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A multi-sample approach increases the accuracy
of transcript assembly
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Transcript assembly from RNA-seq reads is a critical step in gene expression and subsequent
functional analyses. Here we present PsiCLASS, an accurate and efficient transcript
assembler based on an approach that simultaneously analyzes multiple RNA-seq samples.
PsiCLASS combines mixture statistical models for exonic feature selection across multiple
samples with splice graph based dynamic programming algorithms and a weighted voting
scheme for transcript selection. PsiCLASS achieves significantly better sensitivity-precision
tradeoff, and renders precision up to 2-3 fold higher than the StringTie system and Scallop
plus TACO, the two best current approaches. PsiCLASS is efficient and scalable, assembling
667 GEUVADIS samples in 9 h, and has robust accuracy with large numbers of samples.
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NA sequencing (RNA-seq) has become the de facto stan-

dard in surveying the transcriptome of a cell, organism, or

species, to determine the expressed genes and transcripts
and their expression levels, and to enable differential and func-
tional analyses’2. A crucial step in virtually all RNA-seq data
analyses is assembling the reads into full-length transcripts. The
accuracy of transcript reconstruction is critical for quantification,
detection, and characterization of alternative splice variants, and
the identification of differences in gene expression and splicing
patterns between tissues, developmental stages, and physiological
or disease states.

Virtually all transcriptomic studies involve multiple samples.
The current paradigm is to assemble the reads in each sample,
then merge the partial transcripts (transfrags) across all samples
to create a unified set of meta-annotations3, which is used as
reference for downstream quantification and differential analyses.
Most single-sample assemblers including Cufflinks, isoCEM,
Scripture, Traph, CLASS, iReckon, CIDANE, FlipFlop, CLASS2,
StringTie, Scallop, and TransComb*~1> build a graph structure
from read alignments on the genome, then traverse the graph to
select an optimized set of transcripts, represented as paths. Recent
second-generation transcript assembly methods including
StringTie, CLASS2, and Scallop have taken great strides toward
increasing the accuracy and efficiency of assembly at single-
sample level, and meta-assemblers such as StringTie(ST)-merge
and TACO? have led to more robust collections of meta-
annotations. Despite these efforts precision remains low, with
<40% of the predicted transcripts in a single-sample and <30% of
transcripts in meta-annotations representing complete and
accurate reconstructions>16. Concomitantly, a handful of efforts
have focused on designing methods that simultaneously assemble
transcripts across multiple RNA-seq samples, notably CLIIQ, ISP,
MiTie, and FlipFlop!!:17-19. However, none of these programs
has comparable performance or is equipped to handle more than
a limited number of samples. (See Supplementary Methods for a
more in-depth review of related work.)

We present PsiCLASS, based on an approach that simulta-
neously analyzes multiple RNA-seq samples, which achieves
significantly higher precision at sensitivity comparable to the best
current approaches, and significantly higher overall accuracy in
its default setting. PsiCLASS differs from traditional assemblers in
two ways. First, it is a combined assembler, reporting a set of
transcripts for each sample, and meta-assembler?, producing a set
of meta-annotations obtained by combining the individual sam-
ples’ outputs. Second, unlike traditional single-sample assemblers,
it uses information from all samples to produce transcripts for
individual samples and for the unified annotation set. PsiCLASS
starts by selecting a set of high-confidence introns and subexons
at each locus, using statistical models of introns and intronic read
levels. In doing so, it first generates a set of features (subexons,
introns) for each sample, and then corroborates information
across all samples to select a high-confidence subset. Next, Psi-
CLASS builds a unified subexon splice graph that is used within a
dynamic programming optimization procedure to select a
representative set of transcripts in each sample (see “Methods”
and Supplementary Fig. 1 for details). Lastly, PsiCLASS extracts a
subset of meta-annotations from the aggregated transcript sets by
voting. Salient features of PsiCLASS include: (i) an algorithm that
assembles reads from multiple samples simultaneously, taking
advantage of their redundancy and complementarity; (ii) sig-
nificantly higher precision at meta-assembly level, up to 2-3 fold,
over StringTie with ST-merge and Scallop with TACO, and high
precision (>50%) overall; (iii) 22-140% increase in precision at
meta-assembly level over StringTie with ST-merge, and 35-89%
over Scallop with TACO, when matched to their sensitivity levels;
(iv) higher overall performance in combined sensitivity and

precision at the individual sample level; (v) improved consistency
among the individual samples’ annotations and meta-annota-
tions, and robustness with different meta-assemblers; and (vi)
high efficiency and scalability, taking only 9h to assemble 667
GEUVADIS samples, and robust accuracy as the number of
samples increases. Overall, PsiCLASS is highly efficient and
overcomes limitations in the existing methods, showing sig-
nificantly higher accuracy, in particular precision, on data sets
with a handful to hundreds of samples, thus providing an efficient
method for RNA-seq data analysis.

Results

Performance evaluation on simulated data. We compared Psi-
CLASS with the best current approaches, namely StringTie and
Scallop at the individual sample level, and the combinations of
StringTie with ST-merge and Scallop with TACO, at the meta-
assembly level. We also included FlipFlop, which was the only
other competitive multi-assembler; because of excessive run
times, however, FlipFlop was not feasible for our tests on real data
sets. (Other combinations are shown in Supplementary Fig. 2).
We first applied the methods to 25 RNA-seq samples simulated
with Polyester?), where reads were aligned with two methods,
Hisat22! and STAR22, Performance was slightly better for all
programs when reads were aligned with Hisat2 (Supplementary
Fig. 3), therefore we chose this alignment method for the rest of
the analyses.

On the simulated data, PsiCLASS with default voting achieved
71.4% precision, which is 15.0% higher than the StringTie system,
and 283% and 21.6% higher than Scallop and FlipFlop,
respectively, combined with TACO, whereas sensitivity for all
programs was roughly 50% (Fig. la). Even at the individual
sample level, PsiCLASS had both the highest precision and the
highest sensitivity: 73.8% precision on average, compared with
70.8% for StringTie, 62.9% for Scallop, and 50.7% for FlipFlop,
and 53.4% sensitivity compared with 41.7% for StringTie, 46.2%
for Scallop, and 36.1% for FlipFlop. Precision values for StringTie,
Scallop, and FlipFlop, but to a lesser extent for PsiCLASS,
dropped significantly after aggregation, hence PsiCLASS produces
more consistent sets of transcripts between individual samples
and the set of meta-annotations.

We further investigated the performance of methods based on
the transcripts’ expression levels (Fig. 1b). Simulated transcripts
were divided into low (463 transcripts; Fragments Per Kilobase
(FPK) < 30), medium (658 transcripts; 30 < FPK < 500) and high
(322 transcripts; FPK > 500) according to the predefined expres-
sion levels. PsiCLASS with voting reconstructs the largest fraction
of high-expressed transcripts, 82.4%, and all three programs
recover ~60% of the medium-expressed ones. FlipFlop has by far
the highest sensitivity in detecting low expression features, 41.0%,
compared with 10-20% for the other programs. Note that,
because a reconstructed transcript’s expression level may fall in
another class than the predefined one, precision cannot be
rigorously evaluated.

Similarly, to assess the programs’ performance based on the
gene’s splicing complexity, we divided genes into three categories
by the number of their alternatively spliced transcripts: low
(1 transcript per gene; 680 genes, 680 transcripts), medium
(2 transcripts per gene; 166 genes, 332 transcripts), and high (3 or
more transcripts per gene; 106 genes, 431 transcripts).
While, StringTie showed the best overall performance on the
single-transcript genes, PsiCLASS had the highest sensitivity and
precision on the medium and high complexity classes,
in particular a 16.8-24.5% gain in sensitivity and 21.0-31.8%
in precision on highly expressed transcripts (Supplementary
Fig. 4).

2 | (2019)10:5000 | https://doi.org/10.1038/541467-019-12990-0 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a b c
Recall Precision Recall Precision
1.0 4 104 Low 0 Medium 10 High 0.10 _ 1.0
0.55 = © Versomes E g . A + PSICLASS
-_ m StringTie : + ST-merge
Scallop+TACO
0.8 0.8 1 S FI?:F?o’:;TACO 0.8 0.8 0.08 ;L o l;l 0.8 Theo
0.50 o - -
= H - —
064 * 7 = 06 1 = 06 = 06 0064 4 06 == g
= g g 8 ; ‘
0.45 - o T e 2 - 8 -
0.4 4 0.4 1 0.4 0.4 0.04 4 0.4 =
- —_— EE
] .
0.40 4 - ® PSICLASS
029 | o 5rmerge 02 0.2 0.2 0.02 0.2 -
TACO
FlipFlop J
0.35 0.0 | 0.0 0.0 0.0 0.00 0.0 |
T T T T T T T T T T T T T T
4288 geEg ¢ & 252
S 28s S 28s 3 2 3 3 2 8
Q = 0 L Q 5 0 L Q E @ Q = o
n N [} 7] 2] 7] 4]
a a o o
d e f
1.0 ~ 0.20
0O PsiCLASS Precision
Recall Precision Recall Precision © StringTie - Recall
0.15 4 1.0 0.30 4 1.0 Scallop+TACO
+ PSiCLASS + PSiCLASS 0.8
+ ST:merge + ST-merge ~ 0.15
0.8 - TACO 7 0.8 TACO
I
0104 _ 0204 5 - == - _
0.6 _ = 0.6 + S F
© e = - g o 3 _| = Lo10 §
| g 18 /9 ¢ =5 3 4
= _ | 044 , E LT 04 LT
0054 ¥ _| E To— 0.10 e 8
T s =
El 0.2 i 1? | 0.2 4 ~ 0.05
0.00 0.0 § 0.00 0.0
T T T T T T T T T T T T
o o o a o a o o , ~ 0.00
3 2 8 & 2 8 & 2 8 3 2 8 0.0
5 2 8 S 23 S 2 3 S 2 8
O E & O £ & O £ & o £ & 2 5 10 20 50 200 500
s @ s @ s @ s @ Sample size

Fig. 1 Performance evaluation of methods on simulated and real data: a 25 simulated RNA-seq sets, all genes; b 25 simulated sets, genes grouped by
abundance; ¢ 25 GEUVADIS samples (polyadenylated RNA); d 73 liver RNA-seq samples (rRNA-depleted total RNA); e 44 hippocampus samples from
healthy and epileptic mice; and f subsets of 1, 2, 3, 5, 10, 20, 40, 80, 160, and 320, and the full set of 667 GEUVADIS samples. In a, b-e, sensitivity (recall)
and precision values for PsiCLASS, StringTie, and Scallop at the level of individual samples are shown in boxed plots, and meta-annotations resulted from
aggregation (with PsiCLASS voting, ST-merge, and TACO) are shown with colored shapes. Boxplots were generated with R using default options, namely,
the box extends between the lower and upper quartiles, horizontal lines mark the median, and whiskers are at the 1.5 x interquantile point above the upper
quartile and bellow the lower quartile. Lastly, additional symbols mark sensitivity and precision values for PsiCLASS when tuned to match or approach the
sensitivity of its competitors, along the range of cutoff values 0-16, shown with dotted red lines. Source data are provided as a Source Data file

Performance evaluation on real RNA-seq data collections. We
next assessed the performance on two representative RNA-seq
data sets, generated with two different library preparation pro-
tocols: 25 randomly selected sets from polyA-selected lympho-
blastoid samples from the GEUVADIS population variation
project, and 73 rRNA-depleted total RNA libraries from post-
mortem human liver samples with funding from the Stanley
Medical Research Institute. At the meta-assembly level, Psi-
CLASS’s precision for the GEUVADIS set is 69.3% and 89.2%
higher than StringTie’s and Scallop plus TACO’s, respectively,
whereas sensitivity is higher or comparable, by 4.5% and —0.9%,
respectively (Fig. 1c). Similarly, advantages of the multi-sample
approach are seen for the liver total RNA data set, with more than
twofold and threefold increases in precision, albeit at 18.6% and
35.3% lower sensitivity. Even when matched to the other pro-
grams’ sensitivity settings, PsiCLASS maintains 140% and 89%
gains in precision over the StringTie system and Scallop plus
TACO, respectively, albeit for this data set Scallop with TACO
retains superior sensitivity over the entire parameter range
(Fig. 1d). In such cases, the default voting setting may not present
the best tradeoff, and as PsiCLASS’s precision remains sig-
nificantly higher than that of its counterparts the user may choose

a different cutoff. Even at the individual sample level, PsiCLASS’s
performance exceeds that of its competitors’, with higher or
comparable per sample average measurements in both compo-
nents (Fig. 1¢c, d, boxplots).

Performance evaluation on heterogeneous data collections.
Most RNA-seq analyses are aimed at determining gene expres-
sion or splicing differences between two biological conditions. To
explore the robustness of PsiCLASS when combining two-
condition samples, we applied it and the other methods to
RNA-seq samples from hippocampi of normal mice (24 samples)
and mice with induced epileptic seizures (20 samples) (ref.2> and
Source Data). The diagrams in Fig. le indicate that at the level of
individual samples PsiCLASS has higher sensitivity than both
StringTie and Scallop, by 26.2% and 8.4% on average, whereas
precision exceeds Scallop’s by 42.3% and is comparable to
StringTie’s at 66%. Moreover, after voting PsiCLASS’s precision
at the level of meta-annotations is 45.7% and 55.0% higher than
the other programs’, respectively, along with an increase in sen-
sitivity (15.1% and 7.8%), therefore recommending it as the
overall best performer. Thus, PsiCLASS can be effectively and
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Table 1 Performance of methods on experiments with small numbers of samples on simulated data

Number of samples  Recall PsiCLASS Recall StringTie  Recall Scallop  Precision PsiCLASS  Precision StringTie  Precision Scallop

1 45.6 417 46.2 66.9 70.8 629

2 46.7 43.8 433 68.6 69.1 57.0

3 49.9 452 45.0 67.3 68.5 56.7

5 521 46.6 46.2 69.7 66.7 56.7

10 52.7 48.0 481 70.0 64.0 56.5

Table 2 Performance of methods on experiments with small numbers of samples on real data

Sample Recall Recall Recall Recall Precision Precision Precision Precision
PsiCLASS? PsiCLASSP StringTie Scallop PsiCLASS? PsiCLASSP StringTie Scallop

SRR534319 442 56.7 42.0 65.7 29.5 30.1 30.5 24.5

SRR545695 50.4 60.3 49.4 72.7 325 324 35.7 26.6

SRR534291 633 66.1 65.5 81.6 30.8 35.0 371 35.1

aSingle samples in one-sample experiments

bIndividual samples in multi-sample experiments

more reliably used on the aggregate set of samples in a two-
condition comparison.

We further explored the applicability of PsiCLASS to more
divergent and heterogeneous collections of data. We applied
PsiCLASS to single- and multi-tissue collections extracted from
the GTEx?* repository (ten RNA-seq samples for each of six
tissues: cortex, frontal cortex, cerebellum, heart, liver, and lung).
We then aggregated the results in each collection in three ways,
using PsiCLASS voting, TACO, and TACO applied to the
samples assembled separately by tissue. In all cases, PsiCLASS
with its default voting algorithm had better performance, with
both higher sensitivity, and higher precision (Supplementary
Fig. 5). Notably, our approach resulted in significantly more
accurate transcript sets for all collections, with 11.2-16.8%
increase in precision over TACO, and a significant 21.4-47.1%
increase over TACO applied to the per tissue assembled
collections. As the heterogeneity in the data increases, gains in
sensitivity reach diminishing returns, while the increase in
precision becomes more pronounced. These simple experiments
show promise for extending PsiCLASS’s capabilities to more
heterogeneous data sets.

Deconvoluting the effects of algorithmic components. While
the different components of the PsiCLASS algorithm are inter-
calibrated to work in harmony with each other, to guide future
program development we attempted to deconvolute the effects on
performance of the individual algorithmic components. In a first
test, we comprehensively evaluated all combinations of individual
sample (PsiCLASS, StringTie, and Scallop) and meta-assemblers
(voting, ST-merge, and TACO) at multiple levels. Notably, voting
significantly increased transcript level precision for all programs,
albeit PsiCLASS maintained a clear advantage in all but one case
(GEUVADIS-25), where Scallop’s performance was comparable
(Supplementary Figs. 6 and 7). Conversely, unlike the other two
programs, PsiCLASS rendered comparable results when its
sample-level transcript sets were merged with the voting, ST-
merge and TACO aggregation methods, demonstrating the
robustness of its reconstructions (Supplementary Fig. 6). As
conventional measurements based on the number of fully
reconstructed transcripts only partially describe the accuracy of a
data set, we also assessed the accuracy at the feature (exon,
intron) and gene level. Indeed, even when the best meta-assembly
method (voting) is used for all programs, PsiCLASS captures

significantly more gene and transcript content, with 10-40%
more introns and 10-50% more internal exons than StringTie
and Scallop, at comparable 95-98% precision (Supplementary
Fig. 8). Further, PsiCLASS reported significantly more genes that
had at least one fully reconstructed transcript, 7.0-24.7% more
than StringTie and 2.9-31.3% more than Scallop. Lastly but
notably, PsiCLASS also detected many more genes: 3.9-9.6%
more than StringTie and up to a very significant 46.3% more than
Scallop, with the largest of these gains observed for the liver data
(Supplementary Figs. 9 and 10). These improvements are the
direct consequence of the completeness of PsiCLASS gene
structure model as captured in the shared subexon graph, an
algorithmic feature that particularly favors low expression genes.

Performance evaluation with small numbers of samples. We
next investigated the utility of the multi-sample approach for
small data collections, including single samples. Table 1 shows the
results for all methods on sets of 2, 3, 5, and 10 samples from our
simulated set, averaged over five independent trials, and for
single-sample sets, averaged over all possible 25 trials. The multi-
sample approach shows benefits in all cases, most notably
increased sensitivity (range 47-53% for PsiCLASS, compared
with 42-48% for StringTie, and 43-48% for Scallop with TACO)
at comparable or higher precision (range 67-70% for PsiCLASS,
compared with 64-71% for StringTie and 57-62% for Scallop).
PsiCLASS is designed to take advantage of cross-sample gene
information in a multi-sample experiment. Nevertheless, we also
evaluated it and the other programs on isolated single-samples
from three previously reported real data sets (Table 2). PolyA-
selected RNA-seq paired-end reads from CD20+ (SRR534319, 25
million reads), CD14+ (SRR545695, 39 million reads), and
IMR90 (SRR534291, 114 million reads) cell lines were previously
used to demonstrate performance improvements in both the
StringTie and Scallop publications. When PsiCLASS used solely
information from that sample, performance across the three
samples was similar between StringTie and PsiCLASS, whereas
Scallop had significantly higher sensitivity albeit at slightly lower
precision. However, since each data set was part of a multi-
sample experiment (SRR534291-SRR534292, SRR545695-
SRR545700, and SRR534319-SRR534324), we sought to assess
the advantage of the cross-sample information. Even with the
small (2-6) number of replicates, when all samples in an
experiment were considered PsiCLASS’s performance for the
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three samples improved (up to 28.3% sensitivity increase over
PsiCLASS single-sample, and up to 35.0% over StringTie),
especially for the low coverage sample (SRR534319).

Overall, PsiCLASS showed competitive or higher performance
on experiments with a small (2-10) number of samples, with
benefits most evident for data sets of three or more samples. It
also ranked comparable with StringTie and Scallop on single-
sample data sets in our control experiments, and similarly to
StringTie on the three samples for which the two reference
programs were optimized. Therefore, our program can be
effectively used for small RNA-seq collections and within the
conventional assemble-and-merge approach.

Performance evaluation on very large data collections. As the
emerging landscape of RNA-seq foresees increasingly larger data
sets from large patient cohorts and population variation studies,
we aimed to assess the suitability of the multi-sample approach as
the data set grows. We evaluated program performance on
increasingly larger subsets of RNA-seq samples from the GEU-
VADIS population variation project, up to the full set of
667 samples (Fig. 1f). All methods show improvements in sen-
sitivity as the number of samples increases, but while PsiCLASS
and Scallop show further slight gains after 20-50 samples, the
sensitivity of StringTie drops. Precision drops markedly for both
Scallop and StringTie, to less than 35% for 50 samples and below
20% for the full set of samples. In sharp contrast, PsiCLASS’s
sensitivity and precision remain almost constant with more than
ten samples, demonstrating the robustness of this approach. Also,
with sensitivity 9-40% higher than StringTie’s and precision
(>50%) twice as high as that of the other two systems when the
data set exceeds 20-50 samples, PsiCLASS is unequivocally the
best suited for handling large RNA-seq collections. Lastly, Psi-
CLASS took only 9 h with 24 threads to process the 667 samples
at a peak memory of 14 GB RAM on an 3.0 GHz Intel “Ivy
Bridge” Xeon server, amounting to <1 min per sample. By com-
parison, StringTie took 34 h to process the samples sequentially,
with 24 threads, at a peak memory of 524 MB, and Scallop, which
is single-threaded, required 75h with a peak memory of 5 GB.

Discussion

Determining the set of expressed genes and transcripts in an
RNA-seq experiment is critical for subsequent quantification and
differential expression and splicing analyses. The conventional
approach to process each sample separately and then merge the
sets of transcripts to create a unified set of annotations has lim-
itations, in particular low precision. We present PsiCLASS, a
transcript assembler and meta-assembler that simultaneously
analyzes all samples in an RNA-seq experiment. Algorithmic
underpinnings of PsiCLASS include a global subexon graph,
statistical methods for cross-sample feature selection, and
dynamic programming optimization and voting algorithms for
transcript selection at the level of individual samples and over the
entire collection of data, which collectively lead to more complete,
more accurate, and more consistent sets of annotations. In par-
ticular, our study suggests that voting-based approaches may have
advantages over the current assembly-based aggregation methods
in some cases, albeit their broader applicability needs to be fur-
ther investigated.

PsiCLASS is designed to leverage the gene information across
samples in a one or two condition experiments, to improve the
accuracy of gene and transcript reconstruction for downstream
differential gene expression and differential splicing studies, and
may not be ideally suited to multi-condition experiments, such as
annotation of genes and alternative splicing in large data sets such
as GTEx?* or TCGAZ?>. Nevertheless, our limited tests on

collections of samples from 2 to 6 GTEx tissues reflect that Psi-
CLASS has better performance than TACO, and therefore show
promise for exploring capabilities for handling more hetero-
geneous data sets in the future.

PsiCLASS had significantly higher precision at similar sensi-
tivity when compared with current best methods, and showed
consistently high precision (>50%) when tested on data from a
variety of experimental conditions. PsiCLASS is scalable, efficient,
and robust with large numbers of RNA-seq samples, thus pro-
viding a highly effective paradigm for large-scale analyses of
collections of hundreds and thousands of samples. PsiCLASS is
available free of charge from https://github.com/splicebox/
PsiCLASS.

Methods

Algorithm overview. PsiCLASS builds a global subexon graph of a gene and its
splice variants from genome-aligned RNA-seq reads in all input samples. It then
traverses the graph to select a subset of the encoded transcripts in each sample.
Lastly, it combines the predicted transcript sets across all samples, using a voting
procedure to select a final set of meta-annotations.

Building per sample subexon graphs. PsiCLASS builds a subexon graph for each
sample, then combines graphs across all samples to create a global subexon graph.
In each sample, PsiCLASS uses candidate introns extracted from spliced read
alignments to divide the genome into regions and subexons. A region denotes a
maximal contiguous portion of the genome covered by reads. A subexon is a
portion of a region delimited by two consecutive splice junctions and/or the end(s)
of the region. A subexon graph has subexons as vertices, and two subexons are
connected by an edge if they are adjacent in the same region or connected by an
intron. Candidate splice variants are encoded as maximal paths in the
subexon graph.

To build the sample-level subexon graph, PsiCLASS clusters read alignments
along the genome that are colocated and on the same strand. Introns are extracted
from spliced alignments and used to divide the region into subexons. A major
confounding factor in determining subexons from RNA-seq data is the presence of
intronic unprocessed RNA (‘noise’). To differentiate between intronic noise and
signal, such as retained introns or alternative 5’ and 3’ gene ends, PsiCLASS assigns
each subexon a score that reflects the probability that it is noise. In contrast to
current single-sample methods, which simply discard a subexon if it fails sample-
wide cutoffs, PsiCLASS then combines sample-level scores across all samples to
determine a final label for the subexon and its inclusion in the global
subexon graph.

More specifically, PsiCLASS computes the probability that a subexon is due to
intronic noise using two models: (i) the exon-intron coverage ratio, and (ii) the
intronic read coverage. Let ¢; be the average read coverage of (intronic) subexon i.
In the coverage ratio model, PsiCLASS calculates a score that is equal to the

coverage ratio of this subexon versus its flanking subexons: r; = min (‘— ‘—) . The

score is fitted to a mixture of two Gamma distributions, one representing signal
and one noise: p(r;) = nly , (r;) + (1 — m)Ty, 4 (r;), where m, (1 — 71) are the prior
probabilities that an intronic subexon is noise or signal, respectively, and
0y, ko, 0;, k, are the parameters for the Gamma distributions, calculated with an
expectation maximization algorithm. With these parameters, PsiCLASS can infer
the probability that subexon i is noise according to the Bayes formula:

Ty 40 (7
Pu(r) = et

The coverage ratio model above is insufficient when the overall gene coverage is
low. Hence, the second model establishes a similar formula for coverage levels,
Pc(c;), with 6),k;, 0, k; the parameters inferred using coverage. The final per
sample subexon score then is P(i) = max(Pg(r;), Pc(c;))-

Building the global subexon graph. PsiCLASS removes likely artifactual introns
and intronic noise subexons by evaluating evidence across all sample, and builds a
global subexon graph by combining individual samples’ graphs that share at least
one intron. Multi-sample intron selection: To select a highly accurate set of introns,
PsiCLASS assesses each candidate intron’s read support across all samples. Assume
the experiment contains M samples, and denote each intron by its coordinates in
the genome, e.g., (4, b). Let S (a, b) denote the total number of read alignments
supporting (a, b) over all samples. Then the total number of alignments supporting
its splice sites: S(a) = 3, ) S(a,y), S(b) = 3_(, ;) S(x, b). PsiCLASS keeps intron

(a, b) iff: (i) S(”—Mb) > 0.5, indicating strong read support in one or a few samples, or
consistent read support across multiple samples; and (ii) (a, b) appears in at least

MO samples, where M0 = min([é‘l0 ( beatl) 4 1), M), if |b — a] 2100,000 (long

intron). Condition (ii) is intended to filter out long intron-type alignment artifacts
due to gene families and repeats, or from sequencing errors, which can lead to
merged genes and transcripts. Multi-sample subexon selection: To determine a
global set of subexons, PsiCLASS combines the subexon sets of individual samples
with some modifications. Where multiple 3’ or 5'-end (i.e., subexons not delimited
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by a splice site) candidate subexons occur with the same endpoint and potentially
different lengths among the samples, PsiCLASS creates a unique subexon with the
median length. Further, to determine intronic subexons, PsiCLASS calculates a
final score by combining all sample scores with a Bayesian formula. More
specifically, let 77 denote the prior probability of intronic noise in the global model,
calculated as the average of the mixture coefficients of the samples. Then the
nP(data\n:iZe(;ij}?I‘T:r;?(data\real) reflects the probablhty
that the subexon is noise, where data is the observed information such as the
coverage in each sample. We assume the samples are independent, hence
P(data|noise) = H‘S‘il Gés)(i), where s =1,..., M denotes the sample. Here, Gg‘)(i)

. O . . . ()
is Fog‘) 5 (r;”’) if the ratio model is used for subexon i in sample s, and I‘e,g\»)_’ K (¢

subexon score: P, (noise|data) =

if the coverage model is employed. Similarly, P(data|real) = [T, G(15>(i)‘ In the
end, the subexon is retained if it passes a predefined threshold.

Transcript selection. Candidate transcript models are represented as maximal
paths in the global subexon graph, from a node with no incoming edges (source) to
a node with no outgoing edges (sink). Since the graph generally encodes a much
larger number of transcripts than is biologically possible, PsiCLASS identifies and
selects a subset of transcripts that can explain all contiguity constraints from
spliced reads and paired reads. PsiCLASS first predicts a set of transcripts for each
sample, using a graph-based dynamic programming algorithm with the global
subexon graph and the sample specific alignment data, then combines the
individual samples transcript sets and selects a subset of meta-annotations by
voting.

To predict a set of transcripts for each sample, PsiCLASS employs a
SET_COVER framework and dynamic programming algorithms!2, adapted
for subexon graphs. Namely, we define a constraint as a cluster of read
alignments with the same subexon pattern. Like CLASS2, PsiCLASS uses
constraints to decrease the memory usage while preserving the structural and
contiguity information contained in the full set of reads. For a given graph G,
let C={cy, ..., ¢,u} denote the set of constraints and T={t, ..., t,} the set of
candidate transcripts, encoded in the graph. Given a constraint ¢;, its abundance
a; = a(c;) defined as the number of supporting reads (or read pairs) normalized
by the number of possible start positions of the reads within the constraint’s
subexons. To reduce the transcript selection problem to SET_COVER, we view
each candidate transcript ¢; as the set of constraints that are compatible with
its exon-intron structure: C(t;) = {cy, ...,c,}, where ¢; ~ t;. Constraint c; is
compatible with the transcript tj’s exon-intron structure, denoted c; ~ ti, if its list
of subexon intervals is contained in that of the transcript’s and all the exon-exon
junctions correspond to introns in the transcript.

In the simplest formulation, the goal then is to select a minimal (parsimonious)
subset of transcripts that satisfies all constraints. More realistically, to account for
the different abundance of constraints, we define a transcript’s abundance as the
minimum abundance among its set of constraints: A; = min { ai ¢ ~t; }. The goal
then becomes to determine a subset of transcripts that most closely explain the
constraints and their abundance levels. PsiCLASS uses a greedy approximation
framework to address this problem, iteratively selecting the transcript that covers
the largest number of constraints weighted by the constraints’ abundance, then
adjusting the constraints’ abundance levels before the next iteration:

While ({nondepleted constraints} # ():
Choose transcript t € T that maximizes |C(t)| (1 + 4)

Update the constraints’ abundance:
x= cggg){u(d}
For each ¢ € C(¢):

a(c) =alc) —x

if a(c) < 0, mark constraint ¢ as depleted.

PsiCLASS implements the procedure above in two steps. First, it determines the
candidate set of transcripts T, using either enumeration (for graphs with <200,000
transcripts) or a variation of the splice-graph dynamic programming algorithm in
Song et al.!2 that considers all reads single-end, for fast processing. Once the
candidate transcript set T is determined, PsiCLASS applies the greedy
SET_COVER approximation algorithm above.

For completeness, we include a brief description of the dynamic programming
optimization procedure. The algorithm considers all subpaths L, and recursively
calculates the maximum number of constraints f(L) for substranscripts starting
with subpath L: L) = max; { AL’) + ¢(L, L"), if L' exists; ¢(L), if L'does not exist },
where: (i) L' is a subpath immediately following L so that all constraints compatible
with L end before or within L’; (ii) ¢(L, L) is the number of constraints starting in
and (partially) compatible with L and L', and compatible with the concatenated
subpath L, L'; and (iii) ¢(L) is the number of constraints covered by subtranscript L.
To take into account the abundance levels in the optimization process, at each
sweep of the graph the algorithm excludes subpaths that cover constraints with
abundance below a fixed value x; hence, the dynamic programming algorithm will
return the best transcript with abundance greater than x (x-abundance transcript).
With this modification, at each graph sweep the selection process selects an

x-abundance transcript, starting with xo =0 (thus guaranteeing that such a
transcript exists), and each selected transcript’s abundance value used as lower
bound for the selection process at the following step: 0 = xo < x; < X, < **+X,,, until
no transcript can be found. The optimal transcript then is among those selected by
the sweeps. More details, along with proof of correctness for the algorithm, can be
found in Song et al.!2.

Selecting a global set of transcripts. PsiCLASS selects a set of meta-annotations
from the individual samples’ sets of transcripts by voting. Each transcript is
assigned a score equal to the transcript’s average estimated abundance across the
samples (i.e., every sample has one vote, weighted by the transcript’s abundance
level; default cutoff: 1.0). As different cutoff parameters values might work best for
data with specific characteristics, the user can readily adjust or recalibrate the
voting parameters postassembly, starting from the already computed sets of
transcripts for the individual samples.

Sequence data. We generated 25 RNA-seq samples, with ~85 million 100 bp
paired-end reads, using the software Polyester?? with the default gene and tran-
script distribution models and randomly sampling 10% of the transcripts (at 13,912
genes) from the human GENCODE v.2726 gene annotations. Reads were aligned to
the reference genome hg38 separately with Hisat2 v.2.0.52! and STAR v.2.5.3a%2,
Chromosome 2 alignments were extracted and used in the assembly and evalua-
tions. Human liver samples were obtained from the Stanley Medical Research
Institute (SMRI) and previously sequenced by Dr. Sabunciyan’s lab. All ethical
standards set forth by the Johns Hopkins University and local laws were complied
with. The liver tissue was collected postmortem by the SMRI after obtaining
consent from the family of the deceased. A detailed description of the consent
procedure and the collection was published?’. The project was reviewed by the
Johns Hopkins University Institutional Review Board (IRB) and was given exempt
status since only postmortem tissue was involved in the research. For sequencing,
total RNA was isolated using the Qiagen RNeasy kit and libraries were constructed
using the Illumina TruSeq Stranded Total RNA kit for Human/Mouse/Rat fol-
lowing the manufacturers recommended protocol. The resulting stranded, rRNA
depleted liver libraries were sequenced on an Illumina HiSeq 2000 instrument. 667
RNA-seq samples from human lymphoblastoid cell lines part of the GEUVADIS
population variation project were publicly available from ArrayExpress (accession:
E-GEUV-6), and mouse hippocampus RNA-seq data were those reported in ref. 23
and available from GenBank (ProjectID: PRJEB18790). Lastly, RNA-seq samples
from six human tissues (frontal cortex, cortex, cerebellum, heart, liver, and lung)
used in the heterogeneity study were downloaded from the dbGAP GTEx?*
repository. The lists of samples for each evaluation are included in the Source
Data file.

Performance evaluation. Once the reads were mapped to the genome, we used
StringTie v.1.3.3.b and Scallop v.0.10.2 to assemble them into transcripts, for each
individual sample. Transcript sets for all samples in an experiment were then
merged with StringTie(ST)-merge and TACO v.0.7.3. For PsiCLASS v.1.0.1, reads
were assembled simultaneously across all samples. To evaluate the accuracy of
transcript assembly, we employed standard sensitivity (Sn) and precision (Pr)
measures and evaluation criteria to assess the accuracy of transcript reconstructions
by comparison to a gold reference, namely the set of simulated transcripts and the
human GENCODE v.27 and mouse RefSeq gene annotations. A predicted tran-
script is deemed a true positive (TP) iff its intron chain fully matches that of a gold
reference transcript. If N is the number of predicted transcripts, M be the number
of ground truth transcripts, then Sn =TP/M and Pr = TP/N °. Performance
metrics at the transcript, exon, and intron levels were calculated with the tool
grader included in the PsiCLASS package, and at the gene level with the tool
Cuffcompare (v.2.2.1). For gene content analyses, only transcripts that were a full
match, contained or splice variant transcript (codes ‘=, ‘c’, and §’) of a reference
gene were considered.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Raw sequence data for the GEUVADIS project can be obtained from ArrayExpress
(Accession:E-GEUV-6), mouse hippocampus data from GenBank (ProjectID:
PRJEB18790), and alignments of simulated data from Zenodo (https://doi.org/10.5281/
zenodo.1407759). The liver data has been deposited in GenBank under accession
PRJNA575230. In addition, the full set of evaluation results represented in Fig. I,
Tables 1 and 2, and Supplementary Figs. 2, 4-9 are provided as a Source Data file, and
scripts for performing the evaluation and links to the assembled transcripts can be
obtained from the project site in GitHub. All other relevant data are available upon
request.

Code availability
PsiCLASS is available under a GNU GPL license from https://github.com/splicebox/
PsiCLASS.
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