Table 4.
Impact of time-trend on operating characteristics of BRAR with early stopping rule maximum sample size=302, burn-in size=50, allocation update frequency=28, Efficacy stop=0.99, # simulation =1000.
| Algorithms | Time-trend effect | Efficacy profile | BRAR(1/2,σ2), time trend | |||
|---|---|---|---|---|---|---|
| Sample size | % better arm (SD) | Type I error/Power | Bias (SD) | |||
| BRAR(1/2,σ2) | δ1=δ2=0 | P1=P2=0.3 | 290(47) | 0.50(0.10) | 0.07 | 0(0.082) |
| P1=0.5, P2=0.3 | 157(86) | 0.63(0.08) | 0.858 | 0.046(0.097) | ||
| δ1=δ2=0.1 | P1=P2=0.3 | 288(51) | 0.50(0.10) | 0.091 | 0(0.091) | |
| P1=0.5, P2=0.3 | 150(83) | 0.62(0.08) | 0.89 | 0.054(0.096) | ||
| δ1=δ2=0.2 | P1=P2=0.3 | 284(55) | 0.50(0.10) | 0.122 | 0(0.101) | |
| P1=0.5, P2=0.3 | 144(78) | 0.62(0.08) | 0.919 | 0.059(0.091) | ||
| Time-trend Adjusted Randomization (TTAR) | δ1=δ2=0.1 | P1=P2=0.3 | 292(41) | 0.50 (0.11) | 0.06 | 0 (0.087) |
| P1=0.5, P2=0.3 | 184(84) | 0.64(0.07) | 0.815 | 0.049(0.092) | ||
| δ1=δ2=0.2 | P1=P2=0.3 | 291(46) | 0.49 (0.09) | 0.067 | 0(0.092) | |
| P1=0.5, P2=0.3 | 185(86) | 0.64(0.07) | 0.783 | 0.054(0.093) | ||