threshold. However, for the memristive potassium channel,

the AREA1 corresponding to the threshold frequency is increased with the increasing of patch temperature. The amplitude

of conductance for two ion-channel memristors depends on the variation of patch temperature. The results of this paper

might provide insights to modulate the neural activities in appropriate temperature condition completely, and involvement

of external stimulus enhance the effect of patch temperature.
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Introduction

In recent decades, many researchers have attempted to

study and understand the potential causes of various

dynamic properties of neuronal membrane potential, and

some models of neuronal electrical activity had been pro-

posed to deal with the generation and propagation of action

potentials. For example, the Hindmarsh–Rose (HR) neuron

model (Hindmarsh and Rose 1982, 1984) was effective to

characterize the main dynamical properties of neural

activities. Furthermore, the simplified second order non-

linear FitzHugh–Nagumo (FHN) neuron model (FitzHugh

1961), and the Wilson–Cowan neuron model for mathe-

matical description of cortical column activity (Wilson and

Cowan 1972), also confirmed that their reliability in eval-

uating dynamics of neural activities. These ordinary dif-

ferential equations (ODEs) based oscillator-like neurons

were almost derived from the Hodgkin–Huxley (HH)

(1952) model or the simplified version. The HH model is

the cornerstone of modern computational neuroscience. It

is a system consisting of four-dimensional autonomous

differential equations containing messy nonlinear functions
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for the initiation and propagation of an action potential in

squid giant axon membrane.

Different neural dynamic behaviors have been found by

investigating these neuron models. The main feature of

electrical activity is represented by the sample time series

of membrane potentials. By setting appropriate parameters

in the neuron model, the membrane potential can present

different patterns, such as quiescent, spiking, bursting and

even chaotic. For instance, different bifurcation scenarios

of firing patterns were observed in different chronic con-

striction injury models, which were induced by adjusting

two physiological parameters (Jia et al. 2017). In biological

neurons, the intrinsic time delay should be considered, the

response time delay results from delay or transient period

when external stimulus is encoded, and the propagation

time delay is often generated by intersynaptic signal

transmission (Mondal et al. 2019). In fact, the anatomical

structure of some inter-neurons confirmed the existence of

a time delay in autapse, which enhances the self-adaption

of neurons to external stimulus. For example, the bursting

activity and electromagnetic radiation on neuron can be

suppressed when the autaptic modulation of neuron is

activated (Xu et al. 2017). Moreover, extensive investiga-

tion confirmed that different kinds of electric field can

cause distinct mode transition in electrical activities of

neuron (Ma et al. 2019). Information transmission delays in

neural networks lead to spatial coherence resonance (Wang

et al. 2010), and there was an important relationship

between average frequency and phase synchronization

(Nordenfelt et al. 2013). The dynamics of voltage-gated ion

channels in neurons are intrinsic random, therefore, the

spike latency (Ozer et al. 2009) and different discharge

patterns under the regulation of electromagnetic field (Xu

et al. 2019) were studied in presence of channel noise.

Furthermore, the effects of noise on the dynamical

response and mode selection in neural activities of neurons

and network were also studied extensively (Wang and Jiao

2006; Wang et al. 2018; Yao and Ma 2018). By estab-

lishing various neural networks, it is possible to study the

collective behaviors such as synchronous transformation

(Yao et al. 2017; Ge et al. 2018) and pattern selection (Perc

2007) to understand the potential occurrence mechanism of

neuronal disease. Indeed, nonlocal coupling (Tian et al.

2018), and external stimulus (Guo et al. 2017) can affect

the dynamic behavior of nervous system. Neural coding

and the cognitive mapping have caused widespread con-

cern in the field of neurodynamics (Wang and Zhang

2007). Neural network is a high-dimensional nonlinear

complex dynamic system composed of a large number of

neurons. However, neural energy may be an effective tool

for studying the global behavior of brain activity (Wang

and Zhu 2016). Based on the experimental results of signal

transmission, an energy coding method is proposed (Wang

and Wang 2017; Wang et al. 2015). Inspired by this theory,

important research results have been achieved by applying

different neural models and energy calculation methods.

Such as the transmembrane electrical potential energy is

analyzed in detail, and the neuron’s energy consumption

minimal during bursting is found (Zhu et al. 2019). This

can provide a theoretical basis for understanding the

dynamics of neural activities.

In previous studies, the studies (Ma et al. 2012; Xu et al.

2018a, b) of ion channels and biofilms were carried out

under the condition of constant temperature, that is,

T = 6.3 �C. However, ambient temperature is one of the

most important factors affecting neural activity. It regulates

the excitability of neurons by regulating the ion channel

conductance and gated dynamics. Recent theoretical stud-

ies have revealed the functional importance of temperature

in modulating neurodynamics. For instance, Szabo et al.

(2008) explored the impacts of temperature acclimation on

central neural circuit and its behavioral output. Yang and

Jia (2005) investigated that the effect of patch temperature

as a control parameter on the spontaneous action potential

of a finite size of membrane patch. It was found that the

mean open rate of sodium and potassium channels of the

HH neuron was decreased, and the mean duration of spikes

of membrane potential was also decreased, which was

qualitatively consistent with previous experimental results

of single ion channel. Micheva and Smith (2005) examined

the effects of temperature on the presynaptic function of

primary cultured hippocampal neurons in rats. The results

showed that the circulation of synaptic vesicles varied

greatly at different temperatures. Hyun et al. (2011) used

Aplysia neurons to research the mechanism of changes in

discharge modes caused by temperature change, and they

confirmed when the temperature rises, the discharge pat-

terns of neurons could change. Therefore, the dynamic of

neuron system is manipulated by the variation of patch

temperature.

Memristor (Chua and Kang 1976; Chua et al. 2012) is a

specific electric device that the memductance is dependent

on the input current, and the magnetic flux is contributed

by the exchange of charges. Recent study showed that the

dynamic behavior of the memristor nonlinear oscillator is

strictly correlated with the initial conditions in the mem-

ristor element (Bao et al. 2018). Each synapse can con-

tribute to regulating the activity of other synapses (Maio

et al. 2018). When the memristive synapse is activated

(Wang and Ma 2018; Wang et al. 2018; Xu et al. 2018a, b;

Guo et al. 2018), exponential flux-controlled coupling can

lead to synchronization and oscillation death of neuron

network (Thottil and Ignatius 2016). The dynamics

becomes complex and interesting when memristor is

involved into the nonlinear circuits. Based on the great

similarity between memristor and biological synapse, and

602 Cognitive Neurodynamics (2019) 13:601–611

123



combining memristor network and sparse coding technol-

ogy, an intelligent sparse coding scheme which can effi-

ciently process massive information is proposed (Ji et al.

2019). The existence of a memristor-based hyperchaotic

system with line of equilibrium and with no equilibrium

has been studied, and it is proved that the dynamic

behavior of memory system is controllable (Prousalis et al.

2017). At the same time, the practical electric circuits are

employed to reproduce the properties of memristor systems

in many studies (Rajamani et al. 2017; Volkov et al. 2014).

Chua (2015) according to the basic circuit theory, the time-

varying potassium and sodium conductance in the potas-

sium and sodium ion-channels in the HH model were

replaced by time-invariant potassium memristor and

sodium channel memristor devices, respectively. From this

new perspective, many unsolved anomalies can be

explained.

It is well known that the remarkable characteristic of

memristor is a hysteresis loop, and the shape of the hys-

teresis loop is determined by the device attributes and input

signals. In particular, the hysteresis loop of memristor

depends on the magnitude and frequency of the input sig-

nal. In this paper, based on the HH neuron model, the effect

of temperature on the membrane potential of HH neurons is

first studied. Secondly, the ion channels are updated with

memrisitve type which is also related to temperature.

Thirdly, the external sinusoidal voltage signal is applied to

discuss the mode selection of electrical activity at different

membrane temperatures.

Model of memristive ion channels

Temperature plays an important role in regulating the

activity of memristive ion-channel in HH axon system. The

HH model postulated a biological neuron model to deal

with the current flow through the surface membrane of a

giant nerve fibre in 1952. This model is made up from a

line of identical 2-terminal electrical devices in Fig. 1a.

Here V denotes the membrane potential of neuron, and

Cm is the membrane capacitance per unit area. EK, ENa and

EL denote the potassium ion battery voltage, the sodium

ion battery voltage, and the leakage battery voltage,

respectively. Furthermore, IK, INa and IL are the potassium

current, the sodium current, and the leakage current,

respectively. n, m, and h are the mean ratios of the open

gates of the working channels. The factors n4 and m3h are

the mean portions of the open ion channels within the

membrane patch. RK = 1/gK, RNa = 1/gNa and RL = 1/gL,

and RK and RNa represent two resistances which are not

constant but vary with time. The dynamics of the neuron is

described by the HH model with details as follows:

Cm

dV

dt
¼ �gKn

4ðV � VKÞ � gNam
3hðV � VNaÞ � gLðV � VLÞ þ Iapp

dn

dt
¼ anð1 � nÞ � bnn

dm

dt
¼ amð1 � mÞ � bmm

dh

dt
¼ ahð1 � hÞ � bhh

8
>>>>>>>>><

>>>>>>>>>:

ð1Þ

However, Chua pointed out that the mathematical

models of those resistors behaved as the so-called time

invariant memristive systems (Chua 2015), and the two

elements RK and RNa called memristive devices in Fig. 1b.

More specifically, the circuit element RK in the HH model

is described as a first-order potassium ion-channel mem-

ristor. Similarly, the circuit element RNa is identified as a

second-order sodium ion-channel memristor. Memristor

has the ability to recall the resistance of the previous cur-

rent when the current is turned off and will remember the

resistance when the current is restored. As an unignorable

factor in the systems, temperature is known to modulate the

kinetic rates of ion channels. The red dotted boxes indicate

the effect of temperature on the system in Fig. 1b.

The memristor is 2-terminal electrical device whose

instantaneous terminal current and voltage obey a state-

dependent Ohm’s law (Chua et al. 2012). A voltage-con-

trolled generic memristor is defined by i = G(x)v, and G(x)

Fig. 1 Electrical circuit representing membrane a RK and RNa are

considered time-varying resistors [Original figure from (Hodgkin and

Huxley 1952)]; b Memristive HH model [Original figure from (Chua

et al. 2012)], the red dotted boxes indicate that the system is affected

by temperature
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represents the memductance of the memristor, whose unit

is in Siemens (S). So the potassium ion-channel is descri-

bed as follows:

iK ¼ GKðnÞvK ;GKðnÞ , gKn
4 ð2Þ

and

V � EK ¼ vK ð3Þ
dn

dt
¼ anðvKÞð1 � nÞ � bnðvKÞn ð4Þ

where GK(n) represents the memductance of the potassium

ion-channel memristor, and n is the mean ration of open

potassium ion-channel gates of the working channels. The

opening and closing rates of potassium ion-channel are

given by

an ¼
0:01ð�vK � EK þ 10ÞuðTÞ

exp �vK�EKþ10
10

� �
� 1

;

bn ¼ 0:125 exp
�vK � EK

80

� �

uðTÞ:
ð5Þ

Equations (2), (4) and (5) together define the ‘‘first-order

memristor’’ (Chua et al. 2012).

Similarly, let us consider the time-vary conductance of

sodium GNa in HH Model related to input voltage vNa and

output current iNa, and the sodium ion-channel can be

rewritten as:

iNa ¼ GNaðm:hÞvNa; GNaðm:hÞ , gNam
3h ð6Þ

and

V � ENa ¼ vNa ð7Þ
dm

dt
¼ amðvNaÞð1 � mÞ � bmðvNaÞm

dh

dt
¼ ahðvNaÞð1 � hÞ � bhðvNaÞh

ð8Þ

where GNa(m, h) represent the memductance of the sodium

ion-channel memristor, and the opening and closing rates

of sodium ion-channel are described as follows:

am ¼ 0:1ð�vNa � ENa þ 25ÞuðTÞ
exp �vNa�ENaþ25

10

� �
� 1

;

bm ¼ 0:125 exp
�vNa � ENa

18

� �

uðTÞ;
ð9Þ

and

ah ¼ 0:07 exp
�vNa � ENa

20

� �

uðTÞ;

bh ¼
uðTÞ

exp �vNa�ENaþ30
10

� �
þ 1

:

ð10Þ

Equations (6), (8), (9) and (10) together define the ‘‘sec-

ond-order memristor’’ (Chua et al. 2012).

The temperature factor /(T) in Eqs. (5), (9) and (10)

was given by Hodgkin and Huxley (Hodgkin and Huxley

1952):

uðTÞ ¼ 3ðT�6:3
�

CÞ=10
�

C: ð11Þ

When the temperature T is 6.3 �C, the value of the factor /
(T) is equal to 1.

In following simulations, we use the following param-

eters for the neuron model (Guo et al. 2017): gK = 36 mS/

cm2, gNa= 120 mS/cm2, gL = 0.3 mS/cm2, EK = -12 mV,

ENa = 115 mV, EL = 10 mV, Cm= 1 lF/cm2. The model is

integrated using the Euler method with a time step

h = 0.0001 ms, and recording data starts after 50 ms.

Results and discussion

It was demonstrated that the patch temperature can mod-

ulate the excitability of neurons by regulating the ion

channel conductance and gated dynamics. In this section,

we firstly discuss the temperature effect on the membrane

potential of neurons. Secondly, in order to study the tem-

perature effect on the memristive ion channels, an external

stimulus [e.g., the external sinusoidal voltage signal (Chua

and Kang 1976; Chua et al. 2012)] is applied to detect a

variety of frequency selections in electrical activity at

different membrane temperatures.

Temperature effect on the membrane potential
of neurons

It is concluded that temperature plays an important role in

the membrane potential of neurons. To observe the effects

of different temperatures on the temporal evolution of

neurons, our samples (T = 0.3 �C, 6.3 �C, 16.3 �C and

26.3 �C) were plotted in Fig. 2. When the external current

intensity is fixed, the neural activity shows a significant

change as the temperature rises from 0.3 to 26.3 �C: the

frequency decrease, and the amplitude increases substan-

tially. Previous experiment (Correa et al. 1992) showed

that higher temperatures shorten the duration of peak

membrane potential. This phenomenon indicates that the

membrane potential of neurons is largely caused by chan-

ges in temperature, which is consistent with the experiment

result.

Moreover, the spike number of neural action potential

for varies temperature and external current is plotted in

Fig. 3. It is found that the action potential of neurons shows

distinct boundary under different external currents and

temperatures. There is no spike in black color area, i.e., the

membrane potential in this region is in a quiescent state.

The discharge state of membrane potential has not a
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correlation with the temperature when external current is

\ 7 lA/cm2. When Iapp is increased from 7 to 63 lA/cm2,

the threshold external current which change the neuron

condition from quiescent state to spiking state will increase

nonlinearly with the increasing of temperature. The

threshold external current will reduce nonlinearly with the

increasing of temperature when Iapp is between 92 and

152 lA/cm2. These phenomena show that neural activities

are largely regulated by the variations in temperature.

Temperature effect on the first-order memristor
of potassium channel

To illustrate the effect of temperature on the shape of

pinched hysteresis loop in potassium channel memristor,

the sinusoidal voltage, vK = 50sin(2pft) with frequency

f = 100 Hz is applied. Figure 4 shows the waveforms of

applied sinusoidal voltage vK, output potassium ion current

iK(t), the mean rations of open potassium ion-channel gates

of the working channels n(t) and the memductance of the

potassium ion-channel memristor GK(t) under different

temperatures, respectively. When a sinusoidal voltage is

applied to the potassium ion-channel memristor system, the

output current iK(t) keeps the waveform of the input volt-

age and begins to oscillate. It means that the potassium ion-

channel system has memory function. We observe that the

rise of temperature increases the amplitude of response

current iK(t), however, the negative part of iK(t) is almost

disappear at high temperature T = 26.3 �C (shown in

Fig. 4d2). The amplitude of the fraction of open potassium

ion-channel and the conductance GK(t) of the potassium

ion-channel memristor are also increased with temperature.

Compared with the case T = 6.3 �C in Fig. 4b4, the

increase of temperature (T = 16.3 �C, 26.3 �C in Fig. 4c4,

d4) decreases the width of the peak of the conductance

GK(t). It may be because the temperature can also deter-

mine the conductance of the memristor.

The pinched hysteresis loops of potassium ion-channel

with different frequencies and different temperatures are

displayed in Fig. 5. Sinusoidal voltage input waveform,

vK = Asin(2pft) with amplitude A = 50 mV, and

f = 100 Hz, 1.5 kHz and 10 kHz are applied in turn.

Although the temperature varies, the shape of the pinched

hysteresis loop correspond to a sinusoidal signal is ‘pin-

ched’ at the origin, for any frequency. It’s the first finger-

print of memristor. In addition, with the increase of the

input frequency, the pinched hysteresis loop tends to be

straight line as frequency is infinity. It’s the second fin-

gerprint of memristor. At low frequencies, memristive

system usually behave as non-linear resistors, at interme-

diate frequencies they exhibit pinched hysteresis loops, and

at high frequencies they typically operate as linear resis-

tors. This phenomenon is very similar to that found by

Chua et al. (2012). But the shape of the pinched hysteresis

loop enlarged dramatically as the temperature was

increased from T = 0.3 �C in Fig. 5a to T = 26.3 �C in

Fig. 5d. The slope change of the pinched hysteresis loop

corresponds to switching between different resistance

states. The area in the first quadrant (AREA1) is enlarged

more than the area in the third quadrant (AREA3). It

Fig. 2 Temporal evolution of

transmembrane potentials of

HH neuron model Eq. (1) for

different temperatures at

Iapp= 20.0lA/cm2.

a T = 0.3 �C; b T = 6.3 �C;

c T = 16.3 �C; d T = 26.3 �C

Fig. 3 (Color online) The spike number of action potential of neuron

within 100 ms
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implies that the rise of temperature will enhance the

memory effect of the response current on the positive part

of the input voltage than the negative part.

Starting from some critical frequencies, it was shown

that the hysteretic lobe area should be monotonously

reduced with the increase of excitation frequency (Adhikari

et al. 2013). The relationship between memristor of hys-

teresis lobe area and frequency of periodic excitation at

different temperatures is also studied here, and the loci

(Lissajous figure) of vK(t), iK(t) corresponding to the input

voltage and output current are shown in Fig. 5b. The lobe

areas in first and third quadrant of ion-channel memristor

are defined by the Riemann–Stieltjes integral (Adhikari

et al. 2013):

AREA1 ¼
Z H=2

0

iðtÞdvðtÞ
dt

dt; AREA2 ¼
Z H

H=2

iðtÞdvðtÞ
dt

dt:

ð12Þ

where H is the time period of the sinusoidal vK(t).

Figure 6 shows that variation in hysteretic lobe area

with increasing frequency of potassium ion-channel

memristor for varies temperatures. The area of the pinched

hysteresis lobe is the origin of the memory effect (Biolek

et al. 2012). It is clearly shown in Fig. 6a that the peak

Fig. 4 The response current iK(t), the fraction n(t) of open potassium

ion-channel and the conductance GK(t) of the potassium ion-channel

memristor for different temperature T at vK = 50sin(2pft). The

parameter is selected as f = 100 Hz. a1–a4 T = 0.3 �C; b1–b4
T = 6.3 �C; c1–c4 T = 16.3 �C; d1–d4 T = 26.3 �C

Fig. 5 Pinched hysteresis loop

of the potassium ion-channel

memristor computed at different

frequencies and temperatures,

for a T = 0.3 �C; b T = 6.3 �C;

c T = 16.3 �C; d T = 26.3 �C
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values of AREA1 are increased with the increasing of

temperature, so does the critical frequencies which corre-

spond to the peak value of AREA1. The peak values of

AREA3 are almost the same at different temperatures, as

shown in Fig. 6b, but the critical frequencies are increased

with the increasing of temperature. Such as in Fig. 6b the

critical frequency is 150 Hz for T = 6.3 �C and the critical

frequency increased to 750 Hz when the temperature is

26.3 �C. If a device exhibits a compressed hysteresis loop,

but the hysteresis lobe region does not shrink with

increasing frequency, beyond a certain frequency, then it is

not a memristor. The device exhibits a memory effect when

the critical frequency is exceeded, and the increase of

temperature lead to the increase of the critical frequency.

Moreover, the frequency of the input signal that required

for the hysteretic lobe area to approach zero increases with

the rising temperature. Therefore, when the input signal

exceeds the critical frequency, the high temperature cor-

responds to a large hysteretic lobe area with same input

signal. It means that the raise of temperature will increase

the memory effect of ion-channel memristor.

Temperature effect on the second-order
memristor of sodium channel

The HH model can be divided into four parts: the mem-

brane voltage, the potassium gate activation function, the

sodium gate activation function and the leakage current. In

order to investigate the effect of temperature on the shape

of pinched hysteresis loop in sodium channel memristor,

the sinusoidal voltage, vNa = 50sin(2pft) with frequency

f = 500 Hz is applied. The waveform of applied sinusoidal

voltage vNa, output sodium ion current iNa(t), the mean

rations of open sodium ion-channel gates of the working

channels m(t) and the memductance of the sodium ion-

channel memristor GNa(t) under different temperatures are

plotted in Fig. 7. The temperatures are set to T = 0.3 �C,

6.3 �C, 16.3 �C and 26.3 �C in the sodium gate activation

function, respectively.

When a sinusoidal voltage is applied to the sodium ion-

channel memristor system, Fig. 7a2–d2 show that the

output current iNa(t) begins to oscillate, which keeps the

memory about the input voltage. It means that the sodium

ion-channel system has memory function. The rise of

temperature increases the amplitude of response current

iNa(t), however, the positive part of iNa(t) almost disappears

at high temperature T = 26.3 �C (shown in Fig. 7d2, which

is contrary to Fig. 4d2). Obviously, the amplitude of the

fraction of open sodium ion-channel and the conductance

GNa(t) of sodium ion-channel memristor also increased

with temperature. Such as when the value of temperature is

0.3 �C, the oscillation range of the response current is

0.0043 mA to - 0.0047 mA in Fig. 7a2, and the oscilla-

tion range of the response current is 0.0006 mA to -

0.0135 mA at the value of temperature is 26.3 �C in

Fig. 7d2. Meanwhile, the conductance range of the sodium

ion-channel memristor is increased with the rise of tem-

perature. Observe from Fig. 7a4, the oscillation the rage of

GNa(t) is from 0.0005 to 0.0009 S when the value of tem-

perature is 0.3 �C. With the increasing of temperature, the

oscillation the rage of GNa(t) is 0.00025 S to 0.0024 S at

T = 26.3 �C in Fig. 7d4. It may be because the temperature

can also determine the conductance of the memristor.

The pinched hysteresis loops of the sodium ion-channel

memristor are obtained by applying a sinusoidal voltage

input waveform vNa = 50sin (2pft), with amplitude

A = 50 mV, and calculating its response current waveform

iNa(t) for several temperature values. The parameter is

selected as f = 500 Hz, 1.5 kHz, and 10 kHz in turn, and

80 kHz cases have been added in Fig. 8d. The results are

similar to that of potassium ion-channel memristor system,

despite the temperature changes, for any frequency f, the

shape of pinched hysteresis loops correspond to the sinu-

soidal signal ‘‘shrinking’’ at the origin. It’s the first

Fig. 6 The lobe area of pinched hysteresis loop of the potassium ion-

channel memristor computed at different frequencies and tempera-

tures [T = 0.3 �C (pink downtriangle), T = 6.3 �C (orange

uptriangle), T = 16.3 �C (violet circle) and T = 26.3 �C (cyan

square)]. a The first quadrant; b The third quadrant. (Color

figure online)
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fingerprint of memristor. In addition, with the increase of

the input frequency, the pinched hysteresis loop tends to be

straight line as frequency is infinity. That is to say, when

the frequency of input voltage is large enough, the change

of voltage vNa and current iK(t) is linear. It’s the second

fingerprint of memristor. The loop shape depends not only

on the amplitude and frequency of the applied sinusoidal

single, but also on the temperature of the sodium ion-

channel. The pinched hysteresis loops at several of tem-

peratures are calculated in Fig. 8. We found that increasing

Fig. 7 The response current iNa(t), the fraction m(t) of open sodium

ion-channel and the conductance GNa(t) of the sodium ion-channel

memristor for different temperature T at vNa = 50sin(2pft). The

parameter is selected as f = 500 Hz. a1–a4 T = 0.3 �C; b1–b4
T = 6.3 �C; c1–c4 T = 16.3 �C; d1–d4 T = 26.3 �C

Fig. 8 The pinched hysteresis loops of sodium ion-channel memristor computed at different frequencies and temperatures, for a T = 0.3 �C;

b T = 6.3 �C; c T = 16.3 �C; d T = 26.3 �C
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temperature widens the range of the pinched hysteresis

loops. At intermediate frequency, temperatures have sig-

nificant effect on the pinched hysteresis loop of sodium

channel memristor. It’s remarkable that it takes 80 kHz

frequency at 26.3 �C to pinched hysteresis loop tends to a

straight line in Fig. 8d. The results show that the area of the

pinched hysteresis loop in the third quadrant (AREA3) is

much smaller than that of the first quadrant (AREA1). This

means that the rise of temperature will enhance the mem-

ory effect of the response current on the negative part of the

input voltage than the positive part.

Figure 9 shows that variation in hysteretic lobe area

with increasing frequency of sodium ion-channel memris-

tor for varies temperatures. From Fig. 9 we can see that the

absolute value of the hysteresis lobe area is inversely

proportional to the excitation frequency when the fre-

quency of input signal is beyond a certain critical fre-

quency. The peak values of AREA1 and AREA3 are almost

the same at different temperature, but the critical fre-

quencies are increased with the increasing of temperature.

In addition, the frequency of the input signal that required

for the hysteretic lobe area to approach zero increases with

the rising temperature, and these results correspond to

Fig. 6. It means that an increase in temperature changes the

memory effect of ion-channel memristor, because larger

input signal frequencies are needed to obtain the same area

of pinched hysteresis loop.

Different effects on the first-order and second-
order memristors

Moreover, the properties of memristors are shown in the

slope of the pinched hysteresis loops. Figure 10 shows the

details of the effects of temperatures on the conductance

GK(t) of the potassium ion-channel memristor and the

conductance GNa(t) of the sodium ion-channel memristor.

From the analysis of Fig. 10, the range of the curve

increases with the rise of temperature, that is to say, tem-

perature has a certain influence on electrical conductivity.

At temperatures of 0.3 �C and 26.3 �C, the maximum

conductance GK(t) is 0.0017 S and 0.013 S, respectively.

When the temperature increases from 0.3 to 26.3 �C, the

maximum conductance GNa(t) increases from 0.00011 S to

0.00027 S. The ion-channel memristors are completely

Fig. 9 The lobe area of pinched hysteresis loop of the sodium ion-

channel memristor computed at different frequencies and tempera-

tures [T = 0.3 �C (pink downtriangle), T = 6.3 �C (orange

uptriangle), T = 16.3 �C (violet circle) and T = 26.3 �C (cyan

square)]. a The first quadrant; b The third quadrant. (Color

figure online)

Fig. 10 The hysteresis loop between conductance and sinusoidal voltage at different temperature, and the amplitude of sinusoidal voltage input

waveform is 50 mV, for a f = 100 Hz; b f = 500 Hz
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specified by two scalar functions of three variables,

namely, GK(t) and GNa(t). This result indicates that tem-

perature plays an important role in the properties of

memristor. It is necessary to consider the effect of tem-

perature on ion-channel memristor. We find it particularly

interesting that temperature has a certain effect on the

shape of two groups of conductive hysteresis loops, and the

shape changes are symmetrical. The results may be related

to potassium gate activation function and the sodium gate

activation function.

Conclusions

In summary, the effects of patch temperature on the

membrane potential of neuron and the pinched hysteresis

loop of ion channels were investigated. As the temperature

increases, the amplitude and frequency of electrical activity

change significantly, and it indicates that electrical activity

is sensitive to the change of temperature. Moreover, each

ion channel can be regarded as a physical memristor whose

shape of the pinched hysteresis loop depends on the input

voltage and temperature.

The pinched hysteresis loop of ion-channel memristor

changes obviously at different temperatures. The hysteresis

lobe area decreases monotonously with the increase of

excitation frequency if the external stimulus frequency

changes from a certain threshold. Although the temperature

varies, the shape of the pinched hysteresis loop corre-

sponding to the sinusoidal signal is ‘pinched’ at the origin,

and tends to be straight when frequency is infinity. The

frequency value of input signal required for the hysteresis

lobe area to approach zero increases with the rising tem-

perature. Further investigations revealed that the higher the

patch temperature the larger the hysteresis lobe area when

the external forcing current exceeds the frequency thresh-

old. That is, the memory effect can be enhanced under

higher temperature.

Optimal temperatures of ion-channel have been believed

to modulate and enhance signal transmission (Yang and Jia

2005). The functional roles of temperature in promoting the

signal transduction for the ion channels related neural

information was revealed. Our results confirmed that

temperature has an effect on the memory effect of ion-

channel memristor. These finding might offer important

biological implications, because realistic neurons are often

simultaneously affected by varies temperatures (Micheva

and Smith 2005; Hyun et al. 2011). It seems feasible to

optimize the temporal regulation of neuronal signals by

temperature control. We hope that this research can pro-

vide verifiable hypotheses for future electrophysiological

experiments. The further work of this topic includes

studying the influence of noise on ion channels at varies

temperatures based on the of memristor model in multi-

layer neural network (Ge et al. 2019; Lu et al. 2019a, b).
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