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Integrated solid-state NMR and molecular
dynamics modeling determines membrane
insertion of human B-defensin analog

Xue Kang 3 Christopher ElsonZ3, Jackson Penfield?, Alex Kirui® !, Adrian Chen', Ligun Zhangz* &

Tuo Wang® ™

Human B-defensins (hBD) play central roles in antimicrobial activities against various
microorganisms and in immune-regulation. These peptides perturb phospholipid membranes
for function, but it is not well understood how defensins approach, insert and finally disrupt
membranes on the molecular level. Here we show that hBD-3 analogs interact with lipid
bilayers through a conserved surface that is formed by two adjacent loops in the solution
structure. By integrating a collection of 13C, TH and 3'P solid-state NMR methods with long-
term molecular dynamic simulations, we reveal that membrane-binding rigidifies the peptide,
enhances structural polymorphism, and promotes p-strand conformation. The peptide colo-
calizes with negatively charged lipids, confines the headgroup motion, and deforms membrane
into smaller, ellipsoidal vesicles. This study designates the residue-specific, membrane-bound
topology of hBD-3 analogs, serves as the basis for further elucidating the function-relevant
structure and dynamics of other defensins, and facilitates the development of defensin-
mimetic antibiotics, antifungals, and anti-inflammatories.
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peptides widely distributed in leukocytes and epithelial

cells. These small cationic peptides (3-5kDa) form the
first line of immune defense against pathogenic infections by a
broad spectrum of microorganisms, including Gram-positive and
-negative bacteria, yeast, and encapsulated viruses!~3. Defensins
also show chemotactic activity for monocytes, T cells and
immature dendritic cells, reduce tissue damages by antimicrobial
effectors*%, and inhibit tumor cell migration”-8. These biological
functions, in particular, the microbicidal activity of defensins and
other relevant antimicrobial peptides correlate with their cap-
ability of disrupting and permeabilizing membranes and causing
membrane leakage to the invading microbes®~13. Efforts have
been devoted to developing and engineering defensin-mimetic
compounds as novel therapeutic agents against drug-resistant
strains of bacteria and fungi, such as Candida albicans and Sta-
phylococcus aureus'®15, however, a major hurdle here is our
limited understanding of the membrane-associated functional
structure of defensins.

In humans, six a-defensins (~30 residues) and 28 types of B-
defensins (33-47 residues) have been identified!®!7. Both a- and
B-defensins have six cysteine residues, but adopt distinct patterns
in pairing and disulfide-bond formation. The solution or crys-
tallographic structures of five B-defensins, including hBD-1, -2,
-3, -4, and -6 have been determined!8-24, which feature a triple-
stranded P-sheet fold as stabilized by three disulfide bonds. These
peptides have a net charge density ranging from + 4 to + 11, and
hBD-3, the focus of this study, is the most cationic peptide in this
family, therefore, stronger interactions with the negatively
charged bacterial membranes are expected?>. Recently, the
reduced analogs have also been shown to have comparable, if not
greater, antimicrobial activity as the wild-type hBDs20. The
analog adopts a structure that is less constrained than that of
wild-type hBD-3, and retains the capability of disrupting the
outer membrane of bacteria?’-2%. However, how these peptides
interact with phospholipid membranes remain elusive and a
central contribution of this study is to establish a high-resolution,
residue-specific view of the insertion topology of hBD-3 analogs
in lipid bilayers.

Three non-specific mechanisms of membrane-disruption have
previously been proposed depending on the depth of insertion of
the peptides. If only surface-coating occurs, the peptides will form
a carpet outside the membrane and gradually dissolve the
membrane like detergent’®. When partially immersed in the
membrane, the peptide may reside within one leaflet of the lipid
bilayers and interrupt membrane integrity. If the peptide fully
penetrates through the membrane, membrane-spanning pores
can be formed as described in the toroidal and barrel-stave
models, which are stabilized and supported by the oligomeriza-
tion of peptides3!-34,

Here, we integrate 2D 13C-13C, 13C-!H, and 3!P-3!P corre-
lated solid-state NMR (ssNMR) spectroscopy with molecular
dynamics (MD) simulation to provide the first site-specific evi-
dence on the structure and dynamics of hBD-3 analogs in POPC/
POPG lipid bilayers. Without the three disulfide bonds, the
analog can still bind lipid bilayers using a conserved surface and
efficiently break down the vesicles, which sheds light onto the
membrane-disruption mechanism of this antimicrobial peptide.
Membrane-binding enhances the structural polymorphism of
hBD-3 analog, resulting in three conformers with distinct inser-
tion patterns. The major conformer has a (-strand-dominant
backbone conformation similar to that in solution, indicating an
insignificant role of large-scale restructuring for function. This
study provides novel insights into the functional structure of
human B-defensins and membrane-disruption mechanism, which

I I uman [-defensins (hBD) are a family of antimicrobial

facilitates the development of defensin mimetics to address the
increasing threat of antimicrobial resistance.

Results

hBD-3 analog is polymorphic in water and lipid bilayers. To
achieve site-specific resolution for NMR characterization, we
synthesized the hBD-3 analog, a 45-residue peptide, using two
isotope-labeling schemes (Fig. 1a). In total, nine 13C, 1°N-labeled
residues are included to cover both the N- and C-terminal halves
of peptide sequence, as well as the different structural domains.
Peptide 1 (VALIG) contains labels at V13, A19, L21, 130, and
G37, while Peptide 2 (IVLG) has labeled residues of 13, V20, L24,
and G31. All the cysteine residues are in the reduced form, which
defines the analog state. Because hBD-3 is rich in cationic resi-
dues (13 Arg and Lys) that confer bactericidal activity3®, both
peptides were reconstituted into POPC/POPG lipid bilayers that
mimic the negatively charged state of bacterial membranes.

Figure 1b shows the representative 1D 13C spectra of hBD-3
analogs in POPC/POPG bilayers. With 65-70 wt% hydration, the
hBD-3 analog exists in three major states with decreasing
mobility: dissolved in solution, loosely associated with the
membrane surface, and deeply inserted into the lipid bilayers.
The highly mobile hBD-3 analogs dissolved in the aqueous phase
is detected through the J-coupling-based refocused Insensitive
Nuclei Enhanced by Polarization Transfer (INEPT)
technique36-37, 13C direct polarization (DP) with a short recycle
delay preferentially selects the relatively mobile components383%,
with contributions from partially dissolved or loosely bound
peptides, while 'H-13C cross-polarization (CP) detects the
peptides rigidified by their insertion in lipid bilayers. At 298 K,
the well-inserted peptides are relatively rare as evidenced by the
eight times stronger peptide signals in DP than in CP spectrum.
The peptide peaks at 40-60 ppm region shows identical 13C
chemical shifts in INEPT and DP spectrum, but change slightly
from those in CP spectrum. Taken together, the hBD-3 analog
undergoes minor structural changes upon binding to the
membrane, whereas there is little difference between the dissolved
state and the state with loose attachment to the membrane. As
most peptides remain relatively mobile at high temperature and
CP cannot provide sufficient sensitivity for two-dimensional (2D)
experiments, a moderately lower temperature 269 K is used to
overcome the sensitivity barrier for detecting membrane-bound
peptides and to simultaneously retain the liquid-crystalline phase
of the membrane as demonstrated by the sharp 'H peaks of lipid
acyl chains (Supplementary Fig. 1)40. The 2D 13C-13C correlation
spectra provide atom-specific resolution of hBD-3 analog in both
mobile and membrane-bound states (Fig. lc; Supplementary
Fig. 2), and all the 13C chemical shifts are documented in
Supplementary Table 1.

The structure of hBD-3 analog is highly polymorphic when
bound to phospholipid membranes. The dynamic peptides in
water exhibit relatively sharp linewidths of 1-1.5 ppm for aliphatic
carbons, because the conformational heterogeneity is averaged out
by rapid motions (Fig. 1c). Most residues show a single set of
chemical shifts, while residues I3, A19, V20, and 130 have an
additional, minor set of peaks, indicating the presence of a less
populated state in addition to the major conformer. In contrast,
the rigid, membrane-bound peptides have substantially broader
linewidths and more pronounced peak multiplicity. For example,
three well-resolved Ca-Cp cross peaks have been identified for 130
at (60, 37 ppm), (59, 41 ppm), and (57, 39 ppm). Similarly, we
have identified three subtypes for I3, L21, and L24 residues, and
two conformers for the other residues, indicating a highly
polymorphic peptide structure induced by membrane interactions.
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Fig. 1 Isotope-labeling schemes and 13C solid-state NMR spectra of hBD-3 analog. a The 13C, 1>N-labeled residues are in red for VALIG peptide, and in blue
for IVLG peptide in both the amino acid sequence and solution monomeric structure of wt-hBD-3 (PDB 1KJ6). b 1D 13C spectra of VALIG peptide in POPC/
POPG bilayers at 269 K and 298 K. From top to the bottom are INEPT, DP, and CP spectra measured at 298 K, and CP spectrum at 269 K. Dashlines

indicate the resolved peptide peaks. ¢ 2D 13C-13C correlation spectra of VALIG with 100-ms DARR mixing. The rigid and mobile components are selected
using ™H-13C CP and 3C DP, respectively. Greek letters indicate carbon sites and superscripts annotate conformers. 1302ap: carbon o to carbon B cross
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Fig. 2 The hBD-3 analog mainly adopts p-strand conformation. 13C secondary chemical shifts of Ca and CO of hBD-3 analog in POPC/POPG membranes at
a, 298K, DP and b, 269 K, CP. The secondary structures of the wt-hBD-3 are also shown in the bottom of each panel for comparison with the analog.

Transparent bars indicate the minor conformers

Dominant $-strand conformation in lipid bilayers. The hBD-3
analogs are rich in B-strand conformation as revealed by the 13C
backbone chemical shifts that are sensitive to ¢ and y torsion
angles (Fig. 2a)*l. The chemical shift differences between the
observed data and random coil values of Ca and CO are used to
identify the secondary structure?2. In the mobile phase, the major
conformer of hBD-3 analog is predominantly in p-strand, except
for the N-terminus, which is consistent with the solution-NMR

monomeric structure of hBD-318. The secondary chemical shifts
characterize I3 as a-helical conformation, but suggest V13 as part
of the loop. Consistently, when bound to lipid bilayers, the overall
B-strand conformation is retained (Fig. 2b). Compared with the
aqueous phase, the membrane-bound peptides have a higher
tendency for a-helical conformation at V13 position in its major
conformer, but more pronounced f-strand conformation for the
minor subtype. It should be noted that the presence of membrane
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Fig. 3 Site-specific depth of insertion of hBD-3 analog in POPC/POPG bilayers. a 2D 13C-H correlation spectrum of VALIG, with 225-ms H spin diffusion
and the representative H cross-sections of L212Ca at different 'H mixing times. The water-to-peptide (purple) and lipid-to-peptide (black) "H polarization
transfer curves of b, well-inserted residues and ¢, surface-bound residues are shown. The carbon site and the best-fit distances are labeled for each panel.
Error bars are standard deviations that are propagated from signal-to-noise ratios. d 130 is far from both water and lipids. @ Summary of distances from

water and lipid acyl chains to the peptide

environment is crucial for the folding of hBD-3 analog as revealed
by circular dichroism (CD) spectra (Supplementary Fig. 3).

Insertion depth is site-specific and conformer-dependent. Since
hBDs inhibit bacteria by breaching their surface membrane, it is
of high significance to determine the site-specific insertion
topology of these peptides in bacteria-mimetic membranes.
Herein, we conducted a series of 2D 13C-detected 'H spin dif-
fusion experiments that correlate the peptide 13C signals with the
lipid CH, (1.3 ppm) and water (4.9 ppm) 'H signals, the inten-
sities of which reflect the spatial proximity of each residue to the
lipid acyl chain and surface water, respectively (Fig. 3a). With
only a moderate 'H mixing time of 100-225ms, many
peptide-lipid cross peaks already appeared, confirming the
membrane insertion of hBD-3 analogs. In contrast, if a peptide
only binds membrane surface, the paramyxovirus fusion peptide
in DMPC bilayers for example, no peptide-lipid cross peaks are
observed even at longer mixing times up to 900 ms*344,

The depth of insertion of hBD-3 analog is residue-specific,
which is demonstrated by the wide range of semi-quantitative
distances derived by fitting the intensity buildup curves using a
1D lattice model manipulating polarization transfer (Fig. 3b-d)*°.
The results are mainly categorized as membrane-inserted (Fig. 3b)
and surface-bound residues (Fig. 3c). Residues G372, V202, 1242,
and L24€ are found to be well-inserted, with the lipid CH, signals
reaching plateau rapidly, within 100 ms, but much slower buildup
curves for water intensities (Fig. 3b). Consequently, the lipid-to-
peptide distance is best fit to 2 A, whereas the distance from water
to peptide varies from 2 to 6 A. In contrast, L212, 132, I35, A19,
and 124 are spatially proximal to water (2 A), but far from lipid
acyl chains (4-10 A), thus residing on the membrane surface
(Fig. 3c). It is unexpected that no equilibrium could be reached
for 130 even with an extended mixing time of 400 ms, neither for
water nor lipids (Fig. 3d). It suggests that I30 is embedded in the

hydrophobic core of the peptide, likely on a peptide-peptide
interface, thus becoming inaccessible to external molecules.

The membrane-bound topology of hBD-3 analog is also found
to be conformation-dependent. As revealed by the NMR-derived
distance map (Fig. 3e), the polymorphic residue L21 has its major
conformer (type-a, L21%a) binding membrane surface and the
minor conformer (type-b, L21° ) inserted in the hydrophobic
core, whereas L24 has the reversed trend. The N-terminus of
hBD-3 is consistently water-proximal, while the C-terminus is
deeply inserted into the bilayers. These NMR data resolved the
site- and conformer-specific membrane insertion of hBD analogs.

Membrane-bound residues are rigidified. To probe the peptide
dynamics, we measured the motionally averaged 13C-1H dipolar
coupling of each residue in POPC/G bilayers. With a dipolar
dephasing period, the decline of peptide peak intensity indicates
relatively strong 13C~1H dipolar couplings (Fig. 4a). Most of the
dipolar evolution curves exhibit asymmetric patterns indicative of
intermediate-time scale motion. Only I3 has a near-symmetric
curve and a long T, relaxation time of 5ms due to the high
mobility and solvation of the N-terminus (Fig. 4b, c; Supple-
mentary Table 2). The best-fit dipolar coupling constant and
order parameters are listed for each carbon site.

The dynamics of membrane-bound hBD-3 analog is site-
dependent. At 269 K, the Ca signals of I3, A19, 1.21%, and G31
have small order parameters ranging from 0.50 to 0.64, indicating
large-amplitude motions (Fig. 4b, d). On the contrary, larger
order parameters of 0.73-0.82 have been observed for the
backbone carbons of G37, V20, L24%, and 124} (Fig. 4c, d): all
these residues have shown deep insertion (Fig. 3e), which in turn
confines their motion. At a higher temperature of 298 K, the
order parameters are slightly lower for the membrane-inserted
peptides (0.5-0.8) with V20 and L24 remaining as the most rigid
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residues, but they decrease substantially to 0.3-0.5 for unbounded
peptides (Supplementary Fig. 4, Supplementary Table 2).

Remarkably, the order parameters are consistent with the
corresponding depths of insertion (Figs. 3e, 4d): only those
residues on membrane surface can undergo large-amplitude
motions, while those well-inserted residues are immobilized. Such
high-resolution information is heretofore unavailable and will be
integrated with MD modeling to detail the topology of hBD-3
analog in membranes as described later.

Peptides disrupt membrane morphology and rigidify POPG
lipid. The dynamics, symmetry and phase, and surface curvature
of phospholipid membranes can be closely monitored using 3!P
NMR. Adding peptides induces a considerable change in the
static 3P spectral pattern (Fig. 5a), indicative of an altered dis-
tribution of lipid headgroup orientation: with hBD-3 analogs, the
membrane should exist in ellipsoid shape instead of spheres, and

COMMUNICATIONS BIOLOGY | (2019)2:402 | https://doi.org/10.1038/s42003-019-0

this NMR observation echoes the imaging results (Supplementary
Fig. 6). The absence of a sharp, isotropic peak excludes the pos-
sibility of isotropic phases, such as micelles and cubic phase#6:47.
Hexagonal phase is not present either as the signature inverted
powder pattern is missing*8:49,

The rate of phospholipid reorientation along the membrane
surface due to the lateral diffusion is probed using 2D static 31P-
31p exchange spectra. Adding peptides increases the off-diagonal
intensity (Fig. 5b, ¢; Supplementary Fig. 5), revealing a higher
diffusion coefficient®->2, and subsequently, a higher curvature
and smaller vesicles. Therefore, hBD-3 analog has fragmented
POPC/G membranes into smaller, ellipsoidal vesicles, which
facilitates efficient reorientation of lipids (Fig. 5d).

Given the cationic state of hBDs, electrostatic interactions with
negatively charged lipids may play a central role in stabilizing
peptide-membrane interactions. Magic-angle spinning (MAS)
unambiguously resolves the 3!P signals of neutral POPC and
5
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Fig. 6 MD simulation reveals the insertion pattern of hBD-3 analog in POPC/G bilayers. a The topview and b, sideview of the last structure of hBD-3
analogs (magenta) in POPC/G from Anton Simulation. Water and ions are not shown. POPC and POPG lipids are in yellow and cyan, respectively.

¢ Zoomed-in view of hBD-3 analog insertion through its loop regions. d Insertion depth matrix for ten peptides in POPC/G lipid bilayers. Residues 18-24 and
36-40 have deep insertion conserved in different peptides. e RMSF of hBD-3 analog binding POPC/G bilayers based on 5.0 us Anton simulation trajectory

anionic POPG lipids (Fig. 5e) and fitting the spinning sideband
intensities retrieves the 3!P chemical shift anisotropy (CSA)
information reflective of lipids headgroup dynamics®3. With
peptides, the CSA span has decreased for POPC as expected for
enhanced lipid mobility in more dynamic vesicles, but increased
for POPG lipids (Fig. 5e; Supplementary Table 3). This is
attributed to the tight association of POPG and peptide, which
restricts the motion of phosphate headgroups in the negatively
charged lipids.

MD simulation reveals the inserted structure of hBD-3 analog.
To better understand the ssNMR experimental results and cor-
relate them with peptide structure, we run a long-term (5.0 ps)
Anton>* MD simulation on the binding of 18 hBD-3 analogs to a
bilayer formed by 480 POPC/POPG (3:1) lipids. After the pep-
tides approach the membrane initially, during equilibration, 8 out
of 18 peptides detached the membrane surface and partitioned
into the aqueous phase, which explains the NMR sensitivity
barrier for detecting membrane-bound peptides. The last struc-
ture of peptide-membrane complex (Fig. 6a, b) and a magnified
view shows the tight membrane association for residues Al9,
V20, L21, and G37 (Fig. 6¢). These residues are within two loops
spanning from residue 18-24 and 36-40 in solution-NMR
structure, which have deep insertion as revealed by the time-
and lipid-averaged map of insertion depth (Fig. 6d). The matrix is
obtained by calculating the average insertion depths of each
residue of individual hBD-3 analog peptide into the top layer of
membranes over the last 4.0-us simulation (Supplementary
Fig. 7). These simulation results dovetail with the 'H spin dif-
fusion results and dynamics measurements (Figs. 3, 4), providing
a structural view that generally fulfils the NMR-derived restraints.

The root mean-squared fluctuation (RMSF) of the atomic
positions in hBD-3 analog (including both peptide backbone and
sidechains) reveals that only a few hBD units (PROP, PRON, and
PROH) form stable binding with the lipid membranes, with much
smaller RMSF values than the other peptides (Fig. 6e). The lipid-
binding of PROG is also partially stable, but with larger-scale
motions (presumably in solution) for the N-terminus, thus
showing higher RMSF. In general, hBD-3 analogs exhibit the
lowest RMSF for the regions of residue 17-22 and 36-39, which
generally match the MD-derived distance map and ssNMR-
restrained structural topology.

Notably, the analog partially inserts into the POPC/G mixture
lipid bilayers during the self-assembly simulations (Supplemen-
tary Fig. 8a). In addition, clustering of POPG lipids to hBD-3 was
observed because of the electrostatic interface between positively
charged hBD-3 and negatively charged POPG lipids. In the self-
assembly simulations of the peptide dimer with POPC/POPG
lipids, there are more POPG lipids in the upper leaflet than in the
lower leaflet, since the peptides stay on the upper leaflets. There
are 21 POPG lipids in the upper layer while 15 POPG lipids in
the lower leaflet based on trajectories in the last 50 ns MD
simulations. Such observation echoes the preferential colocaliza-
tion of hBD-3 analogs with POPG lipids (cyan) in the POPC/G
mixture (Fig. 6a)>° and the reduced mobility of these negatively
charged lipids by peptide interactions (Fig. 5e). Therefore, the
binding of hBD-3 promotes lipid clustering of POPG. Currently,
there is no experimental evidence supporting the formation of
lipid nanodomains®®, which needs follow-up investigations.

During the simulations of 18 peptides (nine pairs of dimers),
all the dimers dissociated. That is also observed in the self-
assembly simulations on hBD-3 dimer in analog forms in the
POPC mixed with POPG lipids (Supplementary Fig. 8a).
However, in a 300-ns MD simulation, it was found that hBD-3
can bind a bilayer containing only POPG lipids in a dimer form
stably, with the binding interface consistent with ssNMR
observations (Supplementary Fig. 8b).

Discussion

To our knowledge, this study presents the first high-resolution
investigation that integrates experimental ssNMR results with
long-term MD modeling to reveal the function-relevant structure
and dynamics of hBDs in lipid bilayers and its effects on mem-
brane morphology. Three major findings are provided. First,
despite the enhanced structural polymorphism, the secondary
structural characteristics of hBD-3 analog are largely retained in
both the solvated phase and membrane-bound state. Therefore,
insignificant or local fluctuation of the peptide structure is suf-
ficient for accommodating membrane insertion, which differs
from the functional mechanism of many other proteins (e.g.,
fusion proteins) that often require conformational plasticity4%>7.
Second, the experimentally measured depth of insertion and
membrane-confined dynamics dovetail with the MD-derived
insertion depth matrix, collectively revealing a membrane-bound
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topology of hBD-3, in which a structural surface that accom-
modates two adjacent loops is deeply embedded in lipid bilayers.
Third, we find that hBDs specifically interact with and rigidify the
negatively charged POPG, promotes lipid aggregation and
separation, and further deform the membranes to produce
smaller, non-spherical vesicles.

The prevailing, hypothetical models consider the positive
charge (theoretical PI of 10.0), hydrophobic property, and the
secondary structure of the peptide as the determinant of hBD’s
capability of disrupting phospholipid membranes®8-%0, Our
results suggest a minor role of secondary structure, but demon-
strate that the peptide adopts a specific orientation to insert into
the membrane, with the region containing residues V20, L21, L24,
and G37 being deeply inserted (Fig. 6¢). These residues are spa-
tially located at two adjacent loops of solution-NMR wt-hBD-3
structure, and are also highly conserved from mouse to chim-
panzee (Supplementary Fig. 9), suggesting that these exposed
hydrophobic residues and this specific surface binds membrane as
a common feature in the p-defensin family. The potential inter-
actions stabilizing this complex, e.g., hydrogen bonding between
basic residues and membrane phosphate head group or electro-
static contacts, should be further restrained using 3'P-13C or 2H-
13C distances®1-65.

Although diffusion NMR, dynamic and static light scatter-
ing, and native gel-migration analysis have suggested that
hBD-3 form a dimer in solution!$, the dimeric structure has
not yet been determined. X-ray has revealed an intermolecular
antiparallel B-sheet formed by the p1-strand of hBD-2 mono-
mer?2, while solution-NMR of hBD-3 has proposed strand -2
as another potential site for dimerization (Supplementary
Fig. 10)!820. Our 'H spin diffusion data revealed that 130 is
shielded in the hydrophobic core of peptide complex, with slow
1H spin diffusion rate from both lipids and water. Based on the
monomeric structure of wt-hBD-3, the solvent accessible sur-
face area (SASA) calculated by PyMOL is moderate for I30
(30.4 Angstroms?) (Supplementary Table 4), thus this residue
should be at least partially exposed in the monomer. Given the
similar secondary structure between wt-hBD-3 and the analog,
the observed inaccessibility of 130 is unexpected and should
originate from the involvement of this residue in an oligomeric
interface.

MD simulation provides a view of the potential dimer sup-
porting the hypothesis of strand B2 as the dimer interface, with
E28, Q29, and 130 involved in the dimer interface when binding
on pure POPG lipid bilayer (Supplementary Fig. 8b). Our pre-
vious modeling study has suggested that, for hBD-3 analog with
the disulfide bonds released in reducing condition, the dimer
interfaces exhibit reduced stability in solution®, it thus becomes
important to understand how membrane interactions could
support oligomerization. Also, the NMR results support the
presence of oligomerized hBD-3 analogs in POPC/POPG bilayers,
but the exact oligomeric number remains unclear and awaits
experimental determination.

In conclusion, this study provides theretofore unavailable
experimental, molecular-level evidence for understanding the
functional structure and mechanism of p-defensin family. With
corroborated observations from spectroscopic and modeling
methods, we reveal that the peptide utilizes two highly conserved,
adjacent loops in the solution-NMR structure for membrane
partitioning. The secondary structural features and surface
charges may help the peptide to gain the energetically favorable
orientation to insert into and perturb the membrane. These novel
findings provide the structural basis for optimizing and devel-
oping defensin mimetics against pathogenic infections, and more
importantly, encourage many future investigations of the oligo-
merization state of defensins, their dependence on lipid

composition, and the functional structure and mechanism of
many other relevant peptides and derivatives.

Methods

Peptide synthesis and purification. The hBD-3 analog peptides of 45 amino acids
were synthesized using Fmoc chemistry. Two isotope-labeling schemes were used
to provide site-specific resolution and ensure coverage of the whole span of the
peptide sequence. The VALIG sample contains !3C, 1°N-labeled residues V13, A19,
L21, 130, and G37, while IVLG sample contains !3C, 1°N-labeled residues 13, V20,
124, and G31. 13C,15N-labeled amino acids were protected by Fmoc in lab, with
purity of >90% as monitored by 'H solution-NMR spectroscopy. The peptides
were synthesized using Fmoc solid-phase methods using 0.1 mM scale with five-
fold excess input for the labeled residues to ensure efficiency in the double cou-
plings. The Fmoc group was then removed with 20% piperidine twice (3 min and
10 min) at room temperature, and the resin was washed with DMF and DCM. The
peptide was cleaved from the resin and sidechain deprotected using TFA/EDT/
water (4 mL, 94:3:3) for 5 hr. The cleavage reaction was repeated for 10 min. The
crude peptide was then purified by HPLC. Eluents for A is 0.1% TFA in water and
that for B is 0.1% TFA in acetonitrile. MALDI-TOF analysis was performed to
verify the molecular weight of peptides. In total, 5184.8 Da for VALIG and 5181.0
Da for IVLG are the match to the calculated molecular weight. The purity is higher
than 98% for both peptides.

Membrane-bound peptide sample preparation. Lipids 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phos-
phatidylglycerol (POPG) at a molar ratio of 3:1 were dissolved in chloroform, and
dried using nitrogen gas to form a mixed lipid film. The residual solvents were
completely removed under vacuum overnight. The lipid mixture powder was
resuspended in 10 mM HEPES buffer (pH 7.0). To prepare unilamellar vesicles, the
lipid mixture undergoes six cycles of freeze-thawing using 40 °C water bath and
liquid nitrogen. Simultaneously, the peptide solution is prepared by adding 400 pL
of HEPES buffer (10 mM, pH 7.0) to ~10 mg of the synthesized peptide. The
liposome solution and peptide solution were mixed, which results in precipitation
immediately, and this method has been used previously for preparing the hBD-3
analog-containing membranes for 2H ssNMR studies®’. We chose a condensed
concentration of peptide, with a peptide-to-lipid molar ratio of 1:14, which con-
verts to a mass ratio of 1: 2 to improve the population of peptides partitioning into
the membrane phase and ensure sufficient NMR sensitivity. Since most peptides
remain dissolved and only a minor portion stays in the membrane, the actual
peptide-to-lipid ratio for the membrane-bound state should be well below 1:100.
The sample was spun down by centrifugation at 10000xg for 20 min. The super-
natant was removed. The pellet was incubated in the desiccator overnight to slowly
remove the excess water, reduce the hydration to 65-70%, and packed into 4-mm
MAS rotors with a Kel-F insert.

Solid-state NMR experiments. All the solid-state NMR experiments were per-
formed on a Bruker 400 MHz (9.4 Tesla) spectrometer. The radiofrequency field
strengths are 71 kHz for 'H decoupling and 50-62.5 kHz for 13C. The !3C chemical
shifts were externally referenced to the TMS scale by calibrating the Met C3 peak of
model peptide N-formyl-Met-Leu-Phe-OH (f-MLF)®8 at 14.0 ppm. Most of the
spectra were collected under 10 kHz magic-angle spinning (MAS) at 298 K or 269
K. The typical recycle delays were 1.5-2.0's.

To measure the 13C chemical shifts of hBD-3 analog, we measured a series of
2D 13C-13C Dipolar-Assisted Rotational Resonance (DARR) spectra with a
moderate mixing time of 100 ms®®. At 298 K, DP using a 90° 13 C pulse with a short
recycle delay of 2 s was used to detect the mobile hBD-3 analogs in aqueous phase,
and CP was used to select the rigid, membrane-bound state. A moderately low
temperature of 269 K was chosen to partially immobilize peptides and enhance CP
sensitivity. This temperature was measured by a thermocouple that was a few
millimeters from the NMR rotor. Due to the heating effect of MAS, the real sample
temperature is estimated to be 2-5 °C higher. Because of the structural polymorph,
the coexistence of water and membrane phases, and the high solubility of hBD
peptides, the sensitivity becomes extremely challenging for CP-based experiments.
Despite the large amount of peptide (8 mg per sample), it still requires weeks of
NMR time (1920 scans) for measuring each 2D spectrum.

To determine the insertion depth, we measured 2D 13C-detected 'H spin
diffusion spectra at 269 K. By using a 'H T, filter of 2 x 0.5 ms, the 'H
magnetization from mobile lipids and water was selected and then transferred to
peptides through a mixing period, and further to the 13C nuclei for site-specific
detection*>70, The semi-quantitative distances from peptide to water or lipid
chains are obtained by fitting the buildup curves of peptide peak intensities as a
function of the square root of mixing times. All buildup curves were corrected by
T, relaxation. The diffusion coefficients for the lipid and peptide were Dy, of 0.012
nm?2/ms, Dy of 0.03 nm2/ms, respectively; the diffusion coefficients for the sink
peptide was Dp of 0.3 nm?/ms. For the lipid-peptide interface, Dy as 0.00125 nm?/
ms for H,O and 0.0025 nm?/ms for CH, were used. These values have been widely
used for antimicrobial peptides, DNA, and membrane channels#44>71,

To probe the peptide dynamics, we conducted '3C-!H dipolar-chemical-shift
(DIPSHIFT) experiment’? at 269 K under 7.5 kHz MAS. Frequency-Switched
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Lee-Goldburg (FSLG) scheme’? was used for 'H homonuclear decoupling: the
transverse 'H field strength is 83.3 kHz, converting to effective field strengths of
102 kHz. The 3C mt pulse is using a field strength of 62.5 kHz. The number of t2
points is nine with an increment of 16.03 ps. Dipolar curves obtained by plotting
the peak intensity as a function of dipolar evolution time were then fit using a
Fortran program to obtain the apparent CH or CH, dipolar couplings. The rigid-
limit dipolar coupling value is 22.7 kHz, which leads to the FSLG-scaled, rigid-limit
coupling value of 13.1 kHz (scaling factor 0.577). Order parameters are calculated
as the ratio between the measured couplings and the apparent rigid-limit value.

To examine the membrane morphology, we collected 1D and 2D 31P spectra for
POPC/POPG control sample and hBD-3-containing sample at 298 K. The 31P
chemical shift was referenced on the phosphoric acid scale. The control sample was
prepared as described above, but with two cycles of freeze-thawing using liquid
nitrogen and room-temperature water bath. In all 3P experiments, the
radiofrequency field strength of 50 kHz for 3!P was used with recycle delays of
1.5s. Two-pulse phase-modulated (TPPM) decoupling sequence with 'H
decoupling field strength of 50 kHz was used in both 1D static and MAS 31P
spectra. Under static condition, 1D 31P DP spectra were measured to probe lipid
orientation and membrane morphology. 2D static 3'P-31P exchange spectra with
mixing times of 1, 5, 100, and 400 ms were measured to probe lipid lateral
diffusion®®>1. 2D experiments were initiated from direct !P polarization, and no
1H decoupling was used during the mixing period. 1D 3!P DP and CP spectra were
also measured under slow MAS of 3.5 kHz to resolve the POPC and POPG signals,
and derive the 31P CSA parameters based on the spinning sideband intensities
using the Herzfeld-Berger analysis program3.

Circular dichroism measurement. To measure the circular dichroism (CD)
spectrum, both the solution state sample and membrane-bound state sample were
prepared. For the solution state sample, peptides were dissolved in HEPES buffer
(10 mM, pH 7.0) to reach a final concentration of 0.3 mg/mL (57 uM). For the
membrane-bound state sample, POPC and POPG lipids at a molar ratio of 3:1 were
mixed, dried, and resuspended in the HEPES buffer (10 mM, pH 7.0) as described
above. The lipid mixture was treated with two freeze-thaw cycles in liquid nitrogen
and room-temperature water bath. The peptide sample was then added into the
liposome solution. The final concentrations of total lipids and peptide are 1.74 mg/mL
and 0.3 mg/mL (57 uM), respectively. A lipid-only control sample was prepared with
the same protocol without adding the peptide.

CD spectra were measured at 293 K on a Jasco J-815 CD spectrometer using a
1-mm quartz cuvette. Each spectrum had three replicated scans. It was processed
through baseline correction, control sample subtraction, and smoothing
sequentially. The smoothing was carried out using the Savitsky-Golay smoothing
algorithm with the order of nine, The deconvolution of CD spectra was conducted
using the BestSel web server’4.

Transmission electron microscope measurement. The same peptide-containing
and peptide-free samples were prepared as described for the CD measurement. The
liposome solution was diluted to 0.03 mg/mL before Transmission Electron
Microscope (TEM) measurements. In total, 3 pL of each sample was placed onto a
glow discharged TEM grid for several minutes, and then was negatively stained
using 2% uranyl acetate solution. A very thin film was spanned on the grid by
removing the excess solution with the paper filter. The TEM images were collected
on the JEOL JEM-1400 electron microscope.

MD modeling of hBD-3 analog in lipid bilayers. Long-term Anton simulations
on 9 hBD-3 dimers in the analog form disrupting POPC/G lipid bilayer were
conducted to understand the peptide-lipid interactions that are probed experi-
mentally using ssNMR. The dimer structure was predicted previously®®, and the
peptide has all three disulfide bonds disconnected, which should break in a specific
pathway in the reduced condition®. We set up all-atom CHARMM molecular
dynamics simulations by placing nine hBD-3 dimers in analog form (18 hBD-3
units from PROA to PROR) above a bilayer of 480 POPC/POPG (3:1) lipids by at
least 8 A using the CHARMM-GUI online program?>-77 and CHARMM36m
forcefield’8. Therefore, the top and bottom layer each contains 180 POPC and 60
POPG lipids. TIP3P water molecules were added to solvate the system with at least
12 A of water above the top and below the bottom of the peptides/lipids. Counter
ions were added to neutralize the system in addition of 0.15M of NaCl at 300 K
and 1atm. For nonbonded calculations, a cutoff of 12 A was used. All bonds
involving hydrogens were kept rigid using the SHAKE algorithm. After a brief
energy minimization, the 20-ns equilibration run using NAMD program’® with a
time step of 2 fs, the simulation was continued on the Anton 2 supercomputer>*
for 5.0 ps. An NPT ensemble was applied on Anton simulation with a time step of
2.5fs and a trajectory output frequency of 240 ps.

Using the above method, we also set up the hBD-3 dimer in analog form
binding on a pure POPG bilayer that contains 72 POPG lipids on each layer. After
setting up the system using CHARMM-GUI program, NAMD all-atom molecular
dynamics simulation was conducted for 300 ns at 300 K and 1 atm. The final
binding structure of hBD-3 dimer on POPG is shown in Supplementary Fig. 8b.

To determine the favorable binding location of hBD-3 analog with membranes,
we set up a self-assembly simulation of hBD-3 analog with POPC/G mixture. The

simulation contains a dimer mixed with randomly packed 108 POPC and 36 POPG
lipids, 8425 TIP3P water molecules, and 42 SOD and 28 CLA ions spaciously
(Supplementary Fig. 8a). The initial box size is 211 x 212 x 256 A, which allows
molecular rearrangement and assembly. After a brief energy minimization, the
simulation was conducted on an NPT ensemble using all-atom NAMD simulations
for 600 ns, the final box is 103 x 61 x 76 A.

Statistics and reproducibility. Two 13C,!5N-labeled peptides and an unlabeled
peptide were measured. All attempts for replication were successful. All two-
dimensional experiments were carried out for 3-10 times and added together.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from the corresponding
authors upon request. The data include solid-state NMR data (Bruker Topspin files) and
MD modeling files, which are currently stored in computers. The Source Data underlying
Figs. 2a, 2b, 3b-d, 4b, 4c, 6d, and 6e, as well as Supplementary Figs 4c, 4d, and 7 are
provided as Supplementary Data 1.

Received: 13 June 2019; Accepted: 15 October 2019;
Published online: 01 November 2019

References

1. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev.
Immunol. 3, 710-720 (2003).

2. Lehrer, R. I. & Ganz, T. Antimicrobial peptides in mammalian and insect host
defence. Curr. Opin. Immunol. 11, 23-27 (1999).

3. Boman, H. G. Peptide antibiotics and their role in innate immunity. Annu.
Rev. Immunol. 13, 61-92 (1995).

4. Semple, F. et al. Human beta-defensin 3 has immunosuppressive activity
in vitro and in vivo. Eur. J. Immunol. 40, 1073-1078 (2010).

5. Territo, M. C,, Ganz, T., Selsted, M. E. & Lehrer, R. Monocyte-chemotactic
activity of defensins from human-neutrophils. J. Clin. Invest. 84, 2017-2020
(1989).

6. Yang, D. et al. beta-defensins: linking innate and adaptive immunity through
dendritic and T cell CCR6. Science 286, 525-528 (1999).

7. Uraki, S. et al. Human beta-defensin-3 inhibits migration of colon cancer cells
via downregulation of metastasis-associated 1 family, member 2 expression.
Int. J. Oncol. 45, 1059-1064 (2014).

8. Niyonsaba, F., Ogawa, H. & Nagaoka, I. Human beta-defensin-2 functions as a
chemotactic agent for tumour necrosis factor-alpha-treated human
neutrophils. Immunology 111, 273-281 (2004).

9. Kagan, B. L, Selsted, M. E., Ganz, T. & Lehrer, R. I. Antimicrobial defensin
peptides form voltage-dependent ion-permeable channels in planar lipid
bilayer-membranes. Proc. Natl Acad. Sci. USA 87, 210-214 (1990).

10. Zhang, Y. A, Lu, W. Y. & Hong, M. The membrane-bound structure and
topology of a human alpha-defensin indicate a dimer pore mechanism for
membrane disruption. Biochemistry 49, 9770-9782 (2010).

11. Huang, H. W. Action of antimicrobial peptides: two-state model. Biochemistry
39, 8347-8352 (2000).

12. Matsuzaki, K. Why and how are peptide-lipid interactions utilized for self
defence? Biochem. Soc. Trans. 29, 598-601 (2001).

13. Yeasmin, R,, Buck, M., Weinberg, A. & Zhang, L. Q. Translocation of human
beta defensin type 3 through a neutrally charged lipid membrane: a free
energy study. J. Phys. Chem. B 122, 11883-11894 (2018).

14. Ryan, L. K. et al. Activity of potent and selective host defense peptide mimetics
in mouse models of oral candidiasis. Antimicrob. Agents Chemother. 58,
3820-3827 (2014).

15. Varney, K. M. et al. Turning defense into offense: defensin mimetics as novel
antibiotics targeting lipid II. PLOS Pathogens 9, 1-14 (2013).

16. Schutte, B. C. et al. Discovery of five conserved beta-defensin gene clusters
using a computational search strategy. Proc. Natl Acad. Sci. USA 99,
2129-2133 (2002).

17. Yang, D., Biragyn, A., Hoover, D. M., Lubkowski, J. & Oppenheim, J. J.
Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived
neurotoxin in host defense. Annu. Rev. Immunol. 22, 181-215 (2004).

18. Schibli, D. J. et al. The solution structures of the human B-defensins lead to a
better understanding of the potent bactericidal activity of HBD3 against
Staphylococcus aureus. J. Biol. Chem. 277, 8279-8289 (2002).

19. Wommack, A. J. et al. NMR solution structure and condition-dependent
oligomerization of the antimicrobial peptide human defensin 5. Biochemistry
51, 9624-9637 (2012).

8 COMMUNICATIONS BIOLOGY | (2019)2:402 | https://doi.org/10.1038/s42003-019-0653-6 | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0653-6

ARTICLE

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Zimmermann, G. R, Legault, P., Selsted, M. E. & Pardi, A. Solution structure of
bovine neutrophil beta-defensin-12-the peptide fold of the beta-defensins is
identical to that of the classical defensins. Biochemistry 34, 13663-13671 (1995).
Sawai, M. V. et al. The NMR structure of human beta-defensin-2 reveals a
novel alpha-helical segment. Biochemistry 40, 3810-3816 (2001).

Hoover, D. M., Chertov, O. & Lubkowski, J. The structure of human (-
defensin-1 new insights into structural properties of B-defensins. J. Biol. Chem.
276, 39021-39026 (2001).

Prahl, A., Pazgier, M., Alexandratos, J. & Lubkowski, J. Human beta-defensin
4-defensin without the “twist”. Postepy. Biochem. 62, 349-361 (2016).

De Paula, V. S. et al. Structural basis for the interaction of human beta-
defensin 6 and its putative chemokine receptor CCR2 and breast cancer
microvesicles. J. Mol. Biol. 425, 4479-4495 (2013).

Dhople, V., Krukemeyer, A. & Ramamoorthy, A. The human beta-defensin-3,
an antibacterial peptide with multiple biological functions. BBA-
Biomembranes 1758, 1499-1512 (2006).

Schroeder, B. O. et al. Reduction of disulphide bonds unmasks potent
antimicrobial activity of human beta-defensin 1. Nature 469, 419-423 (2011).
Wu, Z. et al. Engineering disulfide bridges to dissect antimicrobial and
chemotactic activities of human beta-defensin 3. Proc. Natl Acad. Sci. USA
100, 8880-8885 (2003).

Selsted, M. E. & Ouellette, A. ]. Mammalian defensins in the antimicrobial
immune response. Nat. Immunol. 6, 551-557 (2005).

Taylor, K., Barran, P. E. & Dorin, J. R. Review: structure-activity relationships
in beta-defensin peptides. Biopolymers 90, 1-7 (2008).

Oren, Z. & Shai, Y. Selective lysis of bacteria but not mammalian cells by
diastereomers of melittin: structure-function study. Biochemistry 36,
1826-1835 (1997).

Schroder, J. M. Epithelial antimicrobial peptides: innate local host response
elements. Cell. Mol. Life Sci. 56, 32-46 (1999).

White, S. H., Wimley, W. C. & Selsted, M. E. Structure, function, and
membrane integration of defensins. Curr. Opin. Struc. Biol. 5, 521-527 (1995).
Hill, C. P, Yee, ], Selsted, M. E. & Eisenberg, D. Crystal-structure of defensin
Hnp-3, an amphiphilic dimer - mechanisms of membrane permeabilization.
Science 251, 1481-1485 (1991).

Wimley, W. C,, Selsted, M. E. & White, S. H. Interactions between human
defensins and lipid bilayers—evidence for formation of multimeric pores.
Protein Sci. 3, 1362-1373 (1994).

Dhople, V., Krukemeyer, A. & Ramamoorthy, A. The human beta-defensin-3,
an antibacterial peptide with multiple biological functions. Biochim. Biophys.
Acta 1758, 1499-1512 (2006).

Morris, G. A. & Freeman, R. Enhancement of nuclear magnetic resonance
signals by polarization transfer. J. Am. Chem. Soc. 101, 760-762 (1979).
Matlahov, I. & van der Wel, P. C. A. Hidden motions and motion-induced
invisibility: dynamics-based spectral editing in solid-state NMR. Methods 148,
123-135 (2018).

Liao, S. Y., Fritzsching, K. J. & Hong, M. Conformational analysis of the full-
length M2 protein of the influenza A virus using solid-state NMR. Protein Sci.
22, 1623-1638 (2013).

Kwon, B, Tietze, D., White, P. B,, Liao, S. Y. & Hong, M. Chemical ligation of
the influenza M2 protein for solid-state NMR characterization of the
cytoplasmic domain. Protein Sci. 24, 1087-1099 (2015).

Mandal, A. & van der Wel, P. C. A. MAS 'H NMR probes freezing point
depression of water and liquid-gel phase transitions in liposomes. Biophys. J.
111, 1965-1973 (2016).

de Dios, A. C,, Pearson, J. G. & Oldfield, E. Secondary and tertiary structural
effects on protein NMR chemical shifts: an ab initio approach. Science 260,
1491-1496 (1993).

Zhang, H., Neal, S. & Wishart, D. S. RefDB: a database of uniformly
referenced protein chemical shifts. J. Biol. Chem. 25, 173-195 (2003).

Yao, H. W. & Hong, M. Membrane-dependent conformation, dynamics, and
lipid interactions of the fusion peptide of the paramyxovirus PIV5 from solid-
state NMR. J. Mol. Biol. 425, 563-576 (2013).

Wang, T., Widanapathirana, L., Zhao, Y. & Hong, M. Aggregation and
dynamics of oligocholate transporters in phospholipid bilayers revealed by
solid-state NMR spectroscopy. Langmuir 28, 17071-17078 (2012).

Huster, D., Yao, X. L. & Hong, M. Membrane protein topology probed by 1H
spin diffusion from lipids using solid-state NMR spectroscopy. J. Am. Chem.
Soc. 124, 874-883 (2002).

Wang, T., Cady, S. D. & Hong, M. NMR determination of protein partitioning
into membrane domains with different curvatures and application to the
influenza M2 peptide. Biophys. J. 102, 787-794 (2012).

Wang, T. & Hong, M. Investigation of the curvature induction and membrane
localization of the influenza virus M2 protein using static and off-magic-angle
spinning solid-state nuclear magnetic resonance of oriented bicelles.
Biochemistry 54, 2214-2226 (2015).

Thayer, A. M. & Kohler, S. J. Phosphorus-31 nuclear magnetic resonance
spectra characteristic of hexagonal and isotropic phospholipid phases

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

generated from phosphatidylethanolamine in the bilayer phase. Biochemistry
20, 6831-6834 (1981).

Yao, H. & Hong, M. Conformation and lipid interaction of the fusion peptide
of the paramyxovirus PIV5 in anionic and negative-curvature membranes
from solid-state NMR. J. Am. Chem. Soc. 136, 2611-2624 (2014).
Marasinghe, P. A, Buffy, J. J., Schmidt-Rohr, K. & Hong, M. Membrane
curvature change induced by an antimicrobial peptide detected by 31P
exchange NMR. J. Phys. Chem. B 109, 22036-22044 (2005).

Picard, F., Paquet, M. J., Dufourc, E. J. & Auger, M. Measurement of the lateral
diffusion of dipalmitoylphosphatidylcholine adsorbed on silica beads in the
absence and presence of melittin: a 31P two-dimensional exchange solid-state
NMR study. Biophys. J. 74, 857-868 (1998).

Auger, M. Biological membrane structure by solid-state NMR. Curr. Issues
Mol. Biol. 2, 119-124 (2000).

Herzfeld, J. & Berger, A. E. Sideband intensities in NMR-spectra of samples
spinning at the magic angle. J. Chem. Phys. 73, 6021-6030 (1980).

Shaw, D. E. et al. Anton 2: raising the bar for performance and
programmability in a special-purpose molecular dynamics supercomputer.
IEEE, 41-53 (2014).

Zhao, X., Yu, H,, Yang, L., Li, Q. & Huang, X. Simulating the antimicrobial
mechanism of human beta-defensin-3 with coarse-grained molecular
dynamics. J. Biomol. Struct. Dyn. 33, 2522-2529 (2015).

Cheng, X. & Smith, J. C. Biological membrane organization and cellular
signaling. Chem. Rev. 119, 5849-5880 (2019).

Yao, H., Lee, M. W.,, Waring, A. ], Wong, G. C. & Hong, M. Viral fusion
protein transmembrane domain adopts beta-strand structure to facilitate
membrane topological changes for virus-cell fusion. Proc. Natl Acad. Sci. USA
112, 10926-10931 (2015).

Epand, R. M. & Vogel, H. J. Diversity of antimicrobial peptides and their
mechanisms of action. BBA-Biomembranes 1462, 11-28 (1999).

Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors
in bacteria? Nat. Rev. Microbiol. 3, 238-250 (2005).

Powers, J. P. S. & Hancock, R. E. W. The relationship between peptide
structure and antibacterial activity. Peptides 24, 1681-1691 (2003).

Shu, N. S,, Chung, M. S, Yao, L., An, M. & Qiang, W. Residue-specific
structures and membrane locations of pH-low insertion peptide by solid-state
nuclear magnetic resonance. Nat. Commun. 6, 7787 (2015).

Qiang, W., Sun, Y. & Weliky, D. P. A strong correlation between fusogenicity
and membrane insertion depth of the HIV fusion peptide. Proc. Natl Acad.
Sci. USA 106, 15314-15319 (2009).

Su, Y., Waring, A. J., Ruchala, P. & Hong, M. Membrane-bound dynamic
structure of an arginine-rich cell-penetrating peptide, the protein transduction
domain of HIV TAT, from solid-state NMR. Biochemistry 49, 6009-6020 (2010).
Jia, L. H. et al. REDOR solid-state NMR as a probe of the membrane locations
of membrane-associated peptides and proteins. . Magn. Reson. 253, 154-165
(2015).

Xie, L., Ghosh, U., Schmick, S. D. & Weliky, D. P. Residue-specific membrane
location of peptides and proteins using specifically and extensively deuterated
lipids and C-13-H-2 rotational-echo double-resonance solid-state NMR. J.
Biomol. NMR 55, 11-17 (2013).

Zhang, L. Different dynamics and pathway of disulfide bonds reduction of two
human defensins, a molecular dynamics simulation study. Proteins 85,
665-681 (2017).

Sudheendra, U. S. et al. Membrane disruptive antimicrobial activities of
human beta-defensin-3 analogs. Eur. J. Med. Chem. 91, 91-99 (2015).
Rienstra, C. M. et al. De novo determination of peptide structure with solid-
state magic-angle spinning NMR spectroscopy. Proc. Natl Acad. Sci. USA 99,
10260-10265 (2002).

Takegoshi, K., Nakamura, S. & Terao, T. 13C-1H dipolar-assisted rotational
resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631-637
(2001).

Wang, T., Jo, H., DeGrado, W. F. & Hong, M. Water distribution, dynamics,
and interactions with alzheimer’s beta-amyloid fibrils investigated by solid-
state NMR. J. Am. Chem. Soc. 139, 6242-6252 (2017).

Mani, R. et al. Membrane-dependent oligomeric structure and pore formation
of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR.
Proc. Natl Acad. Sci. USA 103, 16242-16247 (2006).

Hong, M. et al. Coupling amplification in 2D MAS NMR and its application to
torsion angle determination in peptides. . Magn. Reson. 129, 85-92 (1997).
Bielecki, A., Kolbert, A. C. & Levitt, M. H. Frequency-switched pulse
sequences - homonuclear decoupling and dilute spin NMR in solids. Chem.
Phys. Lett. 155, 341-346 (1989).

Micsonai, A. et al. Accurate secondary structure prediction and fold
recognition for circular dichroism spectroscopy. Proc. Natl Acad. Sci. USA
112, E3095-E3103 (2015).

Jo, S., Lim, J. B,, Klauda, J. B. & Im, W. CHARMM-GUI membrane builder for
mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50-58
(2009).

COMMUNICATIONS BIOLOGY | (2019)2:402 | https://doi.org/10.1038/s42003-019-0653-6 | www.nature.com/commsbio 9


www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0653-6

76. Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS,
AMBER, OpenMM, and CHARMM/OpenMM simulations using the
CHARMM36 additive force field. . Chem. Theory Comput. 12, 405-413
(2016).

77. Jo, S., Kim, T,, Iyer, V. G. & Im, W. CHARMM-GUIL: a web-based graphical
user interface for CHARMM. J. Comput. Chem. 29, 1859-1865 (2008).

78. Huang, J. et al. CHARMM36m: an improved force field for folded and
intrinsically disordered proteins. Nat. Methods 14, 71-73 (2017).

79. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput.
Chem. 26, 1781-1802 (2005).

Acknowledgements

The project was supported by the Burroughs Wellcome Fund (BWF) 2018 Collaborative
Research Travel Grant (CRTG) to L.Z. T.W. thanks funding support from National
Science Foundation under the award number of NSF OIA-1833040. Anton 2 computer
time was provided by the Pittsburgh Supercomputing Center (PSC) through Grant
R01GM116961 from the National Institutes of Health. The Anton 2 machine at PSC was
generously made available by D.E. Shaw Research. Some of the short-term simulations
were performed on the high-performance computer resource on TTU campus and on
Bridges located in Pittsburg Supercomputer Center. The authors would like to thank Ms.
Ying Xiao and Dr. Ted Gauthier for experimental assistance. TEM measurements were
performed at the Shared Instrumentation Facility (SIF) at Louisiana State University.

Author contributions

XK, AK, and T.W. conducted the NMR, CD, and TEM experiments and analyzed the
experimental data. C.E,, J.P., and L.Z. conducted the MD simulations and analyzed the
modeling data. AK. and A.C. prepared the peptide and NMR samples. X.K,, L.Z., and
T.W. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information accompanies this paper at https://doi.org/10.1038/s42003-
019-0653-6.

Correspondence and requests for materials should be addressed to L.Z. or T.W.
Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

10 COMMUNICATIONS BIOLOGY | (2019)2:402 | https://doi.org/10.1038/s42003-019-0653-6 | www.nature.com/commsbio


https://doi.org/10.1038/s42003-019-0653-6
https://doi.org/10.1038/s42003-019-0653-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Integrated solid-state NMR and molecular dynamics modeling determines membrane insertion of human β-defensin analog
	Results
	hBD-3 analog is polymorphic in water and lipid bilayers
	Dominant β-strand conformation in lipid bilayers
	Insertion depth is site-specific and conformer-dependent
	Membrane-bound residues are rigidified
	Peptides disrupt membrane morphology and rigidify POPG lipid
	MD simulation reveals the inserted structure of hBD-3 analog

	Discussion
	Methods
	Peptide synthesis and purification
	Membrane-bound peptide sample preparation
	Solid-state NMR experiments
	Circular dichroism measurement
	Transmission electron microscope measurement
	MD modeling of hBD-3 analog in lipid bilayers
	Statistics and reproducibility
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




