Skip to main content
. Author manuscript; available in PMC: 2020 Jan 14.
Published in final edited form as: J Biopharm Stat. 2019 Apr 24;30(1):69–88. doi: 10.1080/10543406.2019.1607368

Table 4.

Impact of time-trend on operating characteristics of BRAR with early stopping rule maximum sample size=302, burn-in size=50, allocation update frequency=28, Efficacy stop=0.99, # simulation =1000.

Algorithms Time-trend effect Efficacy profile BRAR(1/2,σ2), time trend
Sample size % better arm (SD) Type I error/Power Bias (SD)
BRAR(1/2,σ2) δ12=0 P1=P2=0.3 290(47) 0.50(0.10) 0.07 0(0.082)
P1=0.5, P2=0.3 157(86) 0.63(0.08) 0.858 0.046(0.097)
δ12=0.1 P1=P2=0.3 288(51) 0.50(0.10) 0.091 0(0.091)
P1=0.5, P2=0.3 150(83) 0.62(0.08) 0.89 0.054(0.096)
δ12=0.2 P1=P2=0.3 284(55) 0.50(0.10) 0.122 0(0.101)
P1=0.5, P2=0.3 144(78) 0.62(0.08) 0.919 0.059(0.091)
Time-trend Adjusted Randomization (TTAR) δ12=0.1 P1=P2=0.3 292(41) 0.50 (0.11) 0.06 0 (0.087)
P1=0.5, P2=0.3 184(84) 0.64(0.07) 0.815 0.049(0.092)
δ12=0.2 P1=P2=0.3 291(46) 0.49 (0.09) 0.067 0(0.092)
P1=0.5, P2=0.3 185(86) 0.64(0.07) 0.783 0.054(0.093)