Skip to main content
. Author manuscript; available in PMC: 2020 Jan 14.
Published in final edited form as: J Biopharm Stat. 2019 Apr 24;30(1):69–88. doi: 10.1080/10543406.2019.1607368

Table 2.

Trial scenarios and parameters max sample size=302, # arms=2, balanced burn-in period=50,p2=0.3, and allocation update frequency=28.

Study Description Expected Performance
Based on BRAR algorithm
Simulation Studies without stopping rules Simulation Studies with stopping rules
Treatment efficacy profile p1=0.4

p1=0.4;
Scenario 1: p1=0.3;
Scenario 2: p1=0.4;
Scenario 3: p1=0.5.
Time-trend (linear) No trend: δ1=0, δ2=0;
Equal trend: δ1=0.1, δ2=0.1;
Unequal trend: δ1=0, δ2=0.1.
No trend: δ1=0, δ2=0
Equal trend: δ1=0.1,δ2=0.1
Equal trend: δ1=0.2, δ2=0.2.
Unequal trend: δ1=0, δ2=0.1.
No trend: δ1=0, δ2=0;
Equal trend: δ1=0.1, δ2=0.1;
Equal trend: δ1=0.2, δ2=0.2.
Unequal trend: δ1=0, δ2=0.1.
RAR algorithm parameters rjPjαVar(pj)βnjγ
α=0 to 1 by 0.1;
β=0,0.2,0.5,0.8,1;
γ=0, 0.5,1;
BRAR (1/2)
BRAR (1/2, σ2)
BRAR (n/2N)
BRAR (1/2)
BRAR (1/2, σ2)
BRAR (n/2N)
Efficacy stopping rule None None Pj>0.99
Estimation of type I error ___________ _______________ Proportion of simulation runs with: Pj>0.99 under efficacy scenario 1.
Estimator of power ___________ _______________ Proportion of simulation runs with: Pj>0.99 under efficacy scenarios 2 and 3.
Simulation iteration ___________ 10,000 per scenario 10,000 per scenario.

Note: pj are the posterior probability of success that arm j is better than the other arms, j=1,2.