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Lineage tracing of acute myeloid leukemia reveals
the impact of hypomethylating agents on
chemoresistance selection
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Chemotherapy-resistant cancer recurrence is a major cause of mortality. In acute myeloid

leukemia (AML), chemorefractory relapses result from the complex interplay between

altered genetic, epigenetic and transcriptional states in leukemic cells. Here, we develop an

experimental model system using in vitro lineage tracing coupled with exome, transcriptome

and in vivo functional readouts to assess the AML population dynamics and associated

molecular determinants underpinning chemoresistance development. We find that combining

standard chemotherapeutic regimens with low doses of DNA methyltransferase inhibitors

(DNMTi, hypomethylating drugs) prevents chemoresistant relapses. Mechanistically, DNMTi

suppresses the outgrowth of a pre-determined set of chemoresistant AML clones with

stemness properties, instead favoring the expansion of rarer and unfit chemosensitive clones.

Importantly, we confirm the capacity of DNMTi combination to suppress stemness-

dependent chemoresistance development in xenotransplantation models and primary AML

patient samples. Together, these results support the potential of DNMTi combination

treatment to circumvent the development of chemorefractory AML relapses.
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Chemotherapy resistance (chemoresistance) is a major dri-
ver of cancer recurrence1. Intra-tumor heterogeneity
(ITH), the end product of co-existing microenvironmental,

phenotypical, transcriptomic, epigenetic, and genetic variants,
drives chemoresistance by providing multiple substrates for tumor
escape under the selective pressure of chemotherapy2. Genetic
ITH results from continuous cycles of mutation, selection and
expansion under context-specific selective pressures—i.e. cancer
clonal evolution—and contributes to AML chemorefractory
relapses through expansion of sub-clonal population(s) harboring
either intrinsic (pre-existing) or acquired (therapy-induced)
chemoresistance-promoting mutations1,3. In addition to genetic
ITH, non-genetic ITH is also a major contributor to chemore-
sistance development. Heterogeneous epigenetic regulation of
gene expression has been shown to generate hierarchally related
but phenotypically divergent co-existing cell subpopulations ori-
ginating from genetically identical tumor cells4. A clinically rele-
vant example of non-genetic hierarchical organization of some
tumors are cancer stem cells (CSC), which are genetically identical
to the bulk of the tumor, but display substantially higher
tumorigenic capacity than their isogenic siblings. CSCs have been
implicated in chemoresistance and recurrence in various cancer
types, which arise as a result of their unique properties. These are
often encompassed in the term stemness, and include slow cell
cycle progression (or quiescence), upregulation of drug-efflux
pumps, protection from reactive oxygen species, high self-renewal
or tumor initiation capacity in immunocompromised mice5.

Development of chemoresistant relapses is of particular
importance in acute myeloid leukemia (AML), making this the
deadliest blood cancer6. AML relapse to standard chemotherapy
has been traced to pre-existing genetically defined clones that
acquire additional mutations, evolving into the dominant relap-
sing sub-clones7–10. Despite the established role of specific
genetic alterations in diagnosis, prognosis and treatment stratifi-
cation11–14, AML is a highly heterogeneous disease with surpris-
ingly lower average number of mutations than most other adult
cancers15,16, suggesting that non-genetic factors are also relevant
in AML outcomes. In fact, it was shown that AML relapse to
standard chemotherapy depends heavily on transcriptional stem-
ness programs17–19. The pervasiveness of non-genetic ITH is also
evidenced by the existence of extensive epigenetic alterations in
AML genomes. For example DNA methylation, an epigenetic
modification that impacts transcription, carries diagnostic and
prognostic value in AML20–22, with recent studies establishing
DNA hypermethylation as a poor prognosis factor in de novo
AML23. In contrast to genetic changes, epigenetic modifications
are frequently reversible, which provides opportunities for their
reversion to non-pathogenic states by the use of specific inhibitors.
DNA methyltransferase inhibitors (DNMTi) or hypomethylating
agents like decitabine (DAC) and azacitadine (Aza) have estab-
lished clinical benefits in myelodysplastic syndrome (MDS)
patients and are also approved as monotherapy for certain groups
of elderly AML patients24. Importantly, different clinical studies
combining low doses of DAC with standard chemotherapy regi-
mens have shown clinical benefit, particularly in patients with
refractory/relapsed AML25–27. In spite of its clinical benefit, the
impact of combining DNMTis with chemotherapeutic regimens
on the different layers of ITH and its overall effect on de novo
AML chemoresistance development remains largely unexplored,
mostly due to the lack of adequate experimental systems. A key
approach to assess the impact of different therapies on ITH is the
use of lineage-tracing technologies. Recent in vitro lineage-tracing
studies have revealed the pre-existing nature of targeted therapy
resistance in lung cancer and chronic myeloid leukemia models28,
thus attesting the validity of in vitro lineage tracing experimental
systems to dissect the consequences of ITH on cancer biology.

Here, we employ lineage tracing (DNA barcodes—BCs) to assess
the longitudinal clonal dynamics, beyond the level of genetics, that
underlie the emergence of chemoresistance in human AML
(hAML) cells in the presence or absence of DNMTi. To assess the
contribution of different layers of ITH, we combine lineage tracing
with exomic, transcriptomic and phenotypic profiling together with
in vivo functional assessment of hAML cells relapsing to che-
motherapy. Using this approach, we find that standard che-
motherapy drives the selection of a pre-determined set of recurring
AML clones with increased in vivo leukemia-initiating capacity and
resistance to a second round of chemotherapy. Strikingly, we reveal
that low-dose DNMTi in combination with chemotherapy selects
for an alternative unpredictable set of clones with decreased stem-
ness properties that remain sensitive to chemotherapy. Collectively,
our findings attest the potential of a combinatorial approach of
standard chemotherapy with low-dose DNMTi to circumvent
chemoresistance development during AML treatment, namely
through marked shaping of the underlying clonal dynamics and
transcriptomic landscape.

Results
Chemotherapy+DAC combination prevents hAML chemore-
sistance. In order to model the development of chemoresistance in
hAML cells and assess its underlying clonal dynamics, we estab-
lished an in vitro system using barcoded hAML cell lines (HEL and
OCI-AML3) and exposed them to standard chemotherapeutic
regimens optimized in order to significantly deplete viable cells
(over 99% elimination). Additionally, to model disease recurrences
observed in chemotherapy-treated AML patients, we tested che-
motherapeutic regimen doses that allowed barcoded hAML cell re-
growth post-therapy exposure, thus generating in vitro relapses
(Fig. 1a). A key aspect of this system is that lineage-tracing using
DNA barcodes (BCs) allows the quantitative tracking of cell
populations derived from each initially barcoded single-cell29,
defined as barcoded clones (BC-clones), thus allowing quantifica-
tion of BC-clonal dynamics in response to chemotherapeutic regi-
mens. Barcoded hAML cells lines were exposed for 72 h to regimens
of standard chemotherapy (doxorubicin–Doxo: 1.8 μM and
cytarabine–Cyta: 6 μM) alone or simultaneously combined with a
low-dose of hypomethylating agent decitabine (DAC 0.1 μM).
Viable cell numbers were monitored from treatment initiation (T0)
until the time point when post-therapy cell cultures reached
equivalent numbers as T0, termed Trelapse. We observed that
Doxo, Doxo+Cyta and Doxo+Cyta+DAC regimens strongly
depleted barcoded hAML cells in both cell lines (for example,
depletion of 99.56%(±0.23% eliminated cells, n= 6), 99.96%
(± 0.020%, n= 8) and 99.90%(±0.070%, n= 8) HEL cells, respec-
tively), whereas DAC single treatment had minor effects on cell
numbers (Fig. 1b). Despite the high levels of cell elimination, Doxo
±Cyta and Doxo+Cyta+DAC treated cells were able to re-grow
back to the initial cell number within 30–35 days after treatment
initiation. Next, to assess cell-intrinsic gain of chemoresistance in
Trelapse cell populations, we re-exposed Trelapse AML cells to
chemotherapy (Doxo+Cyta) for 72 h. Strikingly, whereas chemo-
exposed (Doxo±Cyta) AML cells showed gain of resistance, upfront
co-exposure to low-dose DAC preserved sensitivity to chemother-
apy re-treatment, similarly to the no-treament (NT) control group
(Fig. 1c). In agreement, Doxo±Cyta Trelapse samples showed a
significant (2–4-fold) increase in IC50 values for doxorubicin
compared to either NT or Doxo+Cyta+DAC relapse samples
(Table 1). To confirm the capacity of upfront DAC combination to
prevent chemoresistance development, we re-treated Trelapse
samples with a new round of chemotherapy and quantified the
frequency of Trelapse samples (Doxo, Doxo+Cyta and Doxo+
Cyta+DAC) that generated a second relapse. We observed that
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while 100% of Doxo±Cyta Trelapse samples relapsed a second
time, only 25% (1 out of 4) of Doxo+ Cyta+DAC Trelapse
samples was able to relapse to re-treatment (Supplementary
Fig. 1a, b). Importantly, by comparing the number of live cells at
an equivalent time point (11 days) after treatment and re-
treatment, we observed that Doxo ± Cyta Trelapse samples were
significantly less sensitive to re-treatment, further confirming
increased chemoresistance in these groups (Supplementary
Fig. 1c). Overall, these results show that in vitro upfront com-
bination of chemotherapy with low-dose DAC prevents the
emergence of chemoresistant hAML cells.

Chemotherapy selects for a pre-determined set of BC-clones.
To explore the clonal dynamics resulting from different treatment
regimens we evaluated the BC-clonal composition of T0 and
Trelapse samples (Supplementary Fig. 2a–d). In the absence of
therapy (NT), we observed stable and highly correlated (pearson
correlation coefficient > 0.7) BC-clone frequencies at day 30
relatively to T0 and also between replicates at Trelapse, even after
>105-fold expansion (Supplementary Fig. 2c–j). This validates the
clonal stability of our system in the absence of therapeutic pres-
sure, thus allowing us to attribute BC clonal variations to ther-
apeutic selection (rather than stochasticity of the system). Among

Table 1 Doxorubicin IC50 values of Trelapse hAML cells

Trelapse Samples

Cell line NT Doxo Doxo+ Cyta Doxo+ Cyta+DAC

IC50 (µM) (n = 3) HEL 0.345 ± 0.0352 1.40 ± 0.422 1.44 ± 0.185 0.571 ± 0.0242
OCI-AML3 1.31 ± 0.00503 4.20 ± 0.256 3.80 ± 0.351 1.40 ± 0.335

P–value (t-test, relative to NT) HEL NA 0.0125 0.0005 0.0008
OCI-AML3 NA <0.0001 0.0003 0.672

IC50 ratio (relative to NT) HEL 1 4.06 4.20 1.66
OCI-AML3 1 3.20 2.90 1.07

NA not applicable
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the Trelapse samples that were significantly impacted by therapy
(Doxo, Doxo+ Cyta, Doxo+Cyta+DAC), chemosensitive
hAML cells relapsing to Doxo+ Cyta+DAC combination
showed lowest BC numbers and diversity (lowest Shannon-
Weaver diversity index H) (Fig. 2a, b, Supplementary Fig. 3a–c)
which reflected in clonal architectures most divergent from NT
samples (Fig. 2c, Supplementary Fig. 3d). By evaluating correla-
tions between the BC architectures across replicates of each

treatment at Trelapse, we found that BC distributions across
Doxo relapses were highly reproducible (pearson > 0.7) while
addition of Cyta decreased the similarity of replicates, and further
combination with DAC effectively abrogated all correlations
(pearson < 0.1) (Fig. 2d, Supplementary Fig. 3e). This suggests
that DAC combination poses a stronger selective pressure on the
system towards reducing the BC-clonal diversity and leading to
relapses mediated by unpredictable (non-shared) BC-clones. To
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and Doxo+ Cyta groups compared to NT, chemoresistant BC-clones were defined has the ones showing equal or increased fold variation relative to NT,
determined by preforming multiple t-testing (per individual BC, P < 0.05). This was performed in three independent experiments (n= 2, n= 5, n= 3). On
the right, venn diagrams depicting the overlap of chemoresistant BC-clones, shared between all the replicates of three independent experiments for Doxo
and Doxo+ Cyta groups; as well as the overlap between these respective cores. The list of the chemoresistant BC-clones is indicated with respective BC-
identification (id). f Average frequency of each indicated BC-clone (and their summed frequency) in Doxo (n= 8), Doxo+Cyta (n= 10) at Trelapse and
T0 (n= 5). Boxplots c, d and f: center line is median, lower box bound is the 25% percentile, upper box bound is the 75% percentile, whiskers are minimum
and maximum values. Cross is the mean (f). g Same as e but applied to Doxo+ Cyta+DAC group. Graphs of mean ± s.d., P values were determined by
one-way ANOVA test. ns–not significant, *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Source data are provided as a Source Data file
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test if this effect was not the direct result of higher cell elimination
(significantly different between Doxo and Doxo+ Cytav ± DAC
groups), we preformed drug dose titrations that led to different
cell elimination levels and assessed the corresponding BC-clone
numbers at Trelapse. We observed a positive correlation between
the number of live cells (at maximum selection point) and the
equivalent number of detected BC-clones in each treatment
titration, with the highest correlation coefficient observed in the
Doxo+Cyta+DAC group (Supplementary Fig. 4a). Addition-
ally, we compared Doxo+Cyta ± DAC groups with a group
receiving 9-fold higher doxorubicin concentration (Doxo9x). We
confirmed that under equal cell elimination levels, the Doxo+
Cyta+DAC group showed higher BC-clone elimination and,
contrarily to the other groups, remained chemosensitive (Sup-
plementary Fig. 4b–d). These data suggest that the level of cell
elimination drives BC-clone elimination in all conditions, but
DAC combination selectively shows an increased capacity to
deplete BC-clones even upon normalization of cell elimination
levels. Next, the higher correlation between replicates in Doxo ±
Cyta treated samples compared to the Doxo+ Cyta+DAC
group prompted us to investigate if chemoresistant relapses
shared a common set of BC-clones. For this, we analyzed the fold
variation of each individual barcode frequency between T0 and
Trelapse and based on statistical significance (multiple t-test)
identified BC-clones with equal or increased frequency in Doxo ±
Cyta relapses compared to NT, which were defined as Doxo and
Doxo+Cyta resistant BC-clones. By overlapping Doxo ± Cyta
resistant BC-clones from three independent experiments, we
identified a group of 5 or 6 BC-clones (in HEL and OCI-AML3,
respectively) that were consistently selected in chemoresistant
relapses (Fig. 2e, Supplementary Fig. 3g); and collectively con-
stituted a major fraction of those Trelapse populations: 58,8%
(±19.5% tumor fraction in Doxo/HEL, n= 8) and 50%(±10.8% in
Doxo+Cyta/HEL, n= 10), which represented a 7–9-fold
expansion compared to T0 (Fig. 2f). Strikingly, the same analysis
on Doxo+ Cyta+DAC Trelapse samples revealed that no BC-
clone was consistently selected upon this treatment (Fig. 2g)
further confirming the unpredictable nature of relapse upon DAC
combination. Finally, to confirm the chemoresistance of Doxo ±
Cyta-selected BC-clone set, we evaluated its presence in second
relapse (R2) samples after re-treatment. We observed that
although R2 samples showed reduced BC-clone number com-
pared to first relapse (R1) samples, their BC architecture was
highly correlated with R1 (Supplementary Fig. 1d, e), suggesting a
conserved BC composition to R1. Furthermore, there was an
expansion of Doxo ± Cyta resistant BC-clones summed frequency
in R2 relatively to R1 (Supplementary Fig. 1f, g). Altogether, these
data indicate that, whereas chemoresistant relapses associate with
selection and expansion of a pre-determined set of BC-clones
(that persist after two rounds of chemotherapy), DAC
combination-driven chemosensitive relapses have reduced BC-
clonal diversity and are mediated by unpredictable BC-clones.

DAC combination selects unpredictable and unfit BC-clones.
The ability of DAC combination to generate chemosensitive
hAML relapses, led us to dissect the effects of DAC on hAML
clonal dynamics. Concerning the effect of low-dose DAC as a
single agent, we observed a mild reduction on genomic DNA
methylated cytosine frequency, and a decrease in the population
doubling time (Supplementary Fig. 5a, b), as previously descri-
bed30. At the BC level, these cells showed great similarity to NT
samples and also between replicates (Supplementary Fig. 5c–e),
suggesting that low-dose DAC alone has minimal impact on
hAML BC-clonal dynamics. Next, we assessed whether DAC
combination with chemotherapy impacted on the selection of the

above-identified pre-determined set of chemoresistant BC-clones.
By assessing BC-clonal compositions in the different experi-
mental groups, we observed that, while the pre-determined BC set
(with particular dominance of BC-clone 2084; dark green) was
enriched in Doxo ± Cyta relapses, it was strikingly under-
represented in Doxo+ Cyta+DAC relapses (Fig. 3a). In agree-
ment, these showed significantly reduced frequency of chemore-
sistant BC-clones in the top 3 most frequent BC-clones compared
to Doxo±Cyta relapses (Fig. 3b). To improve our assessment of
the effect of DAC combination on the pre-determined set of
chemoresistant BC-clones, we quantified the frequency fold
change of each of these clones between T0 and Trelapse under
each treatment, and normalized it to the equivalent fold change
observed in NT conditions—hereby defined as competitive index
(CI). Strikingly, CI for the majority of the BC-clones was sig-
nificantly reduced under the selective pressure of Doxo+ Cyta+
DAC compared to Doxo ± Cyta (Fig. 3c, Supplementary Fig. 3h),
suggesting that DAC combination impairs the chemotherapy-
driven selection of pre-determined chemoresistant BC-clones. To
validate these findings with another hypomethylating agent, we
evaluated the combination of chemotherapy with azacitidine
(Aza). Like DAC, Aza also prevented chemoresistance while
supressing pre-determined chemoresistant BC-clones (Supple-
mentary Fig. 6a–g), strongly supporting the conclusion that this is
a general effect of hypomethylating drugs. We next sought to
characterize the alternative BC-clones driving chemosensitive
relapses upon DAC combination. Given the previously shown
lack of a conserved set of BC-clones specifically selected by Doxo
+ Cyta+DAC, we focused our analysis of top 3 most frequent
relapsing BC-clones per culture. We observed that the most
abundant BC-clones of Doxo+ Cyta+DAC were rarer at T0 but
underwent greater expansions compared to chemoresistant BC-
clones relapsing after chemotherapy alone (26 versus 7–13 fold, in
HEL) (Fig. 3d, Supplementary Fig. 3i). Importantly, by assessing
the fold change of the frequency of each individual BC-clone
between T0 and Trelapse in NT conditions—hereby defined
as fitness—we observed that the top 3 BC-clones of
Doxo+ Cyta+DAC had reduced fitness compared to those of
Doxo ± Cyta (Fig. 3e, Supplementary Fig. 3j), indicating that in
the absence of therapy these rarer clones are outcompeted. As
expected, the average CI of the top 3 BC-clones relapsing to
Doxo+ Cyta+DAC was significantly higher compared to those
of Doxo ± Cyta, confirming their gain in competitiveness speci-
fically in the context of DAC combination (Fig. 3f). Finally, to
assess if DAC addition impaired chemotherapy-driven BC-clone
selection preferentially in the elimination or re-growth stages of
our in vitro model, we preformed detailed longitudinal assess-
ment of BC-clonal dynamics after treatment (Supplementary
Fig. 7a). Focusing on the most dominant chemoresistant BC-
clone (2084), we observed that DAC combination had only a mild
impact on the initial elimination stage, but strongly impacted on
its capacity to re-grow (Supplementary Fig. 7b, c). By contrast, the
less fit and rarer BC-clone 2252 was suppressed by Doxo+ Cyta
(Fig. 7d) but expanded massively and selectively under DAC
combination (Supplementary Fig. 7e). Altogether, these data
show that DAC combination suppresses the re-growth of che-
moresistant clones, while favoring the selection and massive
expansion of rarer and less fit clones that remain sensitive to
chemotherapy re-treatment.

DAC shapes the transcriptome and function of hAML relapses.
Having established the impact of DNA hypomethylating agents
on hAML clonal dynamics underlying chemoresistance develop-
ment, we next sought to decipher its molecular basis. In order
to clarify the contribution of genetic and transcriptomic
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determinants in our model, we performed exome- and RNA-
sequencing on Trelapse samples. We observed an overall stability
of the genomic composition of NT, Doxo ± Cyta and Doxo+
Cyta+DAC samples (Supplementary Fig. 8a–e), corroborated by
high correlation between exonic-variant frequencies (in total
exome and in AML/cancer gene panels) in the different groups
(Supplementary Fig. 8f, g). Despite the overall sharing of exomic
variants between all the conditions, we observed exonic variants
unique to each condition (Supplementary Fig. 8c), suggesting an
active on-going genetic clonal evolution process in our experi-
mental model. However, few of these variants were on genes
thought to have a causative role in AML pathogenesis13, the
exception being de novo subclonal FLT3 mutations of unknown
functional consequence and thus likely representing passenger
mutations in Doxo+ Cyta+DAC relapses (Supplementary
Fig. 8f). On the contrary, established AML driver mutations
JAK2V617F and P53M133K (P53 loss of function) were present at
variant allele frequencies of 100% in all groups, as expected from
their role as founding mutations in HEL cell line31

(Supplementary Fig. 8f). Importantly, there were no common
mutations exclusively in chemoresistant groups (Doxo and Doxo
+ Cyta) in genes known to be mutated in chemoresistance11.
These observations suggest that factors other than exomic
mutation could participate in chemotherapy resistance. To fur-
ther explore this hypothesis, we preformed transcriptomic ana-
lysis on Trelapse samples. Contrary to exomic data, but in
agreement with BC-clonal dynamics, RNA sequencing revealed
that Doxo+ Cyta+DAC samples were clearly more divergent
from NT than Doxo ± Cyta groups (Fig. 4a), showing the highest
number of statistically significant differentially expressed genes
relative to NT (Doxo: 188; Doxo+ Cyta: 40; Doxo+ Cyta+
DAC: 1049—genes with fold change >< than ±3; adjusted p-value
< 0.01). Doxo and Doxo+ Cyta groups showed a conserved
transcriptomic profile, supporting their previously established
BC-clonal and functional convergences (Fig. 4a,b). Interestingly,
gene set enrichment analysis (GSEA) revealed that Doxo+ Cyta
+DAC relapses were enriched for cell proliferation pathways
(E2F and MYC target genes) and DNA synthesis (Fig. 4b,c). We
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also observed increased expression of pathways related to meta-
bolism such as mTORC1 signaling32 and oxidative phosphor-
ylation, suggesting an overall increase in proliferative and
biogenesis capacity of Doxo+ Cyta+DAC relapses compared to
both NT and Doxo ± Cyta groups, further reflecting the higher
clonal expansion observed in Doxo+Cyta+DAC relapses. In
strike contrast, Doxo ± Cyta samples showed not only a decrease
in proliferative pathways, but an enrichment in pro-inflammatory
pathways together with an up-regulation of the hypoxia pathway

(Fig. 4b,c), suggestive of a quiescence state in Doxo ± Cyta
relapses33,34. This was further supported by the finding that
multiple genes involved in cellular quiescence such as CDKN1b,
CDKN2d, EGR-1 or TXNIP were enriched in Doxo ± Cyta
relapses (Fig. 4d). Strikingly, the most enriched transcript relative
to Doxo+ Cyta+DAC was CDKN1C, a key inhibitor of several
G1 cyclin/Cdk and negative regulator of cell proliferation that
directly mediates stem-cell quiescence35,36(Fig. 4d, Supplemen-
tary Figure 9a). Conversely, multiple genes involved in cellular
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proliferation pathways such as cyclins (CCNE1,E2), E2F tran-
scription factors (E2F1,2) and DNA polymerase subunits
(POLA1, POLE) where highly expressed in Doxo+ Cyta+DAC
relative to Doxo ± Cyta relapses (Fig. 4d). Furthermore, the
tyrosine-protein kinase MET, a driver of AML proliferation37 was
among the highest expressed transcripts in Doxo+ Cyta+DAC
relapses. The increased proliferative capacity of Doxo+Cyta+
DAC (compared to Doxo ± Cyta) relapses was further sub-
stantiated by lower doubling times (Fig. 4e, Supplementary
Fig. 9b), increased G2-S-M cell cycle stage frequency (Supple-
mentary Fig. 10a, b), and consistently smaller fractions of undi-
vided cells as assessed by CSFE labeling (Supplementary Fig. 10c).
To confirm the ability of DAC to antagonize the quiescent state
induced by chemotherapy, we added DAC (0.1 μM) at days 7 or
14 after chemotherapy exposure, and observed markedly earlier
hAML cell re-growth compared to chemotherapy alone (Fig. 4f).
Critically, whereas Doxo+Cyta relapses acquired chemoresis-
tance, relapses resulting from DAC combination at all tested time
points remained as chemosensitive as NT samples (Fig. 4g),
suggesting an overt positive association between quiescence dis-
ruption and chemosensitivity in our model. Next, to further
dissect the mechanisms of chemoresistance we focused the ana-
lysis on genes implicated in AML response to chemotherapy.
Although there were no differences in the majority of genes
associated with doxorubicin or cytarabine resistance38, we
observed that the ABCG2 gene was significantly up-regulated in
all treatment conditions compared to NT (Supplementary
Data 1), suggesting that this gene family associates with relapse in
our system. Further analysis of the ATP-binding cassette trans-
porters (ABC) gene family revealed that multiple ABC genes
implicated in AML relapse and chemoresistance39 were up-
regulated in chemoresistant Doxo ± Cyta groups compared to
Doxo+Cyta+DAC, particularly ABCC3, A2 and B6 (Fig. 4h).
Strikingly this associated with increased transporter activity in the
Doxo ± Cyta groups compared to NT and Doxo+ Cyta+DAC
groups (Fig. 4i), further implicating ABC gene family in che-
moresistance development in our system. Overall, these data
demonstrate that chemoresistant Doxo ± Cyta relapses display
increased quiescence and ABC transporter activity phenotypes
that are completely reversed upon DAC combination, leading to
highly proliferative chemosensitive relapses. Importantly, these
findings also suggest that DAC acts mainly via modulation of the
transcriptomic landscape of relapsing hAML cells, rather than
impacting on their genetic (mutational) profiles.

DAC combination reduces stemness properties of hAML
relapses. Low proliferation and quiescent states in leukemic blasts
have been mechanistically linked to resistance to cytotoxic
drugs40,41. Importantly, in AML such low cycling states have been
tracked down to sub-populations of leukemic cells that possess

enhanced self-renewal and leukemia-initiating capacity, termed
leukemia stem cells (LSCs)42–44. In fact, LSC frequency and
associated transcriptional signatures carry clinical prognostic
impact and have been extensively associated with chemoresis-
tance and leukemia relapse17–19,45–47. We thus hypothesized that
DAC addition to chemotherapeutic regimens could impact leu-
kemia stemness properties. Consistent with our hypothesis,
multiple stem-cell signatures: adult tissue stem-cell48, hemato-
poietic49, mesenchymal50 and cancer51,52 stem cell signatures,
were all enriched in Doxo ± Cyta compared to Doxo+ Cyta+
DAC relapses (Fig. 5a). Moreover, the expression of multiple
genes associated with hematopoietic and leukemic stem cell self-
renewal (HoxA4,B4,B5; FoxO1,O3,O4; CBX7; ANG; EMCN) was
significantly upregulated in Doxo ± Cyta compared to Doxo+
Cyta+DAC relapses (Fig. 5b). Furthermore, Doxo ± Cyta
relapses, but not Doxo+ Cyta+DAC relapses, displayed a series
of stem cell hallmarks: increased expression of LSC markers (%
CD34+ CD38− and CD99 MFI; Fig. 5c, Supplementary Fig. 9c),
increased ATP-binding cassette (ABC) transporter activity
(Fig. 4i) and increased aldehyde dehydrogenase activity (Fig. 5d).
A key functional readout of leukemia cell stemness is their ability
to initiate leukemia upon transplantation into irradiated immu-
nodeficient mice53. To assess the frequency of leukemia-initiating
cells (L-ICs) in Trelapse samples, these were engrafted in limiting
dilution into sublethaly irradiated NRGS mice (Fig. 5e). Doxo+
Cyta+DAC chemosensitive cells showed reduced L-IC fre-
quency when compared to chemoresistant Doxo ± Cyta relapses,
leading to less aggressive leukemia development as reflected in
increased overall survival of the hosts (Fig. 5f,g). Altogether, our
functional assessment of Trelapse cell populations shows that
chemoresistance development associates with lower proliferation
and increased stemness properties, which are both prevented by
up-front combination with DAC. Next, to assess functional
leukemia-initiating capacity of individual BC-clones, we per-
formed in vivo establishment of T0 samples with known BC
architectures and L-IC frequency (Fig. 5h). By assessing in vivo
engraftment of each individual BC in each individual mouse
tested, we were able to define a group of 36 BC-clones with
significantly higher leukemia-initiating capacity than the popu-
lation average (HiL-IC BC-clones) (Fig. 5h,i). Quantification of
HiL-IC BC-clones present in Trelapse samples confirmed that the
majority was efficiently suppressed by DAC combination (Fig. 5j;
Supplementary Fig. 9d). Importantly, among the HiL-IC HEL
BC-clones, we found four out of five pre-determined chemore-
sistant BC-clones previously identified in Doxo ± Cyta Trelapses
(Fig. 5k; Supplementary Fig. 9e), further demonstrating that
chemoresistance strongly associates with in vivo leukemia initi-
ating capacity at both population and BC-clonal levels. Finally, to
confirm the ability of DAC combination to target L-ICs, we
generated BC-clones from in vivo established single-L-ICs (L-IC

Fig. 4 Dectabine shapes the transcriptome and proliferative capacity of relapsing hAML. (Data relative to HEL cell line) a Principal component analysis plot
of differential gene expression at Trelapse between experimental groups. b Gene set enrichment analysis (GSEA) of HALLMARK gene set terms
significantly (FDRq < 0.05) upregulated (red) and downregulated (blue) in each treatment group as compared to NT, at Trelapse. Gray bars represent no
statistically significant change. c GSEA of differentially expressed pathways in Doxo+ Cyta+DAC group compared to Doxo ± Cyta groups at Trelapse. For
GSEA analysis Kolmogorov-Smirnov statistical test was preformed. d Differential expression of indicated proliferation and quiescence genes between
indicated groups at Trelapse. e Doubling time (hours) of indicated groups at Trelapse (n= 7). f Fold change in total number of viable AML cells between
day 0 and 35 after chemotherapy treatment. Arrows indicate time point of DAC (0.1 μM) addition: 0 (pink), 7 (blue), and 14 (green) (n= 3). Cells were in
all cases exposed to DAC for 72 h. g Frequency of viable cells after in vitro (re-)exposure to Doxo+ Cyta for 72 h in NT, Doxo+ Cyta and Doxo+Cyta+
DAC (0, 7 or 14 days) relapsing cells (n= 4). h Differential expression of indicated ATP-binding cassette transporters (ABC) genes between indicated
groups at Trelapse. i Intracellular efflux substrate MFI of NT, Doxo ± Cyta and Doxo+ Cyta+DAC cells at Trelapse. MFI was determined after 1 h (T1h) at
37 °C and depicted as the ratio of the respective MFIs measured immediately after intracellular efflux substrate staining at T0h (n= 6 in all groups except
NT: n= 3). Representative histograms. Graphs of mean ± s.d. P values were determined by one-way ANOVA test. ns—not significant, *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001. Gene expression graphs (d, h) represent mean log2(fold) change and indicated adjusted P value calculated by Wald testing.
Source data are provided as a Source Data file
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BC-clones)(Supplementary Figure 11a,b). In this setting, each
BC-clone derives necessarily from an in vivo established L-IC.
Strikingly, ex vivo treatment of in vivo established BC cells with
Doxo+Cyta+DAC regimen significantly reduced the number
of L-IC BC-clones compared to Doxo ± Cyta (Supplementary
Fig. 11c), thus confirming the ability of DAC combination to
target L-ICs. Our data demonstrates that chemotherapy selects
for pre-determined BC-clones with stemness properties, includ-
ing low proliferation, chemoresistance and leukemia-initiating
potential, which are suppressed upon DAC combination that
thereby favors the expansion of chemosensitive BC-clones with
decreased stemness capacity.

DAC combination depletes leukemia stem cells in hAML
samples. Having established the capacity of upfront DAC com-
bination to prevent stemness-mediated chemoresistance in our
in vitro system, we aimed to validate this finding in a in vivo
xenotransplantation model. For this purpose, we tested the effect
of standard chemotherapy (Doxo+ Cyta) alone or combined
with DAC (Doxo+ Cyta+DAC) on an in vivo orthotopic model
of intra bone-marrow (BM) transplantation of hAML HEL cell
line into NRGS mice (Fig. 6a)54. Contrarily to the in vitro system
where more than 99% of the cells were eliminated by equivalent
regimens (Fig. 1b), in vivo cell elimination in the peripheral blood
of leukemic animals was mild (Fig. 6b). This resulted mainly
from the inability to increase in vivo chemotherapy doses
beyond the limit of chemotherapy toxicity in immunodeficient
mice55,56. Notwithstanding this limitation, mice treated with
Doxo+Cyta+DAC showed increased leukemia cell elimination
and overall survival compared to untreated (NT), DAC alone and
Doxo+Cyta treated mice (Fig. 6b,c). Next, to assess cell-intrinsic
gain of chemoresistance, we sorted BM-resident hAML cells from
non-treated (NT) and Doxo+Cyta ± DAC treated mice and re-
exposed them to chemotherapy (Doxo+ Cyta) ex vivo. Strikingly,
whereas in vivo chemo-exposed AML cells showed a three-fold
gain of resistance, co-exposure to DAC preserved NT-like sen-
sitivity upon re-treatment (Fig. 6d). Despite the lower magnitude
of chemoresistant gain in vivo compared to the in vitro system
(likely resulting from the limited amount of chemotherapy used),
these data confirmed the overall capacity of upfront DAC com-
bination to prevent chemoresistance development in hAML cells.
Importantly, by assessing the frequency of immunophenotypi-
cally defined LSCs (live CD38-CD34+ cells) in NT, Doxo+Cyta
and Doxo+ Cyta+DAC, we could confirm that DAC combi-
nation prevents the chemotherapy-induced increase in LSC fre-
quency (Fig. 6e). Altogether, these data validate our in vitro
observations on the effect of DAC combination on hAML
stemness and chemoresistance at relapse in a more physiological
in vivo xenotransplantation model. Finally, we tested the effect of
DAC combination in targeting immunophenotypically defined
LSCs (live CD33+CD38- CD34+ cells) from human primary
AML samples (Supplementary Figure 12; Supplementary table 1).
Bone marrow AML blasts were cultured ex vivo in the presence of
no treatment (NT), Doxo+ Cyta or Doxo+ Cyta+DAC for 3
consecutive days; and 3 days after drug withdrawal the absolute
number of viable CD33+ CD38- CD34+ LSCs was assessed
(Fig. 6f). We observed that while Doxo+ Cyta depleted LSCs
numbers in the majority of the samples, the combination with
DAC clearly enhanced this effect, leading to a significant decrease
in LSC numbers in 6 out 8 tested samples (samples 1, 3, 12, 15,
20, and 25; Fig. 6g,h). These data further strengthen our obser-
vations that upfront combination of low-dose decitabine with
chemotherapy depletes LCS numbers in hAML relapses, thus
attesting the potential of this approach to tackle stemness-
associated chemoresistance development in AML.

Discussion
Therapeutic resistance drives recurrences and represents a major
hurdle to successful clinical management of cancer in general,
and AML in particular. In this study we have established an
experimental model system to characterize longitudinally the
clonal dynamics and associated genetic and non-genetic deter-
minants underlying chemoresistance development in hAML cells
exposed to different chemotherapeutic regimens. Using in vitro
lineage tracing coupled with exome, transcriptome and in vivo
functional readouts we revealed the ability of low-dose DNMTis
in upfront combination with chemotherapy to prevent che-
moresistance development by suppressing the expansion of a pre-
determined set of AML clones with high stemness properties.
These data represent a major advance to our understanding of the
clinical benefits described for such combinatorial regimens in
refractory/relapsed AML25–27.

The use of DNMTi to sensitize chemoresistant tumors has been
applied in different cancer types with some success, having been
associated with transcriptional activation of tumor suppressor
genes such as TP5357. Here, we found that combining che-
motherapy with DAC leads to major transcriptomic and func-
tional changes of relapsing hAML cells, leading to an overall
decrease in stemness properties (quiescence, drug efflux capacity
and leukemia-initiating/self-renewal capacity), which have been
linked with poor clinical outcomes and chemoresistant relapse
development in AML58. Among these properties, low proliferation
and quiescent states in leukemic blasts have been directly asso-
ciated with resistance to cytotoxic drugs, as chemotherapeutic
agents preferentially target dividing cells40,41. Supporting this, we
observed that concomitantly with multiple regulators of cellular
quiescence, the CDKN1C gene, a key negative regulator of cell
proliferation that directly mediates stem-cell quiescence and self-
renewal capacity in hematopoietic stem cells (HSCs)35,36, was the
most enriched transcript in chemotherapy relapses when com-
pared to DAC combination samples. High CDKN1C expression
levels in BM associate with lower proliferative activity and poor
survival after standard chemotherapy in both AML and MDS
patients59. This further suggests that reduced proliferation in
chemotherapy-driven relapses may represent a mechanistic
pathway of resistance that is prevented by DAC addition, thus
resulting in proliferative and chemosensitive relapses. Importantly
DAC combination also associated with an overall decrease in the
expression of multiple ABC gene family members (in particular
ABCC3) which are well established regulators of chemoresistance
in AML39,60. Another key transcriptional and functional aspect of
chemoresistant hAML relapses in our model was increased
leukemia-initiating capacity (in immunocompromised mice) and
self-renewal gene expression, which was strikingly abolished upon
DAC combination. This observation is in line with previous stu-
dies showing that DNA methylation promotes self-renewal and
inhibits differentiation of both HSCs and LSCs;61,62 and that low-
dose DNMT inhibitors can reduce the tumorigenicity of cancer
stem cells in various models63. The molecular mechanism by
which DNMTi combination impacted on the expression of
stemness-associated genes was not established in our study. A
potential explanation for the observed increase in proliferation
upon DNMTi combination is the hypomethylation-dependent
enhanced transcription of pro-cycling genes (e.g.MET64), whereas
repressed signature genes (e.g. CDKN1C, ABCC3, CBX7) may be
indirectly regulated via hypomethylation-promoted transcription
of their negative regulators. Critically, our study reveals for the
first time the capacity of DAC in upfront combination with che-
motherapy to reduce the stemness properties of hAML relapses,
further encouraging the clinical assessment of upfront combina-
tion of low-dose DNMT inhibitors with standard chemotherapy as
first line treatment of AML.
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To resolve the underlying clonal dynamics associated with the
selection of chemoresistance we employed an in vitro system
using barcoded hAML cells. In spite of its inherent limitation in
modeling the complex biology of AML cells (e.g. bone marrow
niche interactions65) this experimental setup offers two key
advantages compared to in vivo systems: (1) drug doses are not
limited by the sensitivity of immunocompromised mice to cyto-
toxic agents56; (2) stable steady-state clonal dynamics, which is
lost upon in vivo xenotransplantation of human cancer cells into
immunocompromised mouse models66 (our unpublished data),
allowing for reproducible clonal dynamics assessment upon

experimental perturbations. The latter is particularly relevant
since, by creating replicates with a constant barcode composition,
it allows testing the effect of different therapies on the same
complex tumor population that would not be possible in the
clinical setting. Using this unique feature of our system, we found
a pre-determined set of BC-clones that is consistently present in
chemotherapy relapsing populations, indicating that, even in the
absence of selective pressure, there are clonally related cells (BC-
clone) that share the molecular determinants that will lead to
their selection upon chemotherapy exposure. Interestingly,
molecular characterization of the mutational spectrum by exome
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Fig. 6 Decitabine combination depletes LSCs from xenografts and AML patient samples. a Schematic diagram of the therapeutic setting used to treat NRGS
mice bearing human AML (GFP+HEL) cells. Chemotherapy regimen (Doxo+Cyta): intraperitoneal (i.p.) injection of cytarabine (100mg/kg per day over
5 days) and doxorubicin (3mg/kg per day over the first 3days). Decitabine combination was initiated 2 days after Doxo+Cyta, via i.p. injection of 0,5mg/kg
DAC for 5 consecutive days. b The total number of viable hAML HEL (GFP+ , 7AAD-) cells in peripheral blood (PB) and mouse survival (c) in untreated (NT,
n= 6), DAC alone (n= 4), Doxo+Cyta (n= 5) and Doxo+Cyta+DAC (n= 4) groups. d Frequency of viable BM-sorted hAML cells, sorted from the BM of
mice from the three groups described in b, c, after ex vivo exposure to Doxo+Cyta for 72 h. e Frequency of CD38-CD34+ cells (left axis, n= 4–8) on
BM-sorted hAML cells from indicated groups. f Schematic diagram depicting ex vivo treatment of AML patient samples Doxo+Cyta and Doxo+Cyta+DAC
and the subsequent quantification of immunophenotypically defined LSCs. g Absolute number of LSCs (live CD33+CD38− CD34+ cells) after ex vivo
exposure to Doxo+Cyta and Doxo+Cyta+DAC (n= 3 per sample). h Representative flow cytometry contour plots of CD38/CD34 staining gated on CD33
+VioletZombie- population. Graphs of mean ± s.d., P values were determined by one-way ANOVA test. Survival curve analysis was performed by
Log-rank (Mantle-Cox) testing. ns—not significant, *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Source data are provided as a Source Data file
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sequencing showed a lack of genetic drivers for chemoresistance
and an overall conserved exomic landscape in chemosensitive and
chemoresistant groups. In stark contrast, transcriptomic assess-
ment revealed a very dynamic shift in gene expression with a
strong enrichment in stemness-associated pathways in che-
moresistance hAML cells. Importantly, we observed that this pre-
determined set of chemoresistant BC-clones also displayed
increased capacity to establish in in vivo immunocompromised
mice (a classic LSC feature) prior to chemotherapy, indicating
that transcriptional/functional defined stemness and chemore-
sistant states pre-exist in hAML BC-clones and are actively
selected by chemotherapy. This indicates that hAML chemore-
sistance development pre-exists therapy exposure and results
from transcriptomic rather than genetic selection, in line with
recent studies implicating epigenetic reprogramming of tran-
scriptomic heterogeneity at single-cell level in the development of
therapeutic resistance, independently of genetic alterations67.
Strikingly, our data revealed that upfront DNMTi combination
impaired the selection of the chemoresistant pre-determined set
of BC-clones, and dramatically favored the expansion of a rarer
set of clones that would be normally (i.e., in absence of this
specific pressure) outcompeted. This was accompanied by a
strong transcriptomic signature of proliferation pathways, further
substantiating the clonal expansion observed in these populations
upon relapse. These data strongly indicate that DAC uniquely
affects the re-growth capacity of each individual BC-clone in a
differential manner, causing a significant impairment on the re-
growth capacity of pre-determined BC-clones associated with
chemoresistance, while favoring the expansion of rarer BC-clones
that remain chemosensitive. Although the mechanistic basis of
this differential impact of DAC on different BC-clones was not
completely clarified here, it is very likely to depend on clonal-
specific epigenetic states22. In fact, our data suggests a model
where, in response to chemotherapy, hAML regrowth is heavily
dependent on, and potentially driven by, LSCs—as shown by a
clear enrichment of stemness at relapse. Given the high sensitivity
of CSCs to DNMTis61–63 it is therefore possible that in the pre-
sence of DNMTi relapses no longer derive from LSCs, but are
now largely driven by cells with lower stemness that regenerate
the leukemia via activation of proliferative pathways while
remaining sensitive to chemotherapy.

In summary, our study demonstrates the ability of low-dose
DNMTi in combination with chemotherapy to dramatically shape
AML clonal dynamics, markedly depleting a pre-determined set of
chemoresistant clones with increased leukemia-initiating poten-
tial, thus leading to chemosensitive relapses. Importantly, we show
that these clonal dynamics are not based on genetic differences,
but instead on the transcriptional landscape associated with
stemness and chemoresistance. We thus provide mechanistic
insight for the promise of upfront addition of low-dose DNMTi to
standard chemotherapy, to sensitize AML to (re-)treatment; and
propose this might circumvent development of chemoresistance in
AML relapses, potentially turning this fatal malignancy into a
chronic manageable disease.

Methods
Ethics statement. Bone marrow samples of adult AML patients were collected at the
Hematology Department at Instituto Português de Oncologia (IPO, Lisbon, Portugal)
after written and informed consent and ethical Review Board approval from Instituto
Português de Oncologia, in accordance with the Declaration of Helsinki. Samples used
in this study were selected for high frequency of immunophenotypically leukemic
blasts (over 80%). All animal experiments were conducted in accordance with stan-
dard institutional animal care procedures and followed ethical committee protocols at
Instituto de Medicina Molecular João Lobo Antunes.

Barcode construction and lentivial-barcode production. The DNA Barcode
library containing ~2600 unique barcodes was produced as previously described68.

To produce barcode containing viral particles HEK 293 T (ATCC® CRL-3216™) cell
line was used. Cells were plated at 70.000 cells/cm2 in tissue culture flask in IMDM
complete medium composed by Iscove’s Modified Dulbecco’s Medium Gluta-
MAX™ Supplement (Gibco®, NY, USA) supplemented [10% (v/v) fetal bovine
serum (Gibco®, NY, USA), 1% (v/v) Sodium Pyruvate (Gibco®, NY, USA), 1% (v/v)
penincillin-streptomycin (Gibco®, NY, USA) and 0.1% (v/v) Gentamycin (Gibco®,
NY, USA)] during 16–24 h before transfection, at 37 °C and 5% CO2. For cells
transfection 0.0272 µg/cm2 of Barcode library expression vector, 0.0181 µg/cm2 of
gag-pol expressing vector and 0.0181 µg/cm2 of VSVG expressing vector were
mixed with 6.53 µL/cm2 serum free medium and 1.11 µL/cm2 Lipofectamine 2000
(InvitrogenTM, NY, USA) and incubated for 20 min at room temperature (RT).
Subsequently the medium was removed from the cells and the mixture was
immediately added at 14.2 µg/cm2 drop-wise and the cultures incubated at 37 °C
and 5% CO2 for 24 h. Old medium was removed and 0.2 mL/cm2 of IMDM
complete medium supplemented with 10 mM Sodium Butyrate (Sigma®, Darm-
stadt, Germany) was added to the cells and incubated at 37 °C and 5% CO2 for 8 h.
Cells were washed 2-3x and 0.133 mL of complete medium/cm2 was added. After
24 h of incubation, medium contained viral particles was harvested and filtrated
with 0.45 mm filter, aliquoted and frozen at −80 °C.

Barcoding of AML cell lines. Human acute myeloid leukemia cell lines HEL
(ATCC, TIB-180™) and OCI-AML3 (DSMZ, ACC 582) were maintained in Iscove’s
Modified Dulbecco’s Medium GlutaMAX™ Supplement supplemented with 10%
(v/v) fetal bovine serum, 1% (v/v) Sodium Pyruvate (Gibco®, NY, USA), 1% (v/v)
penincillin-streptomycin and 0.1% (v/v) Gentamycin (Gibco®, NY, USA) at 37 °C
with 5% CO2. Cells were seeded at 0.2 × 106 cells/mL and maintained between
0.2 × 106 cells/mL and 0.6 × 106 cells/mL. To transduce the AML cell lines, 6 × 106

cells were plated per well in a 24-well plate with IMDM complete medium con-
taining 12 µg/µL of polybrene (Merck®, Darmstadt, Germany), then the super-
natant of viral particles previously obtained was also supplemented with 12 µg/µl of
polybrene and added to the cells. Control wells without viral supernatant were
prepared in parallel. The plates were centrifuged at 1500 g for 90 min at 32 °C.
Finally, the supernatant was removed, the cells were washed twice by changing the
medium and centrifugation at 350 g for 7 min. The cells were incubated at 37 °C
and 5% CO2 for 20 h. Initially, serial dilutions of the supernatant were tested,
starting in a 1:2 dilution in order to determine the amount of virus that will
transduced a maximum of 5% of the cells in the first 24 h. The <5% level of
transduction was previously determined to be the level at which >1 barcodes are
very rarely integrated per cell. In detail, we preformed double transductions using
GFP+ and RFP+ coding viral vectors and determined that double transductions
(as measured by dual positivity) were only observed above ~10% levels of co-
transduction. After 20 h incubation transduced cells were collected, washed, stained
with 10 µl/mL of 7AAD (Biolegend, USA) and 2.5 µL/mL of AnnexinV-APC
(InvitrogenTM, NY, USA) and sorted in a FACSAriaTM III BD (Biosciences).
Viable cells were sorted and seeded at different numbers in independent wells.
After cell expansion the barcode number of each independent culture was deter-
mined and only sublines with approximately 10% of the barcodes in the library
(210–330 barcodes) were used as T0 samples. This level of library usage was
previously determined to prevent that the same barcode is found in 2 independent
cells transduced with the same library58. Multiple aliquots of T0 samples were
stored at −80 °C in fetal bovine serum supplemented with 10% DMSO (Sigma®,
Darmstadt, Germany) to be used as T0 for all experiments. HEL, HEK 293 T and
OCI-AML3 were purchased from ATCC and DSMZ respectively (cell lines were
not tested for mycoplasma, nor authenticated).

Xenotransplantation of barcoded AML cells. NOD-Rag1-/-γc-/- (NRGS, 024099)
mice were obtained from the Jackson Laboratories (USA). 8–10-weeks-old male and
female NRGS mice were sub-lethally irradiated (250 cGy) 24 h before the injections
and kept with oral antibiotic (Bactrim) diluted in the drinking water during all the
experiment. For the xenotransplantation, a previously described model of intra bone
marrow (IBM) xenografted human AML cells was used54. Briefly AML cells (bar-
coded HEL and OCI-AML3 cell lines) were washed, resuspended in PBS and injected
directly into the right tibia bone marrow 10000 cells/mouse. Mice were housed at
IMM Lisboa, monitored daily for signs of disease and weekly for tumour burden
levels quantification. Animals exhibiting signs of disease (paralysis, more that 20 % of
weight loss or high tumour burden) were killed by CO2 and the bone marrow and
spleen were immediately collected for posterior analysis.

In vivo leukemia progression evaluation. Leukemia progression was evaluated
by weekly quantification of peripheral blood circulating tumour cells. Blood
(70–100 µL) was collected from facial vein and stored in tubes containing 10 µL of
Heparin (500un/mL, B.Braun, Germany). In each blood sample, a defined amount
of beads (Coulter CC Size Standard L10) was added for absolute cell quantification
and Red Cells Lysis Buffer 1x(RBC Lysis Buffer 10x, Biolegend, USA) was added in
multiple rounds until complete erythrocyte clearance. Cells were stained with LIVE/
DEADTM dead cell staining kit (InvitrogenTM, NY, USA) for 15min at 4 °C. Total
GFP+ Live/Dead– cells were quantified by Flow cytometry on an LSR FortessaII
Cell Analyzer (BD Biosciences). Data was analyzed with FlowJo X 10.0.7 software
(TreeStar, USA) and the results shown as the absolute numbers per mL of blood.
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Animals were assigned randomly to treatment groups upon reaching a minimum
level of 100 GFP+ CD45+ viable cells/mL of blood (treatment threshold).

In vivo chemotherapy drugs treatment. NRGS mice were IBM xenotransplanted
with 10000 cells before treatment assignment. Upon reaching tumor load threshold
levels mice were treated with: (1) chemotherapy regimen (Doxo+Cyta): intraper-
itoneal (i.p.) injection of cytarabine (100mg/kg per day over 5 days—Citaloxan
20mg/mL stock) and doxorubicin (3mg/kg per day over the first 3days—doxorubicin
chlorohydrate, 2 mg/mL stock) as previously described55. (2) Chemotherapy com-
bined with decitabine (Doxo+Cyta+DAC): chemotherapy was administred as in 1)
and decitabine combination was initiated 2 days after Doxo+Cyta, via i.p. injection
of 0.5mg/kg DAC (5-Aza-2′-deoxycytidine, 5mg, Sigma) for 5 consecutive days69. (3)
No treatment group (NT) received i.p. PBS. Disease progression was monitored as
described. Mice were sacrificed upon signs of illness and viable GFP+AML cells were
bone marrow sorted and stored at −80 °C, for further ex vivo evaluation.

In vivo leukemia-initiating cells evaluation. NRGS mice were xenotransplanted
with serial dilutions (100000, 10000, 1000, 100, 10 cells) of barcoded HEL and
OCIAML3. Starting populations were in vitro generated NT, Doxorubicin (Doxo),
Doxorubicin plus Cytarabine (Doxo+Cyta) or Doxorubicin plus Cytarabine and
Decitabine (Doxo+Cyta+DAC) relapsing cells. Mice were sacrificed upon signs of
illness or upon experiment termination (10 weeks after xenotransplantation). Viable
GFP+AML cells were quantified in the injected tibia or in the pool of the remaining
tibia, left and right femurs. Animals with human AML cells frequency over 0.5% of
the total mouse leukocyte population in either injected tibia or pooled bone marrow
were scored as positive. Leukemia-initiating cell (L-IC) frequency was determined by
Extreme Limiting Dilution Analysis (ELDA) software (http://bioinf.wehi.edu.au/
software/elda/index.html), provided by the Walter and Eliza Hall Institute70.

Determination of clones with leukemia-initiating potential. NRGS mice were
xenotransplanted with 10000 barcoded HEL (total of seven mice) or OCI-AML3
(total of six mice) NT cell populations with known barcode (BC) architecture and
predicted average number of L-ICs. An estimated number of L-ICs per BC-lineage
present in the 10,000 xenotransplanted cell population was determined assuming
even distribution of L-ICs by the different BC-lineages. After determining the BC
arquitecture of in vivo established NT HEL and OCI-AML3 cell populations a
Poisson-probability distribution criteria was defined to establish which BC-lineages
were more frequently found in vivo (i.e. established in more mice) than expected.
These lineages were defined as high leukemia-initiating cell (HiL-IC) lineages.

In vitro chemotherapy treatment of hAML cell lines. All the in vitro treatment
regimens were optimized using the mainstream drugs used in clinical management
of AML. The different treatment regimens consisted in using only the anthracy-
cline doxorubicin (1.8 µM, doxorubicin chlorohydrate, 2 mg/mL, medac), cytar-
abine (6 µM, Citaloxan, 20 mg/mL, Hospira Portugal Lda) or hypomethylating
agent decitabine (0.1 µM, 5-Aza-2′-deoxycytidine, 5 mg, Sigma) and using con-
jugations of this drugs with or without the hypomethylating agent (namely, dox-
orubicin plus cytarabine and doxorubicin plus cytarabine combined with
decitabine). Non-treated cells were cultured in IMDM with 0.1 μM of dimethyl
sulfoxide (DMSO), as control. The drugs were always added to the cells at time T0h
(beginning of each experiment) and each treatment condition was always per-
formed at least in three biological replicates per experiment. Barcoded HEL cells
were counted by Trypan blue exclusion method (>75 % of viability was ensured),
and 6 million cells were seeded at the concentration of 2 × 105cells/mL in the
presence or absence of each treatment regimen and incubated for 72–74 h at 37 °C,
5% CO2. After incubation, cells were thoroughly washed and enriched for live cells
through Ficoll-Paque (Histopaque®-1077, sigma) gradient exclusion of dead cells.
The recovered live cells were washed three times and reseeded at the concentration
of 2 × 105 cells/mL in fresh IMDM complete medium. Culture cells were kept
growing at 37 °C, 5% CO2 during approximately 30 days until the number of live
cells reached the initially seeded number (6 million cells). Every 3 or 4 days 1% of
each cell culture was stained with 10 µL/mL of 7AAD (Biolegend, USA) and 2.5 µL/
mL of AnnexinV-APC (InvitrogenTM, NY, USA) and analyzed for the total cell
numbers and the live/dead cells by flow cytometry on an LSR FortessaII Cell
Analyzer (BD Biosciences). Pellets of live cells (1 × 104-1 × 105) were collected and
frozen for barcode sequencing at indicated timepoints. Cultures that regrew from
previous treatment regimens were (re)treated only with chemotherapy for 72 h.

RNA isolation, cDNA production, and real-time PCR. mRNA was extracted from
cell lines using High Pure RNA Isolation kit (Roche). Reverse transcription was
performed with random oligonucleotides (Invitrogen) using Moloney murine
leukemia virus reverse transcriptase (Promega) for 1 h at 42 °C. Relative quantifi-
cation of specific cDNA species to endogenous reference human GAPDH was
carried out using SYBR on ABI ViiA7 cycler (Applied Biosystems). The CT for the
target gene was subtracted from the CT for endogenous references, and the relative
amount was calculated as 2−ΔCT. Primer sequences were the following: GAPDH
forward, CTCCTCTGACTTCAACAGCGACAC, GAPDH reverse,
TGCTGTAGCCAAATTCGTTGTCAT, CDKN1C forward, AGAGATCAGCGCC
TGAGAAG, reverse, GGGCTCTTTGGGCTCTAAAC.

Analysis of stem cell markers and efflux activity. Untreated cells (NT) and
treatment-relapsing cells (doxorubicin, cytarabine, doxorubicin plus cytarabine and
doxorubicin puls cytarabine combined with decitabine) from barcoded HEL and
OCIAML3 cell lines were analysed. Stem-cell surface markers were evaluated by
flow cytometry using anti-hCD34-APC (Biolegend, USA), anti-hCD38-PE (Biole-
gend, USA) and anti-hCD99-PE (Biolegend, USA) antibodies. ABC transporter
activity was analysed using the eFluxx-ID Gold multidrug resistance kit (Enzo Life
Sciences) according to the manufacturer’s instructions.

Quantification and statistical analysis. All P values were calculated using one-
way ANOVA test with GraphPad Prism software, unless otherwise described in the
methods or figure legends. No specific randomization or blinding protocol was
used for these analyses. Statistically significant differences are indicated with
asterisks in figures with the accompanying P values in the legend. Error bars in
figures indicate SD for the number of replicates, as indicated in the figure legend.

Cytosine DNA methylation quantification. Dry pellets of 0.5–1 × 105 live cells
were prepared for every condition tested. Cell pellets were treated with RNaseA for
1 h at 37 °C and proteinase K for over-night. Genomic DNA was isolated using
phenol chloroform and resuspended in 0.01 M Tris-HCL (pH8) and subsequently
quantified using dsDNA BR Assay Kit (Qubit). 1 µg of genomic DNA was used for
sample preparation by treating with 5U DNA Degradase Plus at 37 °C for 1 h
(ZymoResearch, E2021) to obtain individual nucleosides in a final volume of 25 µL
and inactivated by adding 175 µL of 0.1% formic acid71. DNA-me measurements
were performed at the VBCF- Vienna Biocenter Core Facilities.

Barcode PCR amplification, deep sequencing and analysis. Barcode quantifi-
cation was performed as previously described72. In detail, dry pellets of 0.5–1 × 105

live cells were prepared for every condition tested. Pellets were resuspended in
40 µL of DirectPCR® lysis buffer (Viagen Biotech, USA) containing 200 mg/mL of
proteinase K. The cells were lysed in a thermocycler at 55 °C for 1 h and 90 °C for
30 min. For the first PCR, 3 µL of TopLib 5′-TGCTGCCGTCAACTAGAACA-3′
and 3 µL of BotLib 5′-GATCTCGAATCAGGC GCTTA-3′ primers and 50 µL of 2x
MyTaqTM red Mix (Bioline, UK) were added to the 40 µL pellet of each samples.
After mixing and before PCR run, 50 µl was transferred to an empty PCR tube, to
provide technical replicates. The tubes were placed in a thermocycler initially for
5 min at 94 °C, then 30 cycles of 58 °C for 15 s, 72 °C for 15 s and 94 °C for 15 s
were performed and finally for 10 min at 72 °C. For the second PCR different index
primers were used for every sample and technical replicate. The index forward
primers was designed taking into account a production of a library of 384 different
82-bp primers containing unique 8-bp sequence that differed by at least 2 bases, a
P7 annealing region for the Illumina® Sequencing system (Illumina® Sequencing,
USA)), and a 16-bp annealing region to the first PCR. For the common reverse
primer, a sequence that includes a P5 annealing region for the Illumina®
Sequencing system followed by an annealing region for the first PCR product 5′-
CAAGCAGAAGACGGCATACGAGATTGCTGCCGTCAACTAGAACA-3′ was
designed. For the PCR mixture, 1 µL of the first PCR product, 5 µL of index primer,
1 µL of common primer, 15 µL of 2x MyTaqTM red Mix (Bioline, UK) and 8 µL of
H2O were mixed together. PCR amplification was carried out as described above,
and the presence of the expected 224-bp product was checked for each sample by
2% agarose gel electrophoresis. After the two PCR, 4 µL of each sample containing
different indexes up to 384 that were pooled, run on an E-Gel® Size Select 2%
(InvitrogenTM, NY, USA) to obtain the 224-bp product and sequenced on a
HiSeqTM 2000 (Illumina® Sequencing, USA). ASCIDEA Computational Biology
Solutions, Barcelona, performed the sequencing. A single-run 50-bp sequencing
run was sufficient to read through the index, common annealing region, and the
first 15 bp of the barcode required for data analysis. Upon sequencing of the
barcodes present in each subculture, we analyzed the resulting raw data with a
bioinformatic pipeline previously optimized. Barcode sequences were extracted
using XCALIBR program (developed at Netherlands Cancer Institute - Genomics
Core Facilty) generating tabulated data into a matrix containing the fraction of
reads for each barcode versus the indexes. Data was further processed using a
customized script in R (kindly provided by Dr. Leϊla Prerie, Institute Curie) using
three main steps. First excludes samples where there were insufficient read counts
from the deep sequencing (average of the two technical replicates <1 × 104).
Samples having passed this step were then normalized to 1 × 105 for each sample.
Secondly, as a measure of sufficient recovery for subsequent lineage comparisons,
we further excluded samples where the two technical replicates did not pass a
Pearson correlation coefficient of 0.8. After, all reads of barcodes present in only
one of either technical replicate of a given sample—an indication that there was a
low confidence for inclusion of that barcode—were changed to zero (0) reads for
that sample and excluded. After confirming that technical replicates were well
represented their average was then taken for further analysis.

Total RNA extraction, sequencing, and analysis. Total RNA was extracted from
frozen cells pellets using the High Pure RNA Isolation Kit (Roche, Basileia, Swiss)
and quantified using QubitTM RNA HS Assay Kit (InvitrogenTM, NY, USA) on
the Qubit® 2.0 Fluorometer (InvitrogenTM, NY, USA). ASCIDEA Computational
Biology Solutions, Barcelona, performed the sequencing. One microgram of
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high-purity total RNA (defined as having an RNA integrity number greater
than 7.0) was used as input for the Illumina TruSeq RNA Sample Prep Kit, Sets
A/B (48Rxn) (Illumina). The gel-free protocol was employed for the TruSeq RNA
Sample Prep Kit per the manufacturer’s specifications and performed on the
Beckman Coulter Biomek FXp robotics platform. The standard RNA-
fragmentation profile was used as recommended by Illumina (94 °C for 8 min).
The PCR-amplified RNA-seq library products were then quantified using the
Fragment Analyzer Standard Sensitivity NGS Fragment Analysis Kit (Advanced
Analytical Technologies). The samples were diluted to 10 nM in EB Buffer
(Qiagen), denatured, and loaded at 2.75 pM on an Illumina HiSeq2000 in Rapid
Run Mode using TruSeq Rapid PE Cluster Kit–HS and TruSeq Rapid SBS Kit–HS
(200 cycle) reagents (Illumina). The RNA-seq libraries were sequenced at 100 bp
paired-end with a 7-bp index using the standard Illumina primers. Quality of the
reads obtained by HiSeq2000 sequencing was checked with FastQC software
(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). Preprocessing of the
reads was performed with fastx-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/
index.htmL) and aScidea specific perl scripts property of aScidea (http://www.
ascidea.com) in order to filter regions of low quality. Adaptors and low quality
bases at the ends of sequences and reads with undetermined bases or with 80% of
their bases with less than 20% quality score were trimmed. Raw reads that passed
the quality filter threshold were mapped using Bowtie2 2.2.8 to generate read
alignments for each sample. The reference genome used was the Homo Sapiens
version GRCh38. The transcript isoform level and gene level counts were calcu-
lated using FeatureCounts from SubRead Package. Differential transcript
expression was then computed using DESeq2. The resulting lists of differentially
expressed isoforms were filtered by ln(fold_change) > 1 and <−1 and adjusted
p-value of 0.05. Gene set enrichment analysis (GSEA) was performed with the
GSEA v2.0 software (Broad Institute of MIT (Massachusetts Institute of
Technology) and Harvard, http://www.broad.mit.edu/gsea) on pre-ranked lists
of differentially expressed genes. Normalized enrichment scores (NES) with
P values < 0.05 and false discovery rates (FDR) < 0.05 were considered statistically
significant. Initial GSEA analysis was performed on HALLMARK gene set
terms73.

Exome sequencing and analysis. Total DNA was recovered by DNeasy Blood &
Tissue Kit (Qiagen, USA) and quantified using QubitTM dsDNA HS Assay Kit
(InvitrogenTM, NY, USA) on the Qubit® 2.0 Fluorometer (InvitrogenTM, NY,
USA). Fragmentation of 1 μg of genomic DNA was performed using adaptive
focused acoustic technology (AFA; Covaris). The fragmented DNA was repaired;
an“A”is ligated to the 3′ end, agilent adapters are then ligated to the fragments.
Once ligation was assessed, the adapter-ligated product was PCR amplified. The
final purified product was quantified using qPCR according to the qPCR
Quantification Protocol Guide and qualified using the Caliper LabChipHigh
Sensitivity DNA (PerkinElmer). For exome capture, 250 ng of DNA library was
mixed with hybridization buffers, blocking mixes, RNase block and 5 µL of
SureSelect all exon capture library, according to the standard Agilent SureSelect
Target Enrichment protocol. Hybridization to the capture baits was conducted at
65 °C using heated thermal cycler lid option at 105 °C for 24 h on PCR machine.
The captured DNA was then amplified. The final purified product was then
quantified using qPCR according to the qPCR Quantification Protocol Guide,
qualified using the TapeStation DNA screentape (Agilent) and then sequenced
using the HiSeq 4000 platform (Illumina,San Diego, USA). Mapping and
alignment were carried out as follows. First, read files (Fastq) were generated
from the sequencing platform using the manufacturer’s proprietary software.
Mapping and alignment were carried out as follows. First, read files (Fastq) were
generated from the sequencing platform using the manufacturer’s proprietary
software. Reads were mapped to their location in the reference human genome
(GRCh38) using the Burrows-Wheeler Aligner (BWA) package, version 0.6.2.
Duplicate reads were marked and removed using Samtools rmdup. Freebayes
was used to call join variants on all samples and varaint frequencies were then
extracted from the vcf file.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq data has been deposited in NCBI’s Gene Expression Omnibus (GEO) and is
accessible using the accession number GSE134506. Whole exome sequencing data has
been deposited in NCBI’s Sequence Read Archive (SRA) and is accessible via SRA under
the accession number PRJNA555070. All the other data supporting the findings of this
study are available within the article and its supplementary information files and from
the corresponding author upon reasonable request. A reporting summary for this article
is available as a Supplementary Information file. The source data underlying Figs. 1–6
and Supplementary Figs. 1–11 are provided as a Source Data file
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