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Locally Fixed Alleles: A method 
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Michael R. Vella2, Fred Gould5,8 & Alun L. Lloyd   1,2*

Invasive species pose a major threat to biodiversity on islands. While successes have been achieved 
using traditional removal methods, such as toxicants aimed at rodents, these approaches have 
limitations and various off-target effects on island ecosystems. Gene drive technologies designed to 
eliminate a population provide an alternative approach, but the potential for drive-bearing individuals 
to escape from the target release area and impact populations elsewhere is a major concern. Here we 
propose the “Locally Fixed Alleles” approach as a novel means for localizing elimination by a drive to an 
island population that exhibits significant genetic isolation from neighboring populations. Our approach 
is based on the assumption that in small island populations of rodents, genetic drift will lead to alleles 
at multiple genomic loci becoming fixed. In contrast, multiple alleles are likely to be maintained in larger 
populations on mainlands. Utilizing the high degree of genetic specificity achievable using homing 
drives, for example based on the CRISPR/Cas9 system, our approach aims at employing one or more 
locally fixed alleles as the target for a gene drive on a particular island. Using mathematical modeling, 
we explore the feasibility of this approach and the degree of localization that can be achieved. We 
show that across a wide range of parameter values, escape of the drive to a neighboring population in 
which the target allele is not fixed will at most lead to modest transient suppression of the non-target 
population. While the main focus of this paper is on elimination of a rodent pest from an island, we 
also discuss the utility of the locally fixed allele approach for the goals of population suppression or 
population replacement. Our analysis also provides a threshold condition for the ability of a gene drive 
to invade a partially resistant population.

Genetic modification of pest species has been suggested as a means to address a wide variety of pest problems, 
including those impacting human health, pre- and post-harvest crop losses, and conservation of endangered 
species1–5. One approach to genetic pest management involves introducing a DNA sequence into the pest genome 
that causes its own over-representation in future generations by inducing super-Mendelian inheritance; generally 
referred to as gene drive. An engineered gene coding for a desirable trait, e.g. one that renders the pest species less 
troublesome (e.g. reduction of vector competence of a mosquito species) can be linked to the gene drive sequence 
in order to increase its frequency in the population. Alternatively, the gene drive sequence can be engineered 
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to disrupt a gene critical to fitness, or to deliver a payload that achieves this aim, and thereby suppress, or even 
eliminate, a population.

Ever since such drives were proposed, concerns have been raised in the peer-reviewed literature and in the 
popular media about unintended consequences of releases and ethical dimensions of the work. These include fail-
ure of the genetic construct being driven, but also the spread of gene drives beyond the region in which spread is 
intended and approved by the local population and governing authorities2–13. The nature and seriousness of these 
concerns differ between different gene drive technologies and applications (for instance, considerations would 
be quite different for an approach intended to replace a human disease-vectoring mosquito species by a variant 
that is refractory to the pathogen than for removal of an invasive species that causes ecological damage). These 
concerns are most acute in the case of drives that are designed to suppress and eliminate a population: spread of 
such a drive could have a risk of leading to global eradication of a species that is a pest in one area but a valuable 
component of an ecosystem in other areas (e.g. mice and rats). As a result, there is much interest in the ability to 
design gene drives that exhibit spatial localization, i.e. ones that have the ability to spread in a given region but 
will not spread globally.

Several approaches have been suggested to achieve localization of gene drives. Drives that exhibit an invasion 
threshold, such as the engineered underdominance (EU) approach, provide a natural means to achieve locali-
zation14,15. These drives exhibit frequency-dependent dynamics where the drive can only spread if its frequency 
exceeds a particular level—the invasion threshold. Below this level, the frequency of the drive will decrease, lead-
ing to its loss from the population. Spread of a threshold drive across a patchy environment is more difficult, and 
becomes highly unlikely or even impossible when the invasion threshold is 50% or higher16,17. Other approaches 
have been suggested to achieve localization, including killer-rescue18, multi-locus assortment19, sex-linked 
genome editors20 and daisy-chain drive21. Theoretical analysis has suggested the ability of daisy-chain drive to 
simultaneously achieve spread and localization to a single area is only possible in a limited set of circumstances, 
and this concern also pertains to some other gene drives developed to be localized22. While all of these localized 
drives could change characteristics of pests in a population, their ability to locally suppress populations is ques-
tionable22,23, although see also24.

In this paper, we propose a localization method, the “Locally Fixed Alleles” (LFA) approach, that can be uti-
lized for relatively small populations that exhibit a significant degree of genetic isolation from other populations. 
This method is particularly suited for elimination of pest species from small oceanic islands, where the target 
population has small effective population size and for which there is naturally limited gene flow with other popu-
lations. While multiple alleles are expected to be commonly maintained at loci in large populations, genetic drift 
in small island populations is predicted to result in fixation of alleles at some loci in the genome25,26.

Utilizing the high degree of genetic specificity of homing drives based on the CRISPR/Cas9 system4, our 
approach aims at employing one or more locally fixed alleles as the target for a gene drive on a particular island. 
Such a drive can spread to individuals carrying that allele, but individuals that do not have that specific allele are 
naturally resistant to the drive. For example, polymorphisms that occur in targeted Cas9 guide RNA binding sites 
or protospacer adjacent motifs (PAM) may effectively limit gene drive activity27 such that a drive can spread to 
individuals carrying alleles that form functional sites, but individuals with alternate alleles are naturally resistant 
to the drive. By design, we would search for alleles that are fixed in the population on the target island but not 
fixed in populations beyond that island. Consequently, the drive could be expected to result in only limited tran-
sient suppression beyond the island. A special case of this approach, the “private allele” (PA) approach (dubbed 
“precision drive” by Esvelt et al.4; see also12), occurs when the target allele is specific to the target population, but 
absent from other populations. We emphasize that the LFA approach does not require the target allele be a private 
allele, simply that it not be fixed in non-target populations.

The LFA approach can be used with a variety of different gene drives (e.g. standard homing drives, sex-biasing 
drives, and so on). Here, for simplicity, we illustrate the method using a standard homing drive2,4 aimed at popu-
lation elimination. We describe this in the setting of removal of a rodent species, such as the house mouse, Mus 
musculus, from an island. Invasive mice, and other rodents, are a particular concern for species conservation28, 
having significantly impacted many island ecosystems, including causing extinctions of endemic island vertebrate, 
invertebrate and plant species29–31. Although an island release would involve procedures that attempt to confine 
the gene drive mice to the island, unintended escape of these mice must be considered a possibility. Here, we use 
mathematical modeling to explore the impact that escape of drive individuals would have on mainland populations.

While the focus of this study is on a drive that can eliminate a rodent pest species from an island, the LFA 
approach can be used more generally for drives aimed at population suppression or replacement provided that 
the drive bears some fitness cost. These more general settings are discussed in detail in the Supplementary 
Information, including some important differences in the dynamics from the elimination setting discussed in 
the main text.

This paper is organized as follows: we first introduce the mathematical model, then briefly describe the 
single-patch (island-only) dynamics before discussing those seen in a two-patch (island-mainland) setting. 
Supplementary information includes the derivation of an analytic threshold condition for the ability of drive to 
invade a partially susceptible population, an exploration of the sensitivity of results to various drive and ecologi-
cal/demographic parameters, initial results of a stochastic model for the dynamics of LFA, and discussion of the 
use of LFA in more general population suppression and replacement settings.

Methods
We employ a continuous-time non age-structured island-mainland model that describes the population dynam-
ics and genetics of two populations. As our primary concern here is the impact of escape from the island, we 
assume unidirectional migration from the island to the mainland. (We recognize that migration from mainland 
to island would be an important consideration in the period following successful suppression or eradication from 
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the island, but this is not the topic of this study.) Throughout, we assume a 50:50 sex ratio and so track numbers 
of female individuals. For an n-genotype system, denoting genotypes with a subscript and denoting island pop-
ulation numbers with superscript I (NI

i) and mainland population numbers with a superscript M (NM
i ), we have
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Here, the functions f I and f M describe the population dynamics and genetics that occur on island and mainland, 
respectively, and we assume unidirectional migration with per-capita migration rate equal to µ.

We assume that island and mainland populations both undergo random mating (i.e. are well-mixed) and 
exhibit logistic-type population dynamics. Our description of population dynamics is based on an earlier model32 
for the population genetics and dynamics of gene drive in an island mouse population. Per-capita birth and death 
rates both change linearly with population size, with different coefficients on mainland and island (see32 and 
references therein). Within either the island or mainland, and in the absence of migration, genotype dynamics 
are described by

∑ ∑ρ α= − − − .( )dN
dt
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Here, superscripts denoting the location have been suppressed for clarity on both state variables and parameters. 
The functions bi(t), described below, depict the genotype-specific birth rates in the absence of density depend-
ence. For an entirely wild-type population, b(t) would equal λN, where λ is the per-capita fecundity rate. The bi(t) 
are multiplied by a function that describes the linear density-dependent decline in per-capita birth rates with total 
population size. (Note that the max function is required to ensure that birth rates remain non-negative.) 
Per-capita death rates are assumed to increase linearly with overall population size but be independent of geno-
type. The density-independent component of the per-capita death rate (i.e. the reciprocal of the average lifespan 
when the population is at low density) is written as ρ, while the coefficient α describes the density-dependent 
linear increase in per-capita mortality. With these population dynamics, a single patch has a wild-type carrying 
capacity of ρ λ α= − +N R q( 1)/( )0 , where the basic reproductive number, R0, (i.e. the average number of 
female offspring of a female over its lifetime, at low population density) is equal to λ/ρ.

Population genetics is determined by the functions bi(t) which give the genotype-specific birth rates (c.f. the 
model of Robert et al.33) before accounting for the effects of density-dependence
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Here, λ is the baseline per-capita birth rate for females. P(i| j,k) gives the proportion of offspring from a mating 
involving individuals of types j and k that will have genotype i. The effects of the gene drive on biasing of inher-
itance are coded into these quantities. (The 216 entries of P(i| j,k), together with a fully written out set of model 
equations, appear in the Maple worksheet in the Supplementary Information.) The wi describe genotype-specific 
relative fitnesses, which we assume here to act at the embryonic stage and be equal in males and females of a given 
genotype.

As mentioned above, we use a simple homing-based elimination drive to illustrate the LFA method. We 
consider three alleles: the drive allele (D), the susceptible (S) allele, i.e. the target for the drive, and an allele 
that is resistant to the drive (R). All individuals in the target (island) population initially have the genotype SS, 
but those in the non-target (mainland) population can have SS, RS or RR genotypes. We assume only a single 
resistance allele in the mainland population. A large mainland population could have a number of different 
alleles that would be resistant to the drive, but they would all act similarly in being unaffected by the drive. 
Therefore our 3-allele model is sufficient for capturing dynamics of these cases. Note that here we are consid-
ering natural resistance to the drive, rather than drive-resistant alleles that are generated de novo as a result of 
the drive, e.g. by non-homologous end joining during homing. As a consequence, our model over-estimates 
the ability of the drive to spread and suppress populations34. Given that we are trying to evaluate the risk and 
implications of escape of drive, this assumption is conservative for our purposes. Homing is assumed to occur 
during gametogenesis, meaning that successful homing leads to an SD heterozygote individual giving rise to 
only D gametes. (Homing exclusively in the germline at any point during development would have the same 
consequences.) Successful homing occurs with probability e. The fitness, wi, of SS, RR, or SR individuals is 
assumed to be 1. The fitness of DD individuals is (1-s), and the fitness of SD and RD individuals is (1-hs), where 
s is the fitness cost of the drive and h is the degree of dominance of the fitness cost. For instance, a recessive 
lethal drive has s = 1 and h = 0. Notice that we assume there is no fitness cost for the RR individuals that occur 
naturally in the non-target population.

We employ parameters (see Table 1) that are appropriate for Mus musculus populations, largely based on those 
used by Backus & Gross32 (see also35). For this set of parameters, the basic reproductive number of a wild-type 
population is 3.5. Assuming an island of area 6 hectares, these parameters lead to an equilibrium population size 
of 1000 females. We assume that the mainland has a population size that is 100 times larger than this.
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Results
Single patch model.  The single-patch behavior of the standard homing drive that we use here has been 
well-studied previously2,23,36,37. Depending on the drive parameters s, h and e, several qualitatively different behav-
iors can occur following release of drive into an otherwise entirely susceptible population: guaranteed fixation 
of the drive, guaranteed loss of the drive, co-existence of drive and susceptible alleles at a stable polymorphic 
equilibrium or invasion threshold behavior (i.e. drive either goes to fixation or is lost, depending on its initial 
frequency) resulting from the existence of an unstable polymorphic equilibrium. Elimination of the population 
is possible when the drive remains in the population (going to a stable equilibrium with a positive frequency—
either fixation or a polymorphic equilibrium) and imposes a cost that is sufficiently high to bring the reproductive 
number of the population below one.

We illustrate these dynamics using two sets of parameters: one for which the drive can spread through a sus-
ceptible population regardless of its frequency (no invasion threshold scenario), and another for which the drive 
can only spread when its frequency exceeds an invasion threshold (invasion threshold scenario). In both cases we 
consider a fitness cost of s = 0.8 and a homing probability of e = 0.95. The two scenarios differ only in the dom-
inance, h, of the drive. For the no invasion threshold scenario we take h = 0.3, while for the invasion threshold 
scenario we take h = 0.8, which leads to an invasion threshold frequency of approximately 0.621 (corresponding 
to a ratio of approximately 1.64:1 drive:wild-type individuals). Releases occur into a population that is at carrying 
capacity, and population sizes are assessed relative to this carrying capacity.

Figure 1 shows the population dynamics that result from drive releases in these two scenarios. For the no 
invasion threshold scenario (green curve), even a small release of drive individuals, so that the initial relative 
population size is only just above one, leads to spread of the drive allele and hence reduction and eventual elim-
ination of the population. For the invasion threshold scenario (blue and red curves), spread of the drive, and 
hence the fate of the population, depends on whether the release frequency of the drive is above (blue curve) or 
below (red curve) the invasion threshold. A sufficiently large release (blue curve) leads to fixation of the drive and 
elimination of the population, while an insufficient release (red curve) leads to loss of the drive and recovery of 
the population following a transient period of reduction.

Island-mainland model.  We now turn to the main question of how migration from an island population on 
which drive individuals have been released will impact a mainland population that has a mix of susceptible and 
resistant individuals. To present something approaching a worst-case scenario, we first assume that the frequency 
of resistant individuals on the mainland is rather low, with a resistance allele frequency of 5% and susceptible 
allele frequency of 95%. We take our island population to be 1/100th the size of the mainland population, with 
unidirectional migration from the island to the mainland occurring at per-capita rate of 0.012 per year, corre-
sponding to movement at the rate of one mouse per month at baseline.

For the invasion threshold drive scenario, we consider an island release that is above threshold, so that the 
drive approaches fixation in the long run (Fig. 2, upper panel, red curve) and the island population is successfully 
eliminated (Fig. 2, upper panel, blue curve). Even though drive individuals migrate from the island to the main-
land, the large size of the mainland population means that the drive frequency remains small and never exceeds 
the invasion threshold. Thus, the drive cannot spread on the mainland, leaving the size and genetic composition 
of the mainland population largely unaffected.

The situation is different in the no invasion threshold scenario. The drive is able to spread on the main-
land even when present at the low frequencies that arise due to migration of drive individuals from the island. 
Individuals with a resistance allele are unaffected by the drive, however, and so spread only occurs through the 
susceptible individuals. Again, the drive spreads on the island (Fig. 3, upper panel, red curve) causing successful 
elimination of the island population (Fig. 3, upper panel, blue curve). On the mainland, drive spreads through the 
susceptible portion of the population (Fig. 3, lower panel, red dashed curve) causing a reduction in the population 
size (Fig. 3, lower panel, blue curve) due to fitness costs incurred by drive-bearing individuals. Because they are 
unaffected by the drive, resistant individuals benefit from having a larger relative fitness in the presence of drive 
individuals and so their frequency increases (Fig. 3, lower panel, red dot dashed curve), while the drive frequency 
decreases. As the frequency of resistant individuals increases, the average fitness of the population returns to the 
level seen initially, and density-dependent dynamics returns the population to its original size. In this setting, we 

Parameter Value Source

λ Female fecundity rate 8.4 (year)−1 Backus & Gross32

q Coefficient quantifying density-dependent decline in birth rate Island: 6.427 × 10−3 (mouse)−1

Mainland: 6.427 × 10−3 (mouse)−1 Backus & Gross32

ρ Density independent per-capita death rate 2.4 (year)−1 Backus & Gross32

α Coefficient quantifying density-dependent increase in death rate Island: 5.000 × 10−5 (mouse)−1 (year)−1

Mainland: 5.000 × 10−7 (mouse)−1 (year)−1 Backus & Gross32

wi Genotype specific fitness Dependent on s and h

μ Per-capita migration rate from island to mainland Varied (10−4–1.2 × 10−1 (year)−1)

s Drive allele fitness cost 0.8

h Degree of dominance of fitness cost of drive allele Non-threshold drive: 0.3
Threshold drive: 0.8

e Homing probability 0.95

Table 1.  List of Parameters and Their Values.
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Figure 1.  Island population dynamics for the no invasion threshold and invasion threshold scenarios. In 
both scenarios the drive has an 80% fitness cost (s = 0.8) but have differing degrees of dominance: for the no 
invasion threshold scenario (green curve) we take h = 0.3, while for the invasion threshold scenario we take 
h = 0.8. Population sizes are plotted relative to pre-release equilibrium population numbers. In the no invasion 
threshold scenario, arbitrarily small releases of drive individuals lead to invasion and fixation of the drive allele, 
leading to suppression of the population (green curve; release of 100 homozygous drive individuals, 0.1:1 
release ratio). In the invasion threshold scenario, invasion of the drive depends on whether the initial release 
exceeds the invasion threshold (for this choice of parameters, the invasion threshold frequency for drive is 
0.621, corresponding to approximately 1.64 drive individuals for each wild-type individual). Red curve depicts 
a sub-threshold release (1630 homozygous drive females; 1.63:1 release ratio), leading to loss of the drive allele 
and only temporary suppression of the population before its return to carrying capacity. Blue curve depicts a 
successful release (1650 homozygous drive females; 1.65:1 release ratio), for which the drive invades and reaches 
fixation, leading to elimination of the population. Values of other parameters are given in Table 1.
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Figure 2.  Island and mainland population dynamics (blue curves) and genetics (red curves) in the invasion 
threshold scenario (s = 0.8 and h = 0.8), following an above-threshold release of drive individuals on the island 
(1650 drive homozygotes released at t = 0; release ratio 1.65:1). Left axis (blue) denotes population size relative 
to pre-release equilibrium, right axis (red) denotes allele frequency. The drive spreads on the island (dashed red 
curve shows allele frequency for drive), suppressing its population (solid blue curve shows relative population 
size). Migration from the mainland to the island (at baseline, on average one island individual travels to the 
mainland a month) leads to a low drive frequency on the mainland that does not exceed the invasion threshold 
there. Consequently, the mainland population is largely unaffected. (Dot-dashed line denotes frequency of 
resistance allele. Note that the target allele being fixed means that the resistant allele is not present on the island).
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see a transient reduction in the mainland population size before a recovery due to the presence of resistance. The 
genetic composition of the mainland undergoes a shift during this process, with a reduction in the frequency of 
susceptible alleles (although not their elimination) and a corresponding increase in the frequency of resistance 
(see Supplementary Information and Supplementary Fig. 3).

In the Supplementary Information we show that high levels of resistance prevent the spread of drive on the 
mainland. Using a linear invasion analysis, we show that drive cannot invade when the initial frequency of the 
resistant allele is above 1 − hs/[e(1 − hs)].

Figures 4 and 5 explore how the magnitude of population suppression and the maximum allele frequency 
of the gene drive observed on the mainland depend on the initial level of resistance on the mainland and the 
migration rate from the island to the mainland in the no invasion threshold scenario. Naturally, the level of 
transient suppression (fractional reduction below initial equilibrium) on the mainland depends strongly on 
the frequency of resistant and susceptible individuals there (Fig. 4), although an important observation is that 
the level of transient suppression is considerably lower than the initial frequency of susceptible individuals. 
The level of migration is seen to have little impact on the level of suppression. Similarly, the initial composi-
tion of the mainland population impacts the peak drive frequency reached on the mainland, while the level of 
migration again has little impact (Fig. 5). For the assumed demographic and drive parameters, 10% or higher 
levels of resistance on the mainland lead to a transient population suppression of at most 20% and peak drive 
frequency below 30%. Alternative choices for demographic and drive parameters would impact these numbers 
(see sensitivity analyses in the Supplementary Information). Obviously, in the PA setting, drive would be una-
ble to spread on the mainland, but Figs 4 and 5 reveal that even in situations for which the susceptible allele is 
not absent, but only fairly uncommon on the mainland, the levels of suppression that would result would be 
small, and quite likely smaller than natural fluctuations in population size that might result from demographic 
or environmental stochasticity.

The peak level of suppression and the maximum drive frequency on the mainland occur at roughly similar 
times. The timing of these events is relatively insensitive to the initial frequency of resistance on the mainland and 
the migration rate over a wide range of conditions (see Supplementary Information and Supplementary Figs 1 
and 2), with dynamics playing out over the course of 10 to 20 years. High initial levels of resistance, however, can 
lead to much slower spread of the drive on the mainland. As mentioned above, drive cannot invade when the ini-
tial frequency of the resistant allele is above 1 − hs/[e(1 − hs)]. Invasion of drive will occur only slowly (and with 
a low peak level) when the frequency of resistance is not too far below this level. Supplementary Fig. 4 shows that 
the peak level of suppression on the mainland is almost independent of the size of the release on the island, while 
the time until this suppression occurs is only weakly dependent on the release size.
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Figure 3.  Island and mainland population dynamics and genetics in the no invasion threshold scenario 
(s = 0.8 and h = 0.3). As in Fig. 2, blue curves and axes denote population sizes, measured relative to pre-release 
equilibria, while red curves and axes denote allele frequencies. One hundred homozygous drive individuals 
(0.1:1 release ratio) are released at time t = 0. We assume that resistance is very low on the mainland (allele 
frequency of just 5%), representing a rather pessimistic scenario in terms of the susceptibility of the mainland 
population to the drive. The drive spreads to fixation and suppresses the island population. Migration to 
the mainland (at baseline, on average one island individual travels to the mainland a month) means that 
the drive is introduced to the mainland, where it can spread through the susceptible population, but not the 
resistant population. The total population undergoes a temporary suppression as the drive spreads through the 
susceptible population. The frequency of resistant alleles increases as a result of drive, and density dependent 
population regulation returns the mainland population to the pre-release equilibrium level.
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Discussion
There is a fundamental tension between the ability of a gene drive to spread locally within a target area and 
its ability to invade populations beyond that area. For a non-threshold gene drive designed for suppression or 
elimination, the potential impact outside the targeted area can be of serious concern even if there is a likelihood 
that resistance to the drive will evolve before irreversible damage is done. Indeed, such concerns were strongly 
expressed in many of the seminal early papers on gene drive (e.g.2,3). Clearly, mechanisms that give some level 
of control over the spread of a gene drive are prerequisites for the deployment of a gene drive for suppression or 
elimination of a targeted population if other populations of the species contribute positively to biodiversity or 
economics. Utilizing the high degree of genetic specificity exhibited by homing drives, the LFA approach provides 
one option to limit the impact of unintended spread of a drive. In the fortunate, although perhaps rather unlikely 
special case of private alleles, where all individuals in non-target populations lack the susceptible allele and the 
susceptible allele is fixed on the island, the drive would be completely confined to the target population.

The LFA approach is related to two-step gene drive approaches that first spread a target allele into a popula-
tion and then release a second drive that is specific to the target allele. For example, Esvelt et al.4 suggested this 
approach for island populations, arguing that containment would happen provided that release of the second 
drive occurred before any individuals bearing the first drive escaped the island. The uncertainty involved in this 
scenario could be problematic for some stakeholders and regulatory authorities. In our approach, naturally occur-
ring targeted alleles are expected to be fixed within small island populations due to genetic drift or founder effects 
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Figure 4.  Maximum level of transient suppression seen on the mainland following an island release of 100 
homozygous drive individuals in the no invasion threshold scenario (s = 0.8 and h = 0.3) across combinations 
of different migration rates and initial frequencies of resistant alleles on the mainland. Different levels of 
suppression are denoted by different colors (see color key on figure). Low initial resistance frequencies depict 
pessimistic scenarios (mainland is almost entirely susceptible to the drive), while high initial resistance 
frequencies approach the private allele scenario discussed in the text. The white region of the figure denotes 
initial levels of resistance that exceed the threshold level above which drive cannot invade the mainland.
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that have occurred in the past. These targeted alleles may be present in other locations, but as long as they are not 
fixed, impacts on populations in those locations should be transient.

As demonstrated by other mathematical models (e.g.22,38) some spatially limited gene drive mechanisms are 
unlikely to function well for strongly suppressing populations, because these require extremely large releases, 
which are neither feasible nor advisable for pest species on islands (but see39 for an alternative approach for local-
ized suppression of mainland populations). In this regard, the LFA approach stands out for its predicted ability to 
efficiently eliminate a small mostly isolated population without impacting other populations beyond a transient 
effect. The LFA approach could also be useful in the setting of a suppression or replacement drive that does not 
lead to elimination of the island population, although, as discussed in detail in the Supplementary Information 
(Section S.5), persistence of the drive on the island will mean continual reintroductions of drive to the mainland 
via migration, most likely leading to maintenance of drive on the mainland at a low frequency.

Our analysis employed a deterministic model, which allows for continuous migration from island to mainland. 
This model describes the average behavior of the system and so gives a good indication of expected dynamics in a 
large well-mixed mainland population. It describes the magnitude of suppression and its timing, but does not account 
for the discrete numbers of individuals in populations. Given that migration from the island to mainland is antici-
pated to occur as relatively infrequent events that involve small numbers of individuals, a stochastic model would be 
more realistic. Such a model would allow questions about the likelihood of the occurrence of migration events and 
of resulting transient spread of the drive, and distributions of the magnitude and timing of any transient suppression 
that results. However, we would not expect the qualitative results of such a model to predict a qualitatively differ-
ent outcome from the current model in terms of impacts on the overall mainland population (see Supplementary 
Information for results from a stochastic model and some additional discussion of the impact of stochasticity).

For this proof-of-concept study of the LFA approach, we employed a highly simplified description of the pop-
ulation dynamics and genetics of the system. Many ecological and behavioral complexities, such as Allee effects40, 
the spatial and social structures of mouse populations, and mouse mating behavior, will impact the dynamics of 
population suppression and elimination under the action of gene drives. More refined models that include such 
features will have to be developed if the use of this approach is to be considered for a real-world release program.

It is important to recognize that one of the outcomes of mice arriving on the mainland that have a homing 
drive with no threshold is that the frequency of the resistant allele will increase. If after the mice are eliminated 
from the island a mouse or a few mice carrying the now more common resistant allele migrate to the island, it is 
likely that the new population on the island would no longer be a good target for the previously used construct. 
However, if recolonization was started by one or a few individuals, founder effects and drift would be likely to 
result in other fixed alleles that could be targeted.

There are a number of technical and societal challenges in moving the LFA from concept to application. While 
there is empirical evidence of lower polymorphism in small island populations (e.g.41–43), not every fixed allele 
in an island population will be a good target for a CRISPR-based gene drive. Appropriate targets will depend on 
the intended nature of the drive (e.g. if it is to be sex-specific, employ a split-drive design, etc), impacting the 
number of available loci. Furthermore, these alleles will optimally have at least two sites that can be targeted by 
the CRISPR-CAS nuclease complex to decrease the chance of drive failure due to resistant alleles arising through 
non-homologous end joining44. It will be critical that full genomes of individuals be scanned for the best possi-
ble targets and those targets will need to be scrutinized for potential problems. Also, because the LFA approach 
requires that the target allele is fixed, island populations will need to be sampled and evaluated extensively before 
moving ahead with any genetic engineering to ensure an acceptably high probability that the targeted allele is 
truly fixed on the island. This will require focused sequencing of the target loci in a large number of individuals, 
but it should be recognized that 100% assurance is not possible.

At a societal level, lack of an ecological impact of an LFA in a non-target location of the specific target species 
must be assured. Models that include details of the species biology, population structure and genetics will be 
critical in moving toward regulatory approval. But assurance of lack of an ecological impact of LFA constructs on 
the non-targeted populations may not be sufficient for some stakeholders who will have a concern with even one 
engineered individual arriving in their area.

Beyond direct impacts of an LFA, researchers must be cognizant of the fact that in developing the technology 
for LFA in a problematic species, they are also developing tools that could be used by others to construct unre-
stricted gene drives in that species. There will always be tradeoffs in developing new technologies and there are 
unlikely to be simple decisions. Vigilance and input from diverse stakeholders “early and often”45 will be critical 
in coming to decisions.
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