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Abstract Abiotic stresses negatively influence the sur-

vival, biomass production, and yield of crops. Tolerance to

diverse abiotic stresses in plants is regulated by multiple

genes responding differently to various stress conditions.

Genetic engineering approaches have helped develop

transgenic crops with improved abiotic stress tolerance

including yields. The dehydration-responsive element

binding protein (DREB) is a stress-responsive transcription

factor that modulates the expression of downstream stress-

inducible genes, which confer simultaneous tolerance to

multiple stresses. This review focuses on advances in the

development of DREB transgenic crops and their charac-

terization under various abiotic stress conditions. It further

discusses the mechanistic aspects of abiotic stress toler-

ance, yield gain, the fate of transgenic plants under con-

trolled and field conditions and future research directions

toward commercialization of DREB transgenic crops.
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Introduction

Abiotic stresses like drought, salinity, and temperature

fluctuations, negatively affect the growth and development

of plants, and are responsible for the reduced productivity

of major crops and significant economic losses, especially

in the changing climatic scenario (Bhatnagar-Mathur et al.

2008; Patel et al. 2017). Globally, drought and salinity

affect around 20% and 22% of the arable land, respec-

tively; resulting in more than 50% reduced crop produc-

tivity in the affected areas (Agarwal et al. 2017; Bhatnagar-

Mathur et al. 2008; Sarkar et al. 2016). Abiotic stresses can

trigger various morpho-physiological alterations, such as

leaf-wilting, leaf-abscission, reduction in relative water

content (RWC), a decrease in chlorophyll content and

membrane stability, increased electrolyte leakage (EL), and

generation of reactive oxygen species (ROS) (Patel et al.

2016). Therefore, stress tolerant varieties of major crops

need to be developed to enhance their productivity under

multiple abiotic stresses (Bosamia et al. 2015; Sarkar et al.

2014).

Both classical and marker-assisted breeding methods

have been employed to improve the abiotic stress tolerance

of crops but have resulted in limited success (Sarkar et al.

2014). Stress tolerant quantitative trait loci (QTL) have

been used to develop a stress-tolerant, high yielding variety

(Bhatnagar-Mathur et al. 2008). The complex response

mechanism of plants to various abiotic stresses involves the

expression of multiple stress-inducible genes, which result

in morphological, cellular, biochemical and molecular

changes. Stress-inducible genes can be grouped into

structural and regulatory proteins encoding genes (Fig. 1).

Structural genes code for proteins that have structural,

enzymatic, or other functions. Regulatory genes code for

proteins that control the expression of other genes.
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Since abiotic-stress tolerance is polygenic in nature, and

stress responses in plants have overlapping signaling

mechanisms, transferring any single-action gene will likely

not be sufficient to induce the desired level of tolerance

(i.e. the level at which transgenic plant can show optimal

growth and yield). Regulons, that are regulated as a unit by

a single gene coding a transcription factor (TF), can be

harnessed to simultaneously induce the expression of

multiple stress-inducible genes. The dehydration-respon-

sive element (DRE) binding protein (DREB) or CRT (C-

Repeat) binding factor (CBF) is a trans-acting TF, which

activates multiple downstream stress-inducible genes via

the cis-acting DRE/CRT motifs on their respective pro-

moter regions (Yamaguchi-Shinozaki and Shinozaki 1994).

DREBs belong to the ERF (ethylene-responsive element

binding factor) family of TFs and consist of two main

subclasses—DREB1/CBF and DREB2—that respectively

mediate cold and salinity/dehydration tolerance (Liu et al.

1998; Agarwal et al. 2006).

Expression of DREB1 or its target genes are regulated

by up-stream TFs like ICE1 (Chinnusamy et al. 2003),

HOS1 (Lee et al. 2001), DEAR1 (Tsutsui et al. 2009), and

others (Akhtar et al. 2012) (Fig. 2). The DREB gene is the

master regulator of an array of downstream stress-inducible

genes, and therefore a promising candidate for its utiliza-

tion in engineering stress-tolerant transgenic crops. Tran-

scriptome, proteome, epigenome, and metabolome studies

have shown that the DREB can regulate various stress-

responsive pathways in transgenic crops (Table S1). Some

epigenomic analyses have shown the involvement of var-

ious microRNAs in the fine-tuning of DREB-regulated

expression of the downstream gene(s) (Hackenberg et al.

2012; Jiang et al. 2017). Furthermore, a recent meta-anal-

ysis has shown that the promoter sequence, type, and

duration of stress and genus of donor and recipient plants

can significantly influence the DREB-regulated pathways

under drought stress (DS) (Dong et al. 2017).

So far, the reports and reviews on the use of the DREB

regulon have mainly focused on the functional validation

of novel DREB genes and identifying the upstream and

downstream regulatory mechanisms of DREB regulon in

various transgenic plants under various abiotic stresses.

Fig. 1 An outline of the induction of various inducible genes

involving abiotic stress response pathways and mechanisms of

DREB-regulated abiotic stress tolerance in transgenic plants. Super-

oxide dismutase (SOD), glutathione-S-transferases (GSTs), pyrroline-

5-carboxylate synthase (P5CS), choline monooxygenase (CMO),

betaine aldehyde dehydrogenase (BADH), sorbitol-6-phosphate dehy-

drogenase (S6PDH), catalase (CAT), mitogen-activated protein

kinase (MAPK), calcium-dependent protein kinase (CDPK),

glutathione reductase (GR), ascorbate peroxidase (APX), dehy-

droascorbate reductase (DHAR), monodehydroascorbate reductase

(MDHAR), cold-regulated (COR), dehydrin (DHN), late embryoge-

nesis abundant (LEA), antifreeze protein (AFP), fatty acid desaturase

(FAD), basic leucine zipper domain (bZIP), myelocytomatosis related

proteins (MYC), myelocytomatosis related proteins (MYB) and heat

shock protein (HSP)
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This review was aimed to summarize the following aspects

of DREB transgenic crops: (i) Detailed characterization of

DREB transgenic plants; (ii) The fate of DREB transgenic

crops under both confinement facility and field like con-

ditions; (iii) Potential use of DREB transgenic plants in

ongoing breeding programs (Fig. 3, Table S2).

Fig. 2 Regulation of DREB1 gene(s) by various signaling pathways

under abiotic/biotic stress. ICE1 positively regulates expression of

DREB1/CBF, HOS1 negatively regulates expression of CBF2 and

CBF3 genes by interfering with the functioning of ICE1 protein,

MYB15 negatively regulates expression of DREB1/CBF, ICE1

negatively regulates expression of MYB15 and positively regulates

expression of DREB1/CBF, DREB1C negatively regulates the

expression of DREB1A and DREB1B genes, DEAR1 lead to

suppression of DREB1/CBF expression under low-temperature stress

and mediates the cross-talk between biotic and abiotic stress response

pathways and confers resistance to pathogens in plants. HOS: high

expression of somatically responsive; ICE1: inducer of CBF expres-

sion 1 protein; EAR: ethylene response factor-associated amphiphilic

repression

Fig. 3 Schematic representation of integrated approaches for the

development and characterization of DREB transgenic crops for stress

tolerance. GA: Gibberellic acid; HI: Harvest index; CK: Cytokinin;

PCR: Polymerase chain reaction; WUE: Water use efficiency; TE:

Transpiration rate; ETR: Electron transport rate; SLA: Specific leaf

area; UFAs: Unsaturated fatty acids, qPCR: Quantitative PCR

Physiol Mol Biol Plants (November–December 2019) 25(6):1323–1334 1325

123



The DREB regulon and the ABA-associated gene

cascades

Abscisic acid (ABA) has its role in not only regulating the

stomatal functions but also in coordinating various stress-

responsive pathways. The DREB1/CBF and DREB2 pro-

teins are known to regulate the ABA-independent-pathway,

while the DRE/CRT cis-element also functions in an ABA-

dependent-pathway, indicating a cross-talk between the two

(Agarwal et al. 2006; Agarwal and Jha 2010; Agarwal et al.

2017). Expression analysis of downstream stress-inducible

genes in DREB transgenic plants and promoter analysis of

these target genes elucidated the molecular mechanisms

involved in cross-talk between ABA-dependent and ABA-

independent abiotic stress responsive pathways (Narusaka

et al. 2003; Oh et al. 2005). However, exogenous ABA

treatment could not induce the expression of a heterologous

HvCBF4 gene in transgenic rice, indicating the latter’s

possible role in the ABA-independent pathway (Oh et al.

2007). ARAG1, an ABA-responsive DREB gene in trans-

genic rice, mediates DS tolerance via the ABA-dependent

signaling pathway (Zhao et al. 2010).DREB1 transgenic rice

showed stomatal closure under DS via the ABA-dependent

pathway (Datta et al. 2012), and exogenous ABA up-regu-

lated StDREB1 in transgenic potato (Bouaziz et al. 2012),

thus indicated causative role of ABA-dependent DREB

regulon to abiotic stress responses.

Three AtABF3-target genes—Hsp70, PP2Ca, and

receptor kinase—are induced by AtCBF3 in transgenic rice

indicating a partial overlap between the ABA-dependent

and independent pathways (Oh et al. 2005). However,

many abiotic stress-inducible genes (e.g., rd29B) are

specifically regulated by ABA, while others like COR15a

are not, indicating parallel involvement of the ABA-de-

pendent and independent pathways (Yang et al. 2011a;

Zhang et al. 2013). The promoter of rd29A contains a DRE/

CRT element that also functions as a coupling element

(CE) of ABRE (abscisic acid response element), which

mediates the ABA responsiveness of stress-inducible

genes. Both these elements are interdependent in the stress-

induced expression of rd29A, which can be activated by

both ABA-dependent and independent pathways (Narusaka

et al. 2003). Nevertheless, limited information is available

regarding the underlying mechanisms of DREB-induced

abiotic stress tolerance.

DS tolerance in DREB transgenic plants

The most common approach used to evaluate DS tolerance

is potting the plants in dry soil (low water potential), which

mimics in-field drought conditions. Pellegrineschi et al.

(2004) compared the performance of the DREB1A line-

s and wild type (WT) variety of wheat by withholding

water for 15 days and re-watering the plants until maturity.

Similar strategies were also used for the AtDREB1A tomato

and rice cultivars (Rai et al. 2013; Ravikumar et al. 2014).

The DS tolerance of the AtDREB1A peanut lines was

evaluated under progressively declining soil moisture

regimes or varying vapor pressure deficits in pots/lysime-

ters/field, which can help quantify the severity of DS

(Bhatnagar-Mathur et al. 2007, 2014; Sarkar et al. 2016).

Heterologous expression of DREB1A in transgenic rice

helped in alleviating the deleterious effects of DS even at

the reproductive stage as indicated by better morpho-

physiological traits than WT varieties. For example,

AtDREB1A rice (T3) showed greater tolerance in the

booting and anthesis stages compared to the WT variety

and displayed stomatal closure under DS indicating DREB-

dependent regulation of stomatal behavior (Datta et al.

2012). Similarly, high chlorophyll SPAD value and more

greenish leaves were observed in AtDREB1A rice, indi-

cating better yield and ‘stay green’ traits across various

transgenic lines as compared to the WT variety under DS

(Ravikumar et al. 2014).

Pollen-viability and bud-sprouting are important agro-

nomic traits that should be evaluated under stress condi-

tions. Although the agronomic traits of TsCBF1 and WT

maize were not significantly different under control con-

ditions, most transgenic lines grew taller (10–15%),

showed more tassel branches, shorter anthesis-silking

interval (ASI), and better pollen viability than the WT

during DS (Zhang et al. 2010). Furthermore, Sakuma et al.

(2006) showed constitutive expression of DREB2A gene, if

there is a deletion in the negative regulatory domain con-

sisting of 29 amino acids. Also, the AtDREB2A CA sug-

arcane showed not only improved DS tolerance but also

enhanced initial bud sprouting and higher sucrose content

without biomass penalty (Reis et al. 2014).

Expression of DREB in transgenic plants modulated the

up-regulation of water transport protein, thus help in

maintaining cellular water status under various abiotic

stress conditions. AtDREB1B expression in Salvia miltior-

rhiza up-regulated the aquaporin gene, which modulates

water permeability in plant cells (Wei et al. 2016).

DREB1A transgenic crops maintained a conservative pat-

tern of water use under DS as indicated by enhancement in

the transpiration efficiency (TE) over its WT genotypes.

Transgenic peanut (Bhatnagar-Mathur et al. 2007) and

chickpea (Anbazhagan et al. 2015b) cultivars overex-

pressing DREB1A showed a substantial increase in TE

under DS. Devi et al. (2011) reported a significant corre-

lation between TE and its surrogate traits such as specific

leaf area (SLA) and SPAD chlorophyll meter readings

(SCMR) but none between TE and D13C (carbon isotope

discrimination), indicating that the latter cannot be used to

assess TE under DS.
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Root architecture is a critical parameter for evaluating

DS tolerance since it is associated with water mining

capacity. Ban et al. (2011) observed higher LbDREB gene

expression in the tobacco roots compared to the leaves

under DS. Furthermore, the DS-induced expression of

AtDREB1A gene in transgenic peanut was also found

associated with improved root/shoot ratio, which enhanced

their harvest index (HI) compared to the WT genotype due

to greater water uptake from the deeper soil layers (Jagana

et al. 2012; Vadez et al. 2007). Under drought-like con-

ditions, AtDREB1A peanut (Sarkar et al. 2016) and chick-

pea (Anbazhagan et al. 2015b) showed enhanced root

growth in deeper soil layers, which might have resulted

from improved DS tolerance and increased water extrac-

tion capacity. The DREB transgene, however, does not

always improve all parameters related to stress tolerance

and yield. The AtDREB1A peanut lines did show variations

in RWC and total biomass under DS, but no significant

difference was observed for pod-yield (Sarkar et al. 2014).

Similarly, the AtDREB1A soybean line did not outper-

form the WT variety in terms of yield, but the number of

seeds per pod and the total number of pods were higher in

the former under DS (de Paiva Rolla et al. 2014). The

presence of transgene in the genome may not always show

its expression in transgenic plants (Shavrukov et al. 2016).

Various transgenic lines expressing the same DREB gene

in same genetic background may show variations in gene

expression pattern, physio-biochemical responses, yield

and yield-components under abiotic stress conditions. This

is likely due to the positional effects of transgene integra-

tion in the genome, copy numbers, positive pleiotropic

effects of the tissue culture process, variations in promoter

activity, the regulatory function of heterologous DREB

gene itself and genotype 9 environment interactions (An-

bazhagan et al. 2015a; Datta et al. 2012; Sarkar 2014).

Antioxidant mechanisms are an important line of

defense against DS. Rai et al. (2013) reported a significant

increase in the activity of antioxidant enzymes like

superoxide dismutase (SOD), catalase (CAT), glutathione

reductase (GR), dehydroascorbate reductase (DHAR),

ascorbate peroxidase (APX), and monodehydroascorbate

reductase (MDHAR) in the AtDREB1A tomato under DS,

indicating better tolerance compared to WT variety. In

addition, the levels of antioxidants such as ascorbic acid,

glutathione, and their reduced forms were also higher in the

transgenic tomato and increased with ROS levels (Rai et al.

2013). Although DREB upregulates the antioxidant enzyme

genes, it does not play any causative role in improving the

TE in AtDREB1A peanut under DS (Bhatnagar-Mathur

et al. 2009), indicating that the antioxidant mechanism does

not regulate the TE.

In addition to physio-biochemical assays, visual obser-

vations are used to characterize abiotic stress tolerance.

The AtDREB1A transgenic rice and peanut showed less

severe, as well as delayed wilting/curling of leaves during

drought. After stress withdrawal, both AtDREB1A trans-

genic rice (Ravikumar et al. 2014) and peanut (Sarkar et al.

2014) showed speedy recovery compared to their respec-

tive WT varieties, possibly due to the up-regulation of

genes involved in energy and carbohydrate metabolism

(Paul et al. 2015).

Although, DREB transgenic crops are generally tolerant

to DS with improved physio-biochemical and growth-re-

lated parameters, yet some transgenic events do show

dwarfism and pleiotropic effects on leaf ultrastructure and

phenology as effective water conservation mechanisms (Li

et al. 2012; Tang et al. 2017). Such altered phenotypic

traits could be due to the DREB-induced down-regulation

of some phytohormones biosynthesis pathways. The DREB

gene regulates the response to multiple abiotic stresses,

which influences the crop physiology during its entire life

cycle. Since drought and salinity are the most prevalent

abiotic factors affecting the major crops, considerable

efforts have aimed at developing transgenic crops tolerant

to DS, followed by salinity stress (SS) (Fig. S1).

Phenotyping of stress tolerant DREB transgenic

lines

The abiotic stress tolerance of transgenic plants is evalu-

ated in terms of physiological parameters such as total

water use, water use efficiency (WUE), transpiration, TE,

RWC, membrane stability (Table S2), osmotic adjustment,

surrogate traits of photosynthesis like SLA and SCMR,

specific leaf nitrogen (SLN), photochemical efficiency,

photosynthetic rate, and stomatal conductance (Anbazha-

gan et al. 2015a; Bhatnagar-Mathur et al. 2007; Devi et al.

2011; Reis et al. 2014; Sarkar et al. 2014). Under abiotic

stress, the heterologous expression of DREB in various

transgenic crops showed better stomatal regulation, water

status, osmotic homeostasis, protection of photosynthetic

apparatus and photosynthetic efficiency (Table S2) over its

WT genotype (Datta et al. 2012; Oh et al. 2007; Sarkar

et al. 2016). Delayed wilting or curling of leaves in the

transgenic crop is a morphological sign of DS tolerance, as

it signifies slower water usage due to lower water potential

in the tissues (Sarkar et al. 2016). Hence, this phenotypic

index could be used to assess the optimal level of stress

tolerance in transgenic crops.

The leaf chlorophyll content, photochemical efficiency

(Fv/Fm), chlorophyll fluorescence and electron transport

rate (ETR) are related to photosynthetic rate and net pho-

tosynthesis in transgenic crops (Jin et al. 2010; Ravikumar

et al. 2014; Yang et al. 2010). The decrease in chlorophyll

SPAD values or chlorophyll content under abiotic stress is

a likely result of its photo-oxidation and degradation

Physiol Mol Biol Plants (November–December 2019) 25(6):1323–1334 1327

123



(Farooq et al. 2009; Jin et al. 2010; Yang et al. 2010), and

therefore can be considered a symptom of oxidative stress.

Thus, the improved photosynthetic rate, ETR and turnover

rates of dark reactions in DREB/CBF transgenic plants

might be due to less photo-oxidative damage and degra-

dation of photosynthetic machinery than WT cultivars

under drought and cold stresses (Ravikumar et al. 2014;

Yang et al. 2010). Taken together, quantitative estimation

of various physio-biochemical and molecular (gene

expression analysis) indicators can help elucidate the

mechanisms underlying stress-tolerance in DREB trans-

genic crops (Bhatnagar-Mathur et al. 2007, 2014; de Paiva

Rolla et al. 2014; Sarkar et al. 2016).

Salinity stress (SS) tolerance in DREB transgenic

crops

SS refers to the stress caused by high levels of sodium

chloride (NaCl), the major component of most saline soils.

It can be simulated experimentally by irrigating the plants

with saline water (in pots) or by transferring the seedlings

to salt-containing media or nutrient solution having elec-

trical conductivity (EC)[ 4. The effects of SS should be

evaluated both at the seedling and mature plant stages

(Bhatnagar-Mathur et al. 2008). Datta et al. (2012) and

Sarkar et al. (2014) observed an improved SS tolerance,

physio-biochemical parameters and yield of DREB trans-

genic rice and peanut cultivars when exposed to NaCl

(12–18 EC or 100–200 mM)-supplemented nutrient solu-

tion for 28 days and 12 days, respectively.

Transgenic StDREB1 potato maintained large green

leaves (stay-green trait) compared to the WT variety,

which showed necrotic lesions and subsequently died after

20 days of SS (Bouaziz et al. 2013). The GmDREB1

transgenic wheat showed a higher level of osmolytes such

as proline and glycine betaine for retaining macromolecule

homeostasis, better seedling traits along with longer roots,

higher fresh-weight, and more tillers than the WT variety,

with increasing duration of SS (Jiang et al. 2014). The

heterologous expression of the DREB gene might regulate

the expression and function of ion transporters in a stress-

specific manner for maintaining ion homeostasis at the

cellular level. LbDREB transgenic tobacco showed signif-

icantly more K?/Na? ratio than its WT counterparts under

CuSO4 induced-oxidative stress, suggesting over-expres-

sion of DREB gene can significantly reduce Na? content in

transgenic tobacco under stress conditions (Ban et al.

2011). However, over-expression of PgDREB2A in trans-

genic tobacco could not activate ion exchange antiporters

under SS (Agarwal et al. 2010).

Salinity-susceptibility index (Oraby and Ahmad 2012)

and salt-injury index (Jiang et al. 2014) are critical

parameters for evaluating SS. Constitutive expression of

heterologous DREB genes, however, may result in salinity

sensitivity as opposed to tolerance (Table S2), indicating

the requirement of a stress-inducible promoter (Tang et al.

2017).

DREB imparted thermo-tolerance in transgenic

crops

A number of studies have demonstrated thermo-tolerance

in various DREB transgenic crops. DREB2A is a heat shock

(H) stress-inducible gene containing an H element

upstream of its promoter, which transcriptionally activates

the downstream HsfA3, a heat shock TF which in turn

activates the downstream heat shock proteins (HSPs) and

confers thermo-tolerance (Sakuma et al. 2006; Schramm

et al. 2008). The DREB transgenic tobacco showed short-

term (6 h) tolerance to a sudden drop in temperature (4 �C)
(Agarwal et al. 2010), as well as long-term tolerance

(33 days) to gradually declining temperatures (12 �C to

- 5 �C) under open field conditions (Wei et al. 2006).

Similarly, the TaDREB2 and TaDREB3 transgenic barley

showed less damage from frost stress and improved sur-

vival rate of 45–50% compared to the WT variety (Morran

et al. 2011).

Other examples include the AtDREB1A tomato that

showed improved stomatal conductance, transpiration rate,

RWC, and osmotic adjustments compared to the WT

variety when exposed to low temperatures (4, 6, and 8 �C)
for one week (Shah et al. 2015). Also, MtDREB1C Med-

icago truncatula and China Rose cultivars showed better

survival compared to their WT counterparts when exposed

to - 6 �C for 10 h and - 6 �C for 60 h, respectively

(Chen et al. 2010). The heterologous expression of CfCBF3

in tobacco also conferred tolerance to low-temperature

stress by enhancing the level of total unsaturated fatty acids

in the leaves, which helped protect its photosynthetic

apparatus (Yang et al. 2011b).

In some cases, synthetic/modified DREB gene, rather

than its native form have been used for achieving the

desired level of ectopic gene expression and stress toler-

ance in transgenic crops (Reis et al. 2014; Wang et al.

2014). The RdreB1BI transgene was synthesized by over-

lap extension PCR on the DREB1B gene of rice using

primers with optimized codons and decreased GC content,

and induced low-temperature tolerance in transgenic

strawberry (Wang et al. 2014). DREB also regulates the

expression of heat shock proteins (HSPs), as well as pho-

tosynthetic/metabolic enzymes that confer high-tempera-

ture stress tolerance (Table S2, Fig. S1). Hong et al. (2009)

reported high-temperature tolerance in AtDREB1A

chrysanthemum when exposed to 458C for 36 h. However,

the thermo-tolerance and overall improved physiological
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traits of various DREB transgenic crops have not been

associated with an improved yield so far.

Multiple stress tolerance in DREB transgenic crops

Since crops are simultaneously exposed to multiple stresses

under field conditions, it is of prime importance to develop

multi-stress tolerant varieties of important crops to increase

productivity. Various DREB transgenic lines do show tol-

erance to drought, salinity, alkalinity, and high/low tem-

perature. For example, heterologous expression of

AtDREB1A in peanut (Sarkar et al. 2014) and maize (Al-

Abed et al. 2007) improved the RWC and membrane sta-

bility (low ion leakage) compared to the WT, thus indi-

cating better cellular water status under drought, salt, and

low-temperature stresses. Similarly, AtDREB1A peanut

(Sarkar et al. 2014), AaDREB1 rice (Zong et al. 2016) and

GhDREB wheat (Gao et al. 2009) also showed higher

chlorophyll retention capacity, indicating a higher rate of

photosynthesis, under drought, salt, and low-temperature

conditions compared to their WT counterparts. The better

performance of DREB transgenic plants could be attributed

to the DREB-activated expression of downstream genes

preventing the chlorophyll degradation and thereby main-

taining the normal photosynthesis and energy metabolism

under multiple stress conditions.

As discussed earlier (Fig. 1), osmolyte biosynthesis and

antioxidant enzyme activity are vital responses underling

physio-biochemical and growth-related improvements in

transgenic plants under various abiotic stresses. For

example, AtDREB1B potato (Movahedi et al. 2012),

AtDREB1A Lolium perenne (Li et al. 2011), AaDREB1 rice

(Zong et al. 2016) and IbCBF3 sweet-potato (Jin et al.

2017) showed higher proline levels, soluble sugar accu-

mulation and antioxidant enzymatic activities due to the

activation of macromolecule homeostasis and detoxifica-

tion mechanisms under drought, salt and low-temperature

stresses (Table S2). Also, AtDREB1A peanut showed better

RWC under DS and SS than the WT variety; following

stress withdrawal, the transgenic plants also recovered

faster and performed better than the WT genotype (Sarkar

et al. 2014). Furthermore, AtDREB1A peanut showed

improved osmotic adjustment in terms of higher osmolality

or lower osmotic potential under DS and SS (Sarkar et al.

2014), which again indicated the possibility of cross-talks

among various stress-response mechanisms.

The constitutive co-expression of three stress-responsive

TFs genes viz. AtDREB2A, AtHB7, and AtABF3 in peanut

was reported conferring tolerance to various abiotic stres-

ses (Pruthvi et al. 2014). However, since each transgene

expression may increase the metabolic load on the plant,

thus the incorporation of a single TF gene imparting the

desired level of stress tolerance and yield under DS and SS

might be a more feasible option (Sarkar 2014). In fact,

studies on transgenic crops have demonstrated that indi-

vidual physiological responses are inter-linked and even-

tually lead to stress tolerance, improved growth, and yield.

For example, AtDREB1A peanut exposed to DS and SS

showed elevated levels of proline, which resulted in better

osmotic adjustment. Both phenomena increase water

retention capacity and lower the level of ion leakage due to

improved membrane integrity and better protection of

photosynthetic mechanisms (Sarkar et al. 2014).

In addition, OsDREB1B tobacco shows improved

resistance to tobacco streak virus and tolerance to drought,

salt, low-temperature, as well as methyl viologen-induced

oxidative stress (Gutha and Reddy 2008). Similarly, vari-

ous transgenic crops expressing heterologous DREB gene

also showed tolerance to oxidative stress in combination

with biotic and abiotic stresses (Table S2) (Bouaziz et al.

2013; Charfeddine et al. 2015; Gutha and Reddy 2008;

Pruthvi et al. 2014; Rai et al. 2013). Thus, the DREB

transgenic crops show multi-stress tolerance likely due to

the cross-talk between various biotic and abiotic stress-

responsive mechanisms, and also due to the interaction

between ABA-dependent and independent signal trans-

duction pathways (Fig. S1).

Evaluation of yield-components and yield in DREB

transgenic crops

The ultimate goal of developing stress-tolerant transgenic

crops is to improve crop yield under harsh environmental

conditions. However, most studies so far have only

reported the short-term expression of heterologous DREB

gene and survival of the transgenic plants under stress. In

addition, the experimental acute stress used to study these

transgenic plants does not reflect the in-field conditions.

Therefore, the physiological, biochemical and growth-re-

lated data of transgenic plants may not always be reliable

(Bhatnagar-Mathur et al. 2008). Thus, it is essential to

determine the threshold level of any abiotic stress which a

transgenic can tolerate and show optimal growth and yield

as compared to its WT counterparts (Sarkar 2014).

Some reports have shown improved physio-biochemical

characteristics and growth of DREB transgenic plants that

resulted in improved yield, likely due to stress escape,

avoidance, tolerance, and recovery mechanisms (Table S2).

Yield parameters like daily transpiration (T), TE and HI

have been recorded to determine the effect of DS on

transgenic plants (Anbazhagan et al. 2015a, b; Bhatnagar-

Mathur et al. 2010; Sarkar et al. 2014). Nevertheless, very

few studies have evaluated transgenic crop yield as a

function of stress tolerance under containment facility or

open field conditions (Anbazhagan et al. 2015a; Bhatnagar-

Mathur et al. 2014; de Paiva Rolla et al. 2014; Ravikumar
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et al. 2014; Sarkar et al. 2014) (Table S2). For example,

AtDREB1A peanut (Bhatnagar-Mathur et al. 2014), rice

(Ravikumar et al. 2014), and chickpea (Anbazhagan et al.

2015a) showed yield gain under DS and SS compared to

the WT genotypes, without any yield penalty. Anbazhagan

et al. (2015a) observed early flowering and seed setting in

AtDREB1A transgenic chickpea line as compared to WT

counterparts under DS, which was indicative of a drought

escape mechanism.

Rice being an important cereal crop of the world, most

studies on transgenic plants have focused on the develop-

ment of high-yielding stress-tolerant rice cultivars

(Fig. S2). DREB rice showed improved agronomic traits,

such as an increase in the number of reproductive tillers

and spikelets at the pre-flowering and vegetative stages,

respectively, compared to the WT variety under DS and SS

(Datta et al. 2012). As stated earlier, the DREB transgenic

line could show multiple abiotic stress tolerance due to

overlapping stress responsive mechanisms, with the

exception of a few instances. For example, two TaDREB3

transgenic wheat lines (F3BC3) showed higher seed yield

(18.9% and 21.5%) and better survival rate than WT

varieties under DS, but no significant difference was

observed in survival rate under low-temperature stress

(Shavrukov et al. 2016).

On the contrary, AtDREB1A peanut showed improved

HI, an important yield parameter under DS and SS (Bhat-

nagar-Mathur et al. 2014; Sarkar et al. 2014). In addition,

improved RWC in AtDREB1A peanut was found positively

correlated with improved HI (r = 0.64 and 0.91) compared

to WT peanut under DS and SS (Sarkar et al. 2014).

Therefore, improved physiological traits under abiotic

stresses may improve the yield of crop plants.

Conclusions

Single gene action based transgenic approaches have not

always shown much encouraging results due to the poly-

genic nature of abiotic stress-tolerance mechanisms. DREB

gene was introduced into plants to develop stress-tolerant

crops. This review discussed in-depth molecular, physio-

biochemical mechanisms responsible for abiotic stress

tolerance in transgenic crops and the fate of transgenic

crops under confinement/contained facilities and field

conditions (Table S2). This review also highlighted the use

of DREB transgenic plants in back-cross breeding pro-

grams and future strategies towards commercialization of

DREB transgenic crops (Fig. 3).

Although many DREB transgenic crops with varying

degrees of abiotic and biotic stress tolerance have been

developed worldwide, none of them are currently under

large-scale cultivation (Table S2; Fig. S1, S2). In addition,

limited reports are available showing improved yield under

field conditions (Table S2). The recovery and yield of the

transgenic plants after stress withdrawal are also critical

parameters for evaluation of stress tolerant lines (Sarkar

et al. 2014). Therefore, integrated approaches are needed to

assess the tolerance and yield potential of the homozygous

and stable DREB transgenic lines following the withdrawal

of individual or multiple stresses under field-like condi-

tions, in order to identify the best DREB transgenic lines

for further characterization and large-scale cultivation

(Fig. 3).

In addition, novel genetic engineering strategies like the

use of stress-inducible, tissue-specific promoters to mini-

mize excessive metabolic load on the transgenic crops,

chloroplast transformation, and targeted and marker-free

gene transfer can be introduced into the DREB regulon

technology to nullify the environmental, ethical and health

concerns associated with transgenic crops.

Future prospects

Advanced ‘omics’ approaches should be used to dissect the

DREB regulon controlled downstream signaling pathways

involved in stress responses in transgenic crops. The

identification of novel genes that are up-regulated during

stress and their respective promoters can help engineer new

stress-tolerant crops with improved photosynthetic

machinery, water conservation, WUE and root traits and

cellular level tolerance, without any growth and yield

penalty (Fig. 3). The downstream genes of DREB regulon

that is up-regulated under abiotic stress could be mapped to

the linkage groups of different transgenic crops. Further-

more, the identification of quantitative trait loci (QTL)

based on bi-parental mapping populations or genome-wide

association studies (GWAS) will help develop allele-

specific markers (ASMs) of these candidate genes (Lata

et al. 2011; Rao et al. 2015; Zhuang et al. 2015) and enable

marker-assisted transgenic crop development for abiotic

stress tolerance (Fig. 3).

The identification of novel promoters of stress-inducible

genes could be utilized for driving expression of heterol-

ogous genes in transgenic plants. Further, the TaDREB3

gene was transferred into four elite bread wheat cultivars

by repeated backcrossing and the resultant lines (F2BC3)

showed 12–18% higher survival rates and yield than the

WT varieties under DS. The backcross breeding programs

also generated marker-free TaDREB3 transgenic wheat

lines (F1BC2) due to recombination events that occurred in

the genomic regions surrounding the transgene (Shavrukov

et al. 2016). Such backcross-based gene introgression can

also be extended to the other DREB based transgenic crops.

So far, very few abiotic stress-tolerant DREB transgenic

plants have been tested to understand their resistance to
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biotic stresses (Table S2, Fig. S1). Hence, DREB transgenic

crops need to be evaluated for their possible resistance to

biotic stress and to unravel the in-depth molecular mech-

anisms responsible for cross-talks between biotic and abi-

otic stress responses. Further, each transgenic crop needs

critical evaluation upon exposure to the appropriate level of

stress, under confinement/contained facility or field trials

(multi-year, multi-location), at the appropriate develop-

mental stage, for evaluating its potential utility at com-

mercial scale in near future.

Alternatively, the transgenic crops can also be evaluated

for their tolerance, growth, and yield under sub-optimal

and/or optimal stress exposure for their entire life span

(Wang et al. 2016). However, upscaling from transgenic

development to field trials requires continuous and con-

sorted efforts, scientific networking, adequate fund flow,

and availability of land, technical expertise and biosafety

clearance (Mishra et al. 2017; Sarkar et al. 2017). Event-

specific qualitative and quantitative PCR-based detection

assays need to be developed for meeting the demands for

field trials and curb the use of unauthorized transgenic

crops (Liu et al. 2014). The currently available stress-tol-

erant DREB-based transgenic crops ought to be made

accessible for small and resource-poor farmers. However,

political will and simplification of biosafety regulations are

also simultaneously required to facilitate the commercial-

ization of transgenic crops.
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