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The exponential increase in the number of scientific publications
raises the question of whether the sciences are expanding into a
fractured structure, making cross-field communication difficult. On
the other hand, scientists may be motivated to learn extensively
across fields to enhance their innovative capacity, and this may
offset the negative effects of fragmentation. Through an investi-
gation of the distances within and clustering of cross-sectional
citation networks, this study presents evidence that fields of
science become more integrated over time. The average citation
distance between papers published in the same year decreased
from ∼5.33 to 3.18 steps between 1950 and 2018. This observa-
tion is attributed to the growth of cross-field communication
throughout the entire period as well as the growing importance
of high-impact papers to bridge networks in the same year. Three
empirical findings support this conclusion. First, distances de-
creased between almost all disciplines throughout the time period.
Second, inequality in the number of citations received by papers
increased, and, as a consequence, the shortest paths in the net-
work depend more on high-impact papers later in the period.
Third, the dispersion of connections between fields increased con-
tinually. Moreover, these changes did not entail a lower level of
clustering of citations. Both within- and cross-field citations show
a similar rate of slowly growing clustering values in all years. The
latter findings suggest that domain-spanning scholarly communi-
cation is partly enabled by new fields that connect disciplines.
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Scientific research is conducted in specialized subfields. The
division of labor helps to maintain an effective production

system, which splits knowledge and expertise into manageable
units. Human intelligence cannot effectively handle increasingly
large volumes of information, and therefore the organization of
learning and evaluation of new knowledge necessitates autono-
mous expert networks (1–3). As subfields grow, they spawn new
specialties (4). This fragmentation into subspecialties is a marked
property of scientific advancement, as the number of publications
has been growing exponentially since the scientific revolution (5–8).
From the individual scientist’s perspective, the proliferation of

new specializations is often a worrisome development. It corre-
lates with the frustrating impression that potentially relevant
literatures grow at a pace that makes monitoring relevant in-
formation impossible. More importantly, subsequent specializa-
tion confines the focus of research and education (4, 9–11). On
the other hand, the motivation to innovate offsets the over-
expansion of the scientific universe and stimulates cross-field
communication. It is a widely held assumption that importing
information from disparate fields could lead to novel ideas (12–
16). Accordingly, research policy doctrines propagate interdis-
ciplinary practices to incentivize knowledge synthesis (17), and
there is evidence that interdisciplinarity is becoming somewhat
more popular (18, 19). Other institutional changes may also pro-
mote the integration of distant corners of the sciences. The com-
munication infrastructure around scientific research is improving,

the importance of team science is growing (20), and universities
now often establish research centers to foster interdisciplinarity
and focus on applied topics (21).
Are the modern sciences becoming fragmented due to the

enormous growth of scholarly output? Are the incentives to
broker information balancing out this tendency, and even blur-
ring the boundaries of specializations, as scholars suggest (21,
22)? To answer these questions, this study investigates the tem-
poral evolution of citation networks retrieved from Web of Sci-
ence (WoS), and reports the distances and clustering of these
networks. The general research questions are broken down into 4
tractable analytical questions.
First, how did the average citation distance change in the lit-

erature? It is a common assumption in scientometrics that ideas
in the sciences are disseminated through references (23) and
that patterns of citations and cocitations are indicative of field
boundaries and the evolution of knowledge domains (24, 25). If
the sciences are unable to maintain integration, the distances
between the cited literatures would increase, and the diffusion of
ideas would be more difficult. The opposite scenario is that the
above-mentioned institutional trends counterweight fragmentation,
in which case the distances between publications are decreasing.
Second, the trend of citation distance is perhaps influenced by
changes in the distribution of citation impact. Scientific credit is
allocated unevenly (26), and the connectivity of the citation net-
work depends heavily on these high-impact papers (27). Accord-
ingly, Derek de Solla Price (6)—who first studied the exponential

Significance

The constantly expanding volume of scientific research engen-
ders specialization, which narrows the focus of research fields.
Does this pattern of scientific growth prevent information from
circulating between fields? Does motivation to explore new
problems and combine innovations across domains counteract
this process? This analysis, based on the Science Citation Index,
shows that the distances in citation networks decrease from
1950 to 2018. This provides evidence that the sciences diffuse
information more easily over time. The shortened distances are
due to more dispersed citation activity between fields and
growing centralization of citations. Despite these changes, the
clustering of citations did not decrease. Cocitations are slightly
more embedded over time, which suggests that cross-field ties
create their own field boundaries.

Author contributions: A.V. designed research, performed research, analyzed data, and
wrote the paper.

The author declares no competing interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.
1Email: attilavarga@email.arizona.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1905819116/-/DCSupplemental.

First published October 14, 2019.

22094–22099 | PNAS | October 29, 2019 | vol. 116 | no. 44 www.pnas.org/cgi/doi/10.1073/pnas.1905819116

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1905819116&domain=pdf
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:attilavarga@email.arizona.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1905819116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1905819116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1905819116


growth of science—speculated at the dawn of “big science” in the
1960s that networks of scientists who are prominent representatives
of their respective fields will integrate research findings across
specializations. Third, I also track the evolution of lateral citation
relations between enduring fields, based on the WoS classification
scheme of Subject Categories. Similar to centralization, dynamics
of cross-field ties provide an explanation about why distances in the
literature are changing.
Finally, does the clustering of citations remain stable over

time? If the connectivity between the disciplines in terms of
shorter paths in the literature is indeed improving, is this ac-
companied by more-permeable field boundaries? Network sci-
ence has shown that short paths can evolve in networks without
fundamentally destroying the overall clustering of the networks
(28). In a similar vein, some sociologists studying interdisciplin-
ary research suggest that boundary-spanning agendas that bridge
disciplines tend to form their own discipline-like fields, and that
boundary-spanning research does not necessarily involve new
institutional forms (21, 29). To examine the clustering of schol-
arly communication, this study investigates cocitation behavior
over time, and quantifies the prevalence of overlaps between
reference lists of papers.

Data and Methods
Scholarly communication is represented as bipartite (2-mode) networks, where
one set of nodes is constituted of papers that are published in a sampled year,
and the references of those papers constitute the second set of nodes. No edges
arepossiblewithin the same set ofnodes. In this study, anedge in thenetwork is
referred to as a citation. The citation connects the referencing paper in the
sampled year with its references. The 2 sets of nodes are called the source and
the target of the citation. The source node is the paper that makes references
in the sampled year, and the target nodes are the references. If a source node
cited another source node (i.e., it is a citation within the sampled year), the
edge is still recorded as a citation by duplicating the cited source node, and
representing it as a target node as well. This method ensures that no citation
information is lost in the network.

Representing the citation networks in this way is justified by the widely
used technique of cocitation analysis. This technique is utilized to map fields
and scientific advancement (24, 25). The “link” between scientific works in
this perspective is a shared reference between 2 papers. The cocitation is a
sign that the 2 publications share a common subject and interest. Therefore,
I assume that a chain of cocitations that links 2 papers is a possible channel
of knowledge diffusion. Taking yearly snapshots of the evolving cocitations
is an indicator of how papers have been shared and utilized between re-
searchers at a given moment.

The examined literatures are indexed in the Science Citation Index (SCI) of
WoS. The SCI is a selective index, which follows the high-impact journals of
each field. In relation to this, the number of publications grows at a slower
rate than the overall growth of scientific literature (5). Nevertheless, the SCI is
a collection of important journals, which provides a good representation of
scholarly communication at the research front across all of the sciences. This
study includes every fifth year from 1950 until 2018. The analysis is restricted
to references that can be recognized as scientific periodicals, which is a
common practice in bibliometrics. It is more difficult to index books, book
chapters, or ephemera (e.g., editorials, comments) (WoS data are accessible
via Clarivate Analytics, www.webofknowledge.com).

The shortest path lengths in the networks were measured to appraise the
distances and connectivity of research papers through their references. This
quantity is also called the graph geodesic. The average shortest path between
2 nodes is the minimal number of steps along the edges of the network to
reach one node from another node. Because the studied networks are
bipartite networks, the shortest possible path between 2 papers in the
sampled year is a cocitation (2 papers cocite a third one), which is a 2-path. To
make this measure more similar to the commonly used notion of graph
distance, the presented distance values are divided by 2, so the minimal
distance is 1. These distances have been calculated between the source papers
on repeated samples of 2,000 source papers selected randomly in each year.
This equals 1,999,000 paths between all pairs of nodes. This sampling method
was repeated 30 times for each network. SI Appendix describes in detail the
random network generating procedure used in the study.

To quantify the clustering of the network, an edge clustering coefficient
(C) was calculated for each citation in the network. C measures the density

of citations between the neighborhoods (nodes connected to a focal node)
of the 2 nodes constituting the focal citation. In short, it measures the
embeddedness of citations. This is the log ratio of the number of citations
between the nodes that are connected to the focal citation’s source and
target nodes, and the expected frequency of citations between these nodes.
While the nominator is the number of citations between the source and
target paper’s neighborhood, the denominator is the randomly expected
number of connections between the neighboring nodes given the degrees
of these nodes. A strongly embedded citation passes through a high-density
part of the network (i.e., the reference lists overlap), and C has a high value.
See SI Appendix for more information on the calculation of C and its relation
to similar measures.

I also utilized WoS Subject Categories, which is a journal classification
system that represents subdisciplines across the sciences. Subject Categories
are initially assigned to journals, and, subsequently, to individual papers. To
assign Subject Categories to the target papers, I used the journal list of
Science Citation Index Expanded, which indexes more journals than SCI.
Although this classification system is used widely to measure inter-
disciplinarity (3, 18, 30) and for normalizing citation impact, Leydesdorff and
Bornmann (31) warn against mapping fields of science solely based on
Subject Categories. For present purposes—in line with the intentions of the
developers (32)—I use them as a “heuristic method” to examine enduring
disciplinary boundaries.

Results
The number of source papers in the networks increased between
1950 and 2018 from 18,000 to 760,000, while the cited literature
increased more substantially from 151,000 to 11 million (SI Ap-
pendix, Table S1). The length of the bibliographies of the publi-
cations also increased during the same time period, from 11 to
35.4 references on average. This observation has already been
made by other researchers (33). As noted elsewhere (8), the ci-
tation behavior reflects the growth of published material by ref-
erencing an increasing number of documents.
Fig. 1A demonstrates that the distances have been decreasing

throughout the studied period between source papers. The de-
crease is less substantial until 1970, after which the rate of
change is quite steady. While the average distance was 5.33 in
1950, it has been reduced to 3.18 steps, which is a 40% decrease.
The mode shortest path length decreased from 5 steps to 3 steps
(Fig. 1B). The probability in 1950 that 2 randomly selected pa-
pers are 3 references away from each other is 0.116, and, in 2018,
it increases to 0.725. These findings are robust when applying
larger sample sizes to estimate the distances (SI Appendix, Fig.
S3). An alternative way to define the links in the network is to
take into account the size of the overlap between the reference
lists of source papers. In this case, the more references 2 papers
share, the shorter the distance between the 2 papers. Following
this weighted distance approach to appraise the changes, we
observe similar results (SI Appendix, Fig. S4).
Could it be that the longer reference lists in articles can ac-

count for the decreased distances in the literature? One way to
approach this question is to compare the observed trend with the
distances in random networks, which have the same degrees as
the real networks. Fig. 1A shows the average distances in the
random networks, which serve as baselines. The ratio of the
observed distances and the baseline measures is decreasing as
well, which, overall, suggests that the more extensive surveying of
the literature later in the period would not be responsible, in
itself, for the shortened distances.
Is the decrease of distances consistent across subdisciplines?

To study the distribution of distances across subdisciplines, I
sampled 10,000 source articles in each year, and measured the
distances of all of the source articles to this sample. From this, I
assembled the subdiscipline distance matrix, in which the rows
and columns are the subdisciplines, and the cells indicate the
average distances between the papers in the particular sub-
discipline pairs. The rows are based on all source papers, while
the columns represent the subdisciplines of the sampled papers.
Fig. 1C shows the distribution of the percentage change of the
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average distance between all subdiscipline pairs across 4 time
periods. The proportion of subdiscipline pairs in which the dis-
tances increased is between 4.8% and 0.8% in the 4 time intervals.
SI Appendix, Fig. S5 shows the distances between subdisciplines in
each year, which reveals that the decrease of distances is more or
less homogeneous across the subdisciplines, except that the de-
crease of distances between the life sciences is less dramatic. In
fact, the subdisciplines within the life sciences had shorter dis-
tances throughout the whole period, which is why the decrease of
distances is slightly less substantial.

The majority of the shortest paths in networks with strongly
right-skewed degree distributions are likely to pass through the
most well-connected nodes of the network (27). Citation impact,
or the degrees of the target nodes, has a distribution that closely
follows the power law (26). It is therefore important to investi-
gate closely how that distribution affects the changing distances.
Fig. 2A shows the Lorentz curves of these degree distributions.
The curves indicate the share of the total citations by the top x
percent of nodes. A curve runs closer to the bottom right corner
as we approach the present, which demonstrates that the in-
equality is growing. While, in 1950, the top 4% of the papers
received 13.6% of the citations, by 2018, their share grows
to 24.2%.
To investigate further the effect of growing citation impact

inequality on distances, a test was conducted to determine
whether the robustness of the average shortest path length de-
pends more over time on the top target papers. By removing
these nodes and recording the average shortest path lengths in
the resulting network, one can reveal to what extent shortest
paths pass through the top nodes. Fig. 2B shows that, indeed, this
dependence increases over time. The removal of the top 0.5% of
target papers increases the distances in 1950 by 5.7%. In 2018,

A

B

C

Fig. 1. Changing distances in the citation networks and between sub-
disciplines (Subject Categories). (A) Average distance in the citation net-
works and in their random counterparts by time. The average distances in
the real networks were calculated with repeated sampling: A random
sample of 2,000 nodes was created for each network, and the sampling
was repeated 30 times. For each sample, the average distance was calcu-
lated between the 2,000 nodes. The figure shows the averages 3 SDs
across the repeated samples (blue line). The green line shows the average
distances and 3 SDs across the 30 random networks. The average distance
in a single random network was calculated between 2,000 randomly se-
lected nodes. The Inset is the ratio of the real and random average dis-
tances. (B) Distribution of distances at the beginning (1950) and at the end
(2018) of the studied time period. Each marker on the figure represents
the average probability of a given distance in the 30 repeated samples.
Error bars are 3 SDs. Normal curves are fitted to the distributions. (C )
Cumulative distribution of distance changes between subdisciplines in 4
time intervals. The distributions on the figure are based on the matrices in
SI Appendix, Fig. S5. The latter matrices on SI Appendix, Fig. S5 show the
average distance between the subdisciplines. For a given 3-y time period, I
took the average of the corresponding cells (representing the distance
between 2 subdisciplines). The figure here shows the cumulative distri-
bution of the percentage change of the averages between the 2 time
periods for each cell.

Paper ranking (%)

Year

A

B

Fig. 2. Growing citation impact inequality and its influence on the chang-
ing distances. (A) Lorentz curves and Gini coefficients (Inset) describing the
distribution of citations to target papers (i.e., citation impact). Target papers
with only one citation are omitted from the distributions, because they don’t
affect distance, which is the subject of this study. (B) The increase in distances
after removing the highest-impact papers from the network. At each re-
moval, the average distances have been estimated on a repeated sample of
2,000 nodes. The error bars show the SDs of the average distances across the
30 repetitions.
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the increase after the removal is 19.56%. Removing the top 5%
causes a 19.3% increase in the average distance in 1950 and a
41.2% increase in 2018. Although the deletion of these nodes
shifts the average distances, it does not alter the shape of dis-
tribution of distances, which generally follows a Gaussian func-
tion (SI Appendix, Fig. S6).
Increased lateral connectivity between fields provides another

explanation of the decreased distances. I approach this question
by examining the relations between subdisciplines with subdis-
cipline citation matrices (SI Appendix, Fig. S7), where cells show
what percentage of all citations from source papers in given
subdisciplines refer to target papers in any subdiscipline. The
typical citation stays within a single subdiscipline (i.e., both the
source and target papers are in the same subdiscipline). The
average percentage in such cells decreases over time from 29.8 to
18.3% (Fig. 3A). The changes from 1950 to 1975 could be partly
due to the increasing number of subdisciplines in the dataset,
but, by the 1990s, this number was fairly stable and does not
affect the results (SI Appendix, Fig. S8A).
Citations are also less concentrated into specific subdisci-

plines. Fig. 3 B and C shows the Herfindahl−Hirschman con-
centration indexes (HH index) for each subdiscipline. The HH
index (which is also called the Simpson index in ecology) is
computed for each row of the subdiscipline citation matrix. In
the current context, the index is the probability that 2 target
papers—taken at random and cited by source papers published
in a specific subdiscipline—are in the same subdiscipline. The
higher this index, the more concentrated the citations are in
specific subdisciplines. The figure reports 2 variants of the index.
In the first case, the computation of the index takes into account
all target subdisciplines (Fig. 3B). In the second case, it only
measures the concentration among the target subdisciplines that
are different from the source paper’s subdiscipline (Fig. 3C).
Both variants of the index decrease steadily by around 60%. In
other words, the predictability of the target subdiscipline of a
citation based on the source paper’s subdiscipline decreases over
time. This is not simply due to the decrease of homophilious
citations (citations with the same source and target subdisci-
plines), because the second variant of the index—which omits
these citations—shows the same trend. These results suggest that
the sciences increased their interconnectivity by developing

connections and possibly new fields that bridge the subdisci-
plines. Further analysis shows that this trend is not affected
substantially by the growth in the number of subdisciplines (SI
Appendix, Fig. S9). It should be noted that the distribution of all
citations across the subdisciplines is becoming more even over
time (SI Appendix, Fig. S8 B and C). However, the decreasing
concentration of citations at the level of subdisciplines is in-
dependent of this general trend (SI Appendix, Fig. S8 D and E).
Finally, it is also important to note that cross-subdisciplinary ties
have likely been developing between subdisciplines that are al-
ready cognitively close to each other (18).
Although the data presented here provide evidence for an

increasingly interconnected scholarly communication network,
this trend is not accompanied by decreased clustering of the
networks. The edge clustering coefficient C does not follow a
linear trend (Fig. 4A), and is rather stagnant. While C increases
between the beginning and the end of the studied period, it falls
back slightly from 2005. SI Appendix provides a more detailed
examination of edge clustering. In short, the number of con-
nections in the vicinity of the median citation increased over
time, while the expected number did not change substantially,
which is why C shows the temporal trend described above.
Because we have seen lateral connections between fields be-

came more prevalent, it is necessary to examine how clustering
between differing subdisciplines changes. Citations with the same
source and target subdisciplines have slightly higher edge clus-
tering than those citations that connect different subdisciplines
in all years (Fig. 4 B and C). The trend is very similar to the
overall trend of C, as both of these coefficients of the 2 sub-
samples increase. In conclusion, although lateral citations were
on the rise constantly, the embeddedness of citations across
subdisciplines does not decrease in the studied period.

Discussion
Fear of fragmentation in the sciences is shared by both scientists
and policy makers. The latter promote boundary-spanning re-
search that integrates branches of the sciences to respond to
scientific and societal needs, which requires a unified perspective
(17). Fragmentation can also lead to unnecessary parallel dis-
coveries, resulting in nonoptimal allocation of work effort (34).
Enormous scholarly output, especially in the medical sciences,

A B C

Fig. 3. Distribution of citations between subdisciplines (Subject Categories). (A) Percentage of citations where both the source and target articles are in the
same subdiscipline. The figure shows the distribution of within subdiscipline citations. Boxes show the interquartile range, whiskers indicate the range, the
middle vertical lines are the median, and triangles are the means. A Kruskal−Wallis H test has been performed (P < 0.001) to see whether the temporal trend
is statistically significant. The pair-wise comparison of the years with Welch’s t tests shows that 67 out of 105 year pairs differ significantly from each other at
the P < 0.05 level. Therefore, the association is not driven by a few diverging years. (B) HH indexes for each subdiscipline. The HH index is a concentration
measure. In the context of the present article, it is the probability that 2 randomly chosen citations with the same source article subdiscipline have the same
target discipline. The index is higher if the citations of papers originating from the specific subdiscipline disperse more to all of the subdisciplines. The
Kruskal−Wallis H tests are statistically significant (P < 0.001). The Welch’s t tests indicate that the average HH indexes differ (P ≤ 0.05) in 84 out of the 105 year
pairs. (C) While the first variant of the HH measure takes into account all citations from the given subdiscipline, the variant here only considers the distri-
bution of the citations where the source and the target subdisciplines differ. Kruskal−Wallis H tests are statistically significant in this case as well (P < 0.001);
83 out of the 105 Welch’s t tests are significant (P ≤ 0.05).
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has recently motivated scholars of information retrieval and
computational linguistics to automate information aggregation
from the text of published material (35).
The evidence presented above suggests that science has become

more interconnected over time, despite continuous expansion.
This increased connectivity can be explained by the centralization
of citations over time and the growth of cross-field communica-
tion. These conclusions are based on 3 main observations. First,
distances decreased between almost all subdisciplines. Second, the
citation impact inequality was rising, and shortest paths in the
citation network had an increased dependence on top papers.
Third, the salience of citations between the same subdisciplines
slightly decreased, and the dispersion of citations between sub-
disciplines increased significantly from year to year.
Finally, this increased interconnection of fields did not reduce

the embeddedness of citations. While the scientific “small world”
shrank further, clustering slightly increased. Cross-subdiscipline
citations became more prevalent and more diverse over time.
However, the average clustering of these citations remains high.
It is quite conceivable that a disciplinary framework provides the
organizational background for growing cross-fertilization (21, 29).
These findings suggest that domain-spanning scholarly communi-
cation is enabled by new fields that connect disciplines. This study
provides further evidence that cross-disciplinary fields can de-
marcate themselves similarly to disciplines, and, at the same time,
they can establish new bridges in the sciences.

Universities and research organizations have always been at
the forefront of new communication technologies. The second half
of the studied period experienced an accelerated development of
digital and online indexing and abstracting services, and of elec-
tronic publishing and data sharing (36). However, the decrease of
distances is steady and constant throughout this period, and no
salient trend change is detectable that could be tied, for example,
to the widespread use of the Internet beginning in the late 1990s.
The growth of coauthorships and multiuniversity research col-
laborations shows the same even trend (20, 37).
While the findings about citation connectivity presented herein

do indicate growing integration of scholarly communication, it is
quite conceivable that other forms of fragmentation pose prob-
lems for knowledge synthesis. One type of fragmentation men-
tioned above is when the literature output on a topic is so vast that
researchers cannot monitor new findings effectively. Another type
of fragmentation occurs when scientists are not motivated to
pursue research synthesis and instead concentrate their efforts on
specialized research (4). New information infrastructures, inno-
vative approaches for research synthesis, and research policy ini-
tiatives may overcome these difficulties in the future.
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