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Abstract
Methamphetamine (meth) is potently addictive and is closely linked to high crime rates in the world. Since meth with-

drawal is very painful and difficult, most abusers relapse to abuse in traditional treatments. Therefore, developing accurate

data-driven methods based on brain functional connectivity could be helpful in classifying and characterizing the neural

features of meth dependence to optimize the treatments. Accordingly, in this study, computation of functional connectivity

using resting-state EEG was used to classify meth dependence. Firstly, brain functional connectivity networks (FCNs) of

36 meth dependent individuals and 24 normal controls were constructed by weighted phase lag index, in six frequency

bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta (15–30 Hz), gamma (30–45 Hz) and wideband

(1–45 Hz).Then, significant differences in graph metrics and connectivity values of the FCNs were used to distinguish the

two groups. Support vector machine classifier had the best performance with 93% accuracy, 100% sensitivity, 83%

specificity and 0.94 F-score for differentiating between MDIs and NCs. The best performance yielded when selected

features were the combination of connectivity values and graph metrics in the beta frequency band.

Keywords Support vector machine � Weighted phase lag index � Functional brain connectivity network �
Electroencephalography � Meth dependence

Introduction

Meth is a highly addictive drug that its consumption causes

the feeling of awareness, high energy, and exhilaration.

These psycho effects, relatively easy access, and cheap

price have made it very popular among young adults.

World drug reports shows that there are around 14–54

million users of amphetamines worldwide (Hu et al. 2017).

Meth abuse is associated with neurotoxicity, cognitive

disorders, auditory or visual hallucinations, bizarre beliefs,

risky behaviors, and psychological problems

(McKetin et al. 2006). Therefore, Meth dependence is a

large burden on societies and it is required to increase the

knowledge about it in physiological and neurological terms

to improve associated diagnosis and treatments. Accord-

ingly, a reliable detection method for differentiating meth

dependent individuals (MDIs) from normal controls (NCs)

using brain functional connectivity network (FCN) infor-

mation would be a powerful clinical tool that could guide

treatment modifications.
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Functional magnetic resonance imaging (fMRI) and

EEG have been widely used to acquire knowledge about

disorders related to brain malfunction such as depression,

schizophrenia, Alzheimer and addiction (Ma et al. 2010;

Wetherill et al. 2018). The EEG is a portable setup which is

less expensive than fMRI and is recorded by non-invasive

electrodes. It has high temporal resolution proper to study

electrophysiology of the brain in different frequency bands.

To date, several studies have been done to address issues

related to screening individuals with substance dependence

from healthy controls using resting-state EEG (rEEG) or

event related potentials (ERP), such as studies on opiate

(e.g. heroin) (Hu et al. 2017), depressant (e.g. alcohol) (Bae

et al. 2017; Mumtaz et al. 2017, 2018a, b), and stimulant

substances (e.g. cocaine) (Dunning et al. 2011). Most of

these studies concentrated on analyzing time series from

few specific nodes (EEG electrodes) on the scalp, while

whole brain function cannot be efficiently investigated

from limited number of nodes. Accordingly, recent

researches have focused on EEG data recorded by several

electrodes (e.g. 32 or 64 electrode) and computed their

relation to differentiate substance users from healthy non-

users (Bae et al. 2017; Hu et al. 2017; Mohagheghian et al.

2018; Mumtaz et al. 2018a). Mumtaz et al. (2018a) used an

rEEG-based functional connectivity measure to automatic

detection of alcohol use disorder and yielded high perfor-

mance results. Bae et al. (2017) have computed time-do-

main effective connectivity and graph features using an

online ERP database and a machine learning method to

distinguish alcoholic subjects from NCs. Similar rEEG

connectivity based study also was performed for differen-

tiating between heroin dependent individuals and NCs by

developing a PCA based algorithm (Hu et al. 2017).

Another study aimed to distinguish MDIs from NCs that

employed ERPs elicited by a visual paradigm including

drug related and neutral cues (Shahmohammadi et al.

2016). This paradigm raises drug cravings temporarily and

needs patient’s attention compared to rEEG analysis

approach. Therefore, better differentiation can be per-

formed when considering whole brain functional connec-

tivity of rEEG. Accordingly, main objectives of the current

research are (1) automatic detection of meth dependence

with high accuracy to be helpful as a complementary

method along with standard biochemical tests, given many

MDIs often deny their addiction and hence use procedures

to negate the result of biochemical tests, (2) identification

of most discriminative EEG frequency bands according to

whole-brain FCN to help better treatment and screening of

MDIs in future.

To these ends, FCN of the two recruited groups were

constructed by weighted phase lag index (WPLI) in the six

frequency bands. Then, significant differences in graph

features and also pairwise connectivity values were

obtained as follows.

Materials and methods

The current study was conducted according to the block-

levels illustrated in Fig. 1. Namely, after selection of eli-

gible subjects, their EEG signals were recorded during eye-

open resting state. Next, recorded signals were subject to

necessary preprocessing such as filtering and artifact

rejection. Then, construction of FCN carried out by proper

connectivity index. After that, graph metrics related to

brain-network topology were computed and along with

pairwise connectivity of brain regions (EEG electrodes)

underwent statistical test to select from which the most

discriminate features. The discriminative ones were used to

training and testing a machine learning model. Finally the

findings were discussed according to classifying results and

yielded differences between MDIs and NCs. In the fol-

lowing sections, the steps of procedure are explained in

details.

Participants

EEG data were recorded from 36 MDIs, who were in

abstinent stage, and 24 age-matched NCs. All patients were

under a course of abstinence-based therapy in ‘‘Peyrovan

Hemmat Harm Reduction Institute’’ and ‘‘Iranian National

Center for Addiction Studies (INCAS)’’ located in Tehran.

A psychiatrist performed interview sessions to identify

patients who had a history of minimum 6 months of

methamphetamine use disorder and no current psychiatric

disorders based on DSM-5 axis I. Demographic and

Fig. 1 Block diagram of the proposed system for distinguishing between normal subjects and patients

520 Cognitive Neurodynamics (2019) 13:519–530

123



substance abuse characteristics of the subjects are brought

in Table 1.

EEG recording and preprocessing

EEG recording

During EEG recording, all the participants were instructed

to see a black color background in the front screen and

attempt not to think of anything during EEG recording. The

rEEG recorded from MDIs is part of our registered brain

stimulation trial in Iranian Registry of Clinical Trials

(IRCT) in 2018 with the code IRCT20170808035562N2.

All subjects signed a written informed consent form. All

the EEG data were recorded using a 62-channel g.tec

(http://www.gtec.at/) EEG system (g. HIamp) with sam-

pling rate of 512 Hz at NBML (https://nbml.ir/EN). The

electrode placement followed the international 10–10 sys-

tem and the reference channel was placed on right ear lobe

for all individuals. The remained 61 channels were ‘‘AFz,

Fp1,Fp2, AF3, AF4, F7, Fz, F8, FC5, FC1, FC2, FC6, T7,

C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8,

PO3, PO4, O1, O2, AF7, AF8, F5, F1, F2, F6, FT7, FC3,

FCz, FC4, FT8, C5, C1, C2, C6, TP7, CP3, CPz, CP4, TP8,

P5, P1, P2, P6, PO7, POz, PO8, Oz, P9, P10, TP9’’.

EEG pre-processing

EEG data were preprocessed using EEGLAB (Delorme and

Makeig 2004) and Fieldtrip (Oostenveld et al. 2011) tool-

boxes of MATLAB. The datasets were resampled to

200 Hz to decrease computational cost. Then, the data

were filtered by a 0.1 Hz high-pass filter to remove the

voltage drift and by a notch filter to remove 50 Hz power

line noise with its harmonic frequencies. The data were

referenced to common average and artifact rejection was

firstly performed by visual inspection. Independent

component analysis was employed to remove artifactual

components (e.g. eye blinks, eye movements, heartbeat,

and muscle artifacts). Then, with a moving window and a

peak-to-peak threshold all parts exceed ± 75 lv were

removed. The preprocessed data, containing the least

amount of artifacts, was segmented into 5-s trials(18–24

trials, totally 90–120 s) when the total duration was in the

range of previous resting-state studies (Hardmeier et al.

2014; González et al. 2016). Fieldtrip and Brain Connec-

tivity Toolboxes were utilized to connectivity analysis

(Rubinov and Sporns 2010).

WPLI computation and FCN construction

Weighted phase lag index description

WPLI is an improved version of PLI connectivity index,

proposed by Vinck et al. (2011). This connectivity measure

is greatly sensitive and potent to properly detect phase

interactions of spatially close signals, offering robustness

to volume conduction, so that outperforms PLI, coherence,

and imaginary coherence (Vinck et al. 2011; Ewald et al.

2012; Haufe et al. 2013). Characterization of WPLI-based

networks, derived from high-resolution EEG, is highly

reliable that is important requirement for studies of brain

disorders (Hardmeier et al. 2014). WPLI estimates the

phase leads and lags between two interacted time-series.

WPLIxy ¼
n�1

Pn
t¼1 imag Sxyt

� ��
�

�
�sgn imag Sxyt

� �� �

n�1
Pn

t¼1 imag Sxyt
� ��

�
�
� ð1Þ

where Sxyt is the cross-spectrum of time-series x and y at

time point t, and sgn is the sign function. Function imag :ð Þ
returns only the imaginary component of the cross-spec-

trum. WPLI weights the cross-spectrum according to the

imaginary component’s magnitude. This allows it to limit

the impact of small noise on ‘‘true ‘‘sgn of cross-spectrum

around the real axes.

Table 1 Demographic and

substance abuse characteristics
Descriptive statistics

MDIs NCs

Gender (men) 36/36 24/24

Age 30.55 ± 6.43 30.75 ± 4.63

Education (years) 14.36 ± 2.79 16.58 ± 2.5

Duration of meth abstinence (months) 1–6 –

Duration of meth dependence (years) 8.35 ± 4.07 –

Marital status (married) 36/25 24/7

Number of subjects with a history of opium abuse 36/20 24/0

Number of subjects with a history of alcohol abuse 36/23 24/0

Number of subjects with a history of heroin abuse 30/2 36/5 24/0

Number of subjects with a history of cigarette smoking 36/35 24/2
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FCN construction

After applying Laplacian filter to EEG data to reduce

volume conduction effect and spatially enhance the data

(Hjorth 1975), functional connectivity was computed in

EEG-sensor space among pairwise electrodes. The con-

nectivity values were calculated for six frequency bands:

delta (1–4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta (15–

30 Hz), gamma (30–45 Hz) and wideband (1–45 Hz) (Hu

et al. 2017). Accordingly, we obtained a functional network

with 61 nodes in the six bands (6� 61� 61 connectivity

matrix) for each subject, where the nodes are the sensors

and the link between them are absolute value of the WPLI

matrix. The WPLI is highly sensitive to properly detect

phase interactions of spatially close signals and shows

robustness to volume conduction that outperforms PLI,

coherence, and imaginary coherence (Vinck et al. 2011;

Ewald et al. 2012; Haufe et al. 2013).

Feature extraction (graph theory-based
measures)

It has been shown that node strength and clustering coef-

ficient, two measures from network graph, change in sub-

stance dependent individuals (Ahmadlou et al. 2013; Jiang

et al. 2013; Wang et al. 2015b). Hence, we considered

these two metrics, in combination with pairwise connec-

tivity values, to discriminate MDIs and NCs.

Node strength

The node strength is sum of the weights of links (edges)

connected to a node.

kwi ¼
X

j2N
wij ð2Þ

where N is the set of all nodes in the network and the links

i; jð Þ are related by connection weight wij.

Clustering coefficient

The number of weighted triangles around a node i is

defined as a basis for measuring segregation:

twi ¼ 1

2

X

j;h2N
ðwijwihwjhÞ

1
3 ð3Þ

Clustering coefficient reflects the degree that the con-

nected nodes in a graph tend to form clusters and can

illustrate the degree of local connectivity in the network

(Watts and Strogatz 1998; Bullmore and Sporns 2009). The

clustering coefficient of the network is described by:

Cw ¼ 1

n

X

i2N
cwi ¼ 1

n

X

i2N

2twi
ki ki � 1ð Þ ð4Þ

Feature selection and principal component
analysis

The selected graph measures and connectivity values were

those with significant differences (P\ 0.05) between

MDIS and NCs. Principal Component analysis (PCA) is a

mathematical procedure by which uncorrelated variables

are generated form correlated variables. To improve clas-

sifier performance, PCA were applied to normalized graph

measures and functional connectivity values to provide a

feature set with minimum redundancy. Accordingly, a new

feature vector was produced by keeping two first PCA

components (the first components corresponding to the

largest eigenvalues).

Support vector machine (SVM) classifier model

SVM is a supervised classifier that can be applied with

several kernels such as linear, polynomial and radial basis

function (RBF) kernel (Burges 1998; Alvar et al. 2017).

We trained and tested a SVM with RBF to classify indi-

viduals with meth dependence from healthy controls. SVM

works well with a small number of training samples and a

huge number of features (Vapnik 2013). To find a good fit,

meaning one with a low cross-validation loss, the Kernel-

Scale option (RBF sigma parameter) was set by Bayesian

optimization in MATLAB (Snoek et al. 2012). The SVM

classifier with RBF kernel was validated using tenfold

cross validation for obtaining a robust estimation of the

classification performance. All the mentioned processes

were separately carried out for each frequency band. The

statistical significance of the classification results were

evaluated by 5e3 permutation tests by making classifiers

on the data when the class labels were randomly assigned

(Ojala and Garriga 2010). Furthermore, F-score and area

under receiver operating characteristic curves (AUROC)

were also computed based on the classification scores of

testing subjects (Zweig and Campbell 1993).The classifier

has better performance in a frequency band for which the

AUROC and F-score are higher than those of the other

bands.

Results

Figure 2a, b shows the 61 9 61 functional connectivity

matrices for MDIs and NCs in the six frequency bands.

Figure 2c illustrates significant differences in coupling

between pairwise electrodes. In this regard, the significance
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level a = 0.05 was selected and false discovery rate (FDR)

was performed with q\ 0.05 to correct for multiple

comparisons. There were differences in all the frequency

bands except in the alpha band: FT7-P7, Fz-P5, and AF4-

OPz in the delta band; T8-CP3, T8-Pz in the theta band;

P8-O2, P4-O2, CPz-P3, T8-P9, Cz-TP7and C2-FCz in the

beta band; AF8-P5, F8-P8 and FT8-PO8 in the gamma

band. Totally, the number of connectivity pairs abnormally

changed is greater in the beta oscillatory rhymes compared

to the other oscillatory bands. Further, the average values

of whole-brain WPLI were significantly increased in MDIs

(0.0016 ± 0.0009) compared to that of NCS

(0.0011 ± 0.0007) (F = 4.24, P = 0.043) in the beta bands

(Fig. 3). There were significant differences in graph met-

rics, node strength and weighted clustering coefficient, at

nodal level. The name of these nodes and corresponding

P values are brought in Tables 2 and 3.

Table 4 includes classification results for the two study

groups involving the MDIs and NCs. As shown in the table,

among the EEG frequency bands the delta band revealed

best F-score (0.82) using only the significant differences in

graph metrics. When the significant differences in pairwise

connectivity were used, the best results were obtained in

the beta band (F-score = 0.86). Combination of the graph

metrics with the connectivity values improved the results,

so that the best results were obtained in the beta band (F-

score = 0.94, average of AUROC = 0.95).

The result of permutation test indexed that the classifi-

cation result was more statistically significant for the beta

band (P\2e-4) compared to the delta, theta, alpha,

gamma and wide bands that respectively yielded

P\ 0.001, P\ 0.04, P\ 0.4, P\ 0.1 and P\ 0.009

(Fig. 4).

To assess self-reported impulsivity, depression, anxiety

and stress, Barratt Impulsiveness Scale-11 (BIS-11) and

Depression Anxiety Stress Scale-21 (DASS-21) were used.

Table 5 shows the summary results of these scales and

their correlation with the whole-brain connectivity (mean

WPLI) in the beta frequency band for MDIs and NCs.

The anxiety and stress level of MDIs were significantly

greater than those of NCs (P\ 0.001), but the Pearson

correlation results showed no significant correlation

between the DASS and BIS subscales and the whole-brain

connectivity.

Discussion

In this study, we introduced fundamental changes in the

brain functional coupling of MDIs compared to that of

NCs. A SVM classifier was successfully designed using the

coupling differences and graph metrics of brain FCN to

distinguish between the two groups. The changes in graph

metrics is intrinsically emerged from the pairwise con-

nectivity differences in the FCN. Hence, we included the

connectivity changes as well as the graph metrics as fea-

tures to SVM. This strategy is helpful in understanding the

brain physiological processes in MDIs that can be distin-

guished from NCs. The results indicated that MDIs had a

hypo-connected FCN in the beta frequency band compared

to NCs.

EEG activity and impulsiveness, depression,
anxiety and stress scales

High level of impulsivity is associated with resting-state

EEG in gambling disorder (GD) as a type of addiction.

study of Lee et al. (2017) indicated that GD patients with

high level of impulsivity (25th percentile of BIS-11 scores)

revealed decreased theta absolute power, and decreased

alpha and beta absolute power compared to GD patients

with middle (26th–74th percentile) and low impulsivity

(75th percentile). Accordingly, MDIs, recruited in our

study, had either low or middle level of impulsivity. Fur-

ther, the correlation analysis did not reveal significant

relationship between impulsivity components of MDIs and

the whole-brain connectivity values in the beta frequency

band (Table 5). Jena (2015) reported that baseline EEG in

subjects with mild and moderate stress is alpha wave and in

whom with high stress is beta wave. Among our recruited

subjects, just 8 subjects among MDIs had high stress (see

Table 6). Further, the correlation analysis showed that

there is not significant relationship between stress, anxiety,

depression and the whole-brain connectivity values of

MDIs and NCs. Hence, it could be concluded that our

observed differences in brain connectivity in the beta fre-

quency band are probably due to methamphetamine

dependence and its effect on brain resting-state networks,

altered in different substance use disorders (SUDs) (Zil-

verstand et al. 2018), than due to impulsivity, depression,

anxiety and stress.

Beta frequency band alterations in SUDs

Newson and Thiagarajan (2018) carried out a new review

on studies of psychiatric disorders that used resting-state

EEG to investigate spectral power variation in different

frequency bands. They considered three types of addiction:

opioids (Wang et al. 2015a; Motlagh et al. 2017; Zhao et al.

2017), alcohol (Günther et al. 1997; Bauer 2001; Ran-

gaswamy et al. 2002, 2003; Saletu-Zyhlarz et al. 2004;

Fein and Allen 2005; Son et al. 2015; Herrera-Diaz et al.

2016) and internet (Choi et al. 2013; Son et al. 2015; Kim

et al. 2017) which is beside substance addiction disorders

according to 11th Revision of the International Classifica-

tion of Diseases (ICD-11). According to that review, the
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most frequently (dominant) findings (significant increase,

significant decrease) across the three types of SUDs are

related to the beta band, given the beta power spectrum

enhanced for opioid and alcohol users (vs. healthy controls)

while attenuated for internet addiction. Regarding the other

frequency bands, no dominant results have been reported in

these type of SUDs (Newson and Thiagarajan 2018).

Some other researches, not included in the review study

of Newson et al. further observed the beta related alter-

ations in SUDs versus controls. Namely, Huang et al.

(2018) found that abnormal BOLD signal levels in the

dorsal anterior cingulate cortex (dACC), nucleus accum-

bens (NAcc), posterior cingulate cortex (PCC) of alco-

holics, caused by arisen craving in a cue-reactivity fMRI

experiment, are consistent with increased beta-band activ-

ity in the dACC and pgACC in resting-state EEG. Herning

et al. (2008) compared 75 marijuana abusers with 33

controls and found relationship between the duration of use

and attenuation in alpha and beta power at posterior elec-

trode sites. Polunina and Davydov (2004) conducted a

study among 33 heroin-dependent individuals, who were in

6–135 abstinent days, and 13 nonusers. The results

revealed enhanced power in the beta rhythms coupled with

decreased power in theta, and alpha frequency bands.

bFig. 2 Functional connectivity matrixes of MDIs (left column) and

NCs (middle column) in the delta, theta, alpha, beta, gamma and wide

(1–45 Hz) frequency bands. Significant pairwise connectivity differ-

ences after FDR correction on EEG sensor space (right column). Blue

color means connectivity value of MDIs[NCs and red means

NCs\MDIs

Fig. 3 Bar plot of mean ± SE connectivity values in the six

frequency bands. The star flags significance level (P\ 0.05)

Table 2 Nodes (sensors) for which node strength values are significantly different in MDIs compared to NCs

Delta Fp1/0.03 AF4/0.03 F7/0.0005 FC5/0.03 FC1/0.005 FC2/0.01 TP9/0.02

6.05 (2)/5.04

(0.82)

6.25 (2.52)/5.25

(1.07)

6.22 (2.28)/4.85

(0.94)

6.37 (2.12)/5.23

(0.97)

5.48 (0.79)/4.89

(0.68)

5.79 (1.57)/4.97

(0.87)

6.26 (2.04)/5.18

(0.90)

FC6/0.03 T7/0.01 C4/0.001 P4/0.003 PO4/0.008 O1/0.02 FC4/0.04

5.84 (1.71)/4.95

(0.81)

6.35 (1.63)/5.39

(0.92)

6.19 (1.72)/5.02

(0.76)

5.80 (0.98)/5.08

(0.71)

6.19 (1.79)/5.36

(0.95)

5.82 (1.20)/5.14

(0.91)

6.03 (1.71)/5.16

(1.12)

F5/0.03 F2/0.008 F6/0.030 FT7/0.001 FC3/0.004

5.97 (2.13)/5.03

(0.96)

5.82 (1.67)/4.88

(0.70)

6.07 (1.91)/5.22

(0.75)

6.44 (1.52)/5.27

(0.87)

5.89 (1.57)/4.82

(0.96)

Theta AF4/0.02 F8/0.03 CP6/0.03 AF8/0.0005 TP9/0.008

5.28 (1.34)/4.58

(1.05)

4.77 (1.2)/4.19

(0.75)

5.01 (1.14)/4.51

(1.12)

5.00 (1.13)/4.07

(0.59)

5.1437 (1.20)/

4.53 (1.09)

Alpha P6/0.03

5.72 (2.17)/4.71

(1.45)

Beta CP2/0.03 P6/0.003 POz/0.02

2.74 (0.73)/3.07

(0.83)

2.93 (0.67)/2.44

(0.57)

2.70 (0.65)/3.12

(0.80)

Gamma Fp2/0.03 F8/0.03 T8/0.01 CP2/0.01 AF8/0.01

2.79 (0.60)/2.47

(0.53)

2.84 (0.71)/2.62

(0.98)

3.25 (0.96)/2.91

(1.11)

2.72 (0.57)/2.38

(0.61)

2.92 (0.67)/2.60

(0.71)

Wide

band

F8/0.03

1.96 (0.49)/1.73

(0.53)

Node name/P value; mean (SD) of MDIs/mean (SD) of NCs

Cognitive Neurodynamics (2019) 13:519–530 525

123



Another study conducted by Franken et al. (2004) also

reported increased beta power in smaller number of heroin

patients (14 days of abstinence). Further, Fingelkurts et al.

(2006) reported that opioid dependence results in increased

local and decreased remote functional connectivity in the

alpha and beta frequency bands. Also, in the current study,

decreased beta band connectivity occurred in MDIs at

central-parietal and temporal-parietal regions. The corre-

lation results indicate that abnormal whole-brain FCN in

this frequency band is not related to impulsivity, stress and

depression (Table 5). The connectivity differences in the

beta frequency band caused higher classifier performance

(F-score = 0.86) compared to the other bands, which might

be another evidence of distinguished abnormal function of

the brain in this specific frequency band for MDIs.

In sum, However, the number of studies among SUDs

that converged on being abnormality in the beta band is not

yet considerably high, and there is high methodological

variability in them (functional connectivity and power

spectrum analysis with eye-close/eye-open resting-state

EEG), compared with the other frequency bands the beta

band encompasses more significant differences of SUDs

Table 3 Nodes (sensors) for which clustering coefficient values are significantly different in MDIs compared to NCs

Delta F7/0.0005 T7/0.01 C3/0.05 C4/0.001 FC3/0.004 TP9/0.02

0.18 (0.02)/0.16

(0.02)

0.19 (0.02)/0.17

(0.02)

0.18 (0.02)/0.17

(0.02)

0.19 (0.03)/0.17

(0.02)

0.18 (0.02)/0.16

(0.03)

0.19 (0.03)/0.17

(0.02)

Theta AF8/0.0005 TP9/0.008

0.18 (0.03)/0.16

(0.02)

0.18 (0.02)/0.16

(0.02)

Alpha Fp2/0.07 C4/0.24

0.15 (0.03)/0.18

(0.03)

0.17 (0.04)/0.19

(0.03)

Node name/P value; mean (SD) of MDIs/mean (SD) of NCs

Table 4 Statistical results of SVM classifier to distinguish MDIs from NCs

Features Frequency

band

Sigma of

RBF

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

F-

score

AUROC

Graph features Delta 0.181 76 94 50 0.82 0.70 ± 0.1

Theta 0.086 66 86 37 0.75 0.62 ± 0.17

Alpha 0.069 56 80 20 0.69 0.36 ± 0.08

Beta 0.063 61 83 29 0.72 0.48 ± 0.1

Gamma 0.070 93 77 25 0.68 0.52 ± 0.13

Wideband 0.07 50 75 12 0.64 0.39 ± 0.29

Pairwise connectivity values Delta 0.079 73 83 58 0.78 0.69 ± 0.12

Theta 0.045 65 86 33 0.74 0.55 ± 0.09

Alpha 0.069 56 80 20 0.69 –

Beta 0.241 83 88 75 0.86 0.82 ± 0.17

Gamma 0.083 68 75 58 0.73 0.76 ± 0.12

Wideband 0.09 58 83 20 0.7 0.65 ± 0.69

Integration of graph features and connectivity values Delta 0.191 76 88 58 0.82 0.82 ± 0.16

Theta 0.090 71 80 58 0.77 0.63 ± 0.27

Alpha 0.068 63 86 29 0.73 0.46 ± 0.15

Beta 0.306 93 100 83 0.94 0.95 – 0.06

Gamma 0.083 66 83 41 0.75 0.53 ± 0.29

Wideband 0.1 66 77 50 0.73 0.73 ± 0.1

Integration of graph features and connectivity values

of all the bands

0.35 93 94 91 0.94 0.96 ± 0.08

The AUROC is computed for tenfold (Mean ± SD)

The best results, which are related to the beta frequency band, are bold
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versus healthy controls. Accordingly, it could be concate-

nated that the beta band has more potential to be a bio-

marker for SUDs compared to the other frequency bands

and it may be associated with inhibitory deficits in SUDs.

Comparing with previous studies

There are many studies, mostly among alcoholics, that used

knowledge-based systems based on EEG signals to support

human decision-making to predict substance dependence

and also to produce knowledge for developing related

treatments to quite substance abuse. Table 7 includes the

newest studies that aimed to detect meth abuse or to detect

other type of substance abuse while used EEG and func-

tional connectivity in their approach.

Shahmohammadi et al. (2016) have performed the first

ERP-based study to distinguish ten meth abusers from ten

normal controls using 32 channels EEG. They used area

under windowed ERPs elicited by a visual paradigm

including drug related and neutral images to distinguish

MDIs and NCs that yielded 80% accuracy without

reporting sensitivity and specificity. Ahmadlou et al.

(2013) Have investigated functional brain organization of

36 meth abusers by rEEG recorded from 32 scalp

Fig. 4 The permutation classification rates of 5e3 permutation tests and real classification rates of the cross-validation results in the six frequency

bands

Table 5 Results of correlations between anxiety, depression, stress and impulsivity and the average values of whole-brain WPLI in the beta band

for the patient group

Characteristic # (MDIs/NCS) Mean (SD) t P value Pearson corr. coef./P value

MDIs NCs MDIs NCs

Stress 30/21 19.66 (10.62) 6.10 (2.7) 6.4 \ 0.001 0.080/0.67 0.27/0.22

Anxiety 31/23 12.90 (8.66) 5.5 (5.6) 3.7 \ 0.001 - 0.039/0.83 - 0.07/0.74

Depression 29/23 18.34 (10.14) 14.2 (6.4) 1.7 0.08 - 0.045/0.81 0.14/0.49

Attention impulsivity 36/– 12.11 (4.81) - 0.123/0.47

Motor impulsivity 33/– 15.3 (6.17) - 0.120/0.50

Nonplanning impulsivity 35/– 17.62 (4.09) - 0.010/0.95
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electrodes and reported disrupted functional connectivity in

the gamma band. They considered the frequency range of

30–60 Hz for the gamma band that is influenced by 50 Hz

notch filtering effect. We primarily used this range of

frequency for the gamma band and found significantly

increased whole-brain clustering coefficient in MDIs

compared to NCs. Thus, we limited this frequency range to

30–45 Hz to eliminate filtering effect on connectivity

values by following other studies (Hu et al. 2017; Park

et al. 2017). The gamma band FCN differences between

MDIs and NCs, reported by a similar study (Ahmadlou

et al. 2013), may be related to abstinent duration and

withdrawal effect rather than the meth abuse effect. This

speculation raised from the fact that our subjects were in

short term abstinent stage (1–6 months) without correlated

results of self-reported emotional questioners with whole-

brain connectivity in their distinctive frequency band, i.e.

beta band, while that of (Ahmadlou et al. 2013) were in

early abstinent stage (1–3 weeks) with correlated results of

the self-reported emotional questioners with the brain-

topology in their distinctive frequency band, i.e. gamma

band. This will be more investigated by EEG source

reconstruction methods in our future studies. Considering

the recruitment of MDIs with long-term abstinent stage,

having fewer withdrawal symptoms, would be recom-

mended to future studies to investigate the mentioned

speculation.

Connectivity based classification was recently studied

among alcoholism by ERP (Bae et al. 2017) or rEEG

(Mumtaz et al. 2017). In Study of Mumtaz et al. (2017),

inter-hemispheric coherences and spectral power for EEG

delta, theta, alpha, beta and gamma were integrated resul-

ted in F-score = 0.9. Study of Bae et al. (2017) constructed

effective whole brain-connectivity network using Granger

causality and graph metrics extracted from an existing ERP

dataset resulted the classification accuracy of 90%, sensi-

tivity of 95.3%, and specificity of 82.4%. These results

shows that extracted features from whole brain network

compared to regional-based analysis is more efficient in

differentiating different type of substance abusers from

healthy controls. Many MDIs try to use strategies to neg-

atively affect the biochemical test of their addiction.

Therefore, the use of additional analysis-based techniques

along with the biochemical test can result in more reliable

diagnosis. Utilizing rEEG to differentiate substance

Table 6 Number of subjects in different stress, anxiety, and depres-

sion levels

Normal Mild Moderate High Sever

MDIs

Stress 12 2 8 3 5

Anxiety 9 3 8 4 7

Depression 5 6 7 4 7

NCs

Stress 21 0 – – –

Anxiety 16 4 1 1 1

Depression 3 8 10 0 2

Table 7 Related studies about EEG application to distinguish substance dependent individuals from healthy controls

Study Patients/controls Data

type/electrodes

Substance Method F-score/

accuracy

(%)

Mumtaz et al.

(2018a, b)

30/30 rEEG/19 Alcohol Synchronization-likelihood features with different classifiers

(SVM, Naı̈ve Bayesian, and Logistic Regression)

0.97/0.98

Mumtaz et al.

(2017)

30/15 rEEG/19 Alcohol Spectral powers of different bands and inter-hemispheric

coherences with logistic regression classifier

0.89/87

Bae et al. (2017) 37/23 ERP/61 Alcohol Significant nodal-gragh features of directional FCN with

SVM classifier

–/90

Hu et al. (2017) 15/14 rEEG/64 Heroin directional FCN constructed by independent component

analysis for blind source decomposition

–

Ahmadlou et al.

(2013)

36/36 rEEG/32 MA Average of graph features of whole-brain FCN and EPNN

classifier

–/82.8

Shahmohammadi

et al. (2016)

10/10 ERP/32 MA The area of positive sections below each windowed ERP –

The current study 36/24 rEEG/61 MA Integrated pairwise WPLI values and nodal-graph features

of FCN with SVM classifier

0.94/0.93

MA = meth
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dependent individuals is potentially robust to denial

attempts and hence could be helpful in distinguishing

denying addicted subjects. The connectivity based differ-

entiation could also be helpful for investigating the effec-

tiveness of treatment as well as predicting of possible

relapse.

There are also some limitations in this study. First, only

male subjects were recruited, while gender can influence

the vulnerability to meth toxicity. Second, due to practical

difficulties in recruitment of MDIs the sample size (36

MDIs) was moderate. Third, the demographical and

behavioral matching was not done because of intrinsic

limitations.

Conclusion

Our results show that the beta band waves are abnormally

changed in MDIs versus normal controls. Moreover, the

proposed feature vectors, including brain FCN node

strength and pairwise functional connectivity values in the

beta band, are great metrics to differentiate MDIs from

NCs. Accordingly, the beta band related information might

be useful for evaluating efficacy of treatments for MDIs.
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