Table 2.
Trial scenarios and parameters max sample size=302, # arms=2, balanced burn-in period=50,p2=0.3, and allocation update frequency=28.
| Study Description | Expected Performance Based on BRAR algorithm |
Simulation Studies without stopping rules | Simulation Studies with stopping rules |
|---|---|---|---|
| Treatment efficacy profile | p1=0.4 |
p1=0.4; |
Scenario 1: p1=0.3; Scenario 2: p1=0.4; Scenario 3: p1=0.5. |
| Time-trend (linear) | No trend: δ1=0, δ2=0; Equal trend: δ1=0.1, δ2=0.1; Unequal trend: δ1=0, δ2=0.1. |
No trend: δ1=0, δ2=0 Equal trend: δ1=0.1,δ2=0.1 Equal trend: δ1=0.2, δ2=0.2. Unequal trend: δ1=0, δ2=0.1. |
No trend: δ1=0, δ2=0; Equal trend: δ1=0.1, δ2=0.1; Equal trend: δ1=0.2, δ2=0.2. Unequal trend: δ1=0, δ2=0.1. |
| RAR algorithm parameters |
α=0 to 1 by 0.1; β=0,0.2,0.5,0.8,1; γ=0, 0.5,1; |
BRAR (1/2) BRAR (1/2, σ2) BRAR (n/2N) |
BRAR (1/2) BRAR (1/2, σ2) BRAR (n/2N) |
| Efficacy stopping rule | None | None | |
| Estimation of type I error | ___________ | _______________ | Proportion of simulation runs with: under efficacy scenario 1. |
| Estimator of power | ___________ | _______________ | Proportion of simulation runs with: under efficacy scenarios 2 and 3. |
| Simulation iteration | ___________ | 10,000 per scenario | 10,000 per scenario. |
Note: pj are the posterior probability of success that arm j is better than the other arms, j=1,2.