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Abstract

Purpose: In glioma surgery, it is critical to maximize tumor resection without compromising 

adjacent non-cancerous brain tissue. Optical Coherence Tomography (OCT) is a non-invasive, 

label-free, real-time, high-resolution imaging modality that has been explored for glioma 

infiltration detection. Here we report a novel artificial intelligence (AI) assisted method for 

automated, real-time, in situ detection of glioma infiltration at high spatial resolution.

Experimental Design: Volumetric OCT datasets were intraoperatively obtained from resected 

brain tissue specimens of 21 patients with glioma tumors of different stages and labeled as either 

non-cancerous or glioma-infiltrated based on histopathology evaluation of the tissue specimens 

(gold standard). Labeled OCT images from 12 patients were used as the training dataset to develop 

the AI assisted OCT-based method for automated detection of glioma-infiltrated brain tissue. 
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Unlabeled OCT images from the other 9 patients were used as the validation dataset to quantify 

the method detection performance.

Results: Our method achieved excellent levels of sensitivity (~100%) and specificity (~85%) for 

detecting glioma-infiltrated tissue with high spatial resolution (16 μm laterally) and processing 

speed (~100,020 OCT A-lines/second).

Conclusions: Previous methods for OCT-based detection of glioma-infiltrated brain tissue rely 

on estimating the tissue optical attenuation coefficient from the OCT signal, which requires 

sacrificing spatial resolution to increase signal quality, and performing systematic calibration 

procedures using tissue phantoms. By overcoming these major challenges, our AI-assisted method 

will enable implementing practical OCT-guided surgical tools for continuous, real-time and 

accurate intra-operative detection of glioma-infiltrated brain tissue, facilitating maximal glioma 

resection and superior surgical outcomes for glioma patients.

INTRODUCTION

Gliomas are the most common and aggressive primary brain cancers in adults [1, 2]. It is 

well established that maximal glioma surgical resection can lead to both prolonged survival 

and delayed cancer recurrence [1, 3–6]. The challenge, however, lies in the limited ability of 

neurosurgeons to differentiate cancerous versus non-cancerous brain tissue during resection 

surgery. The standard of care, which is interpreted as the surgeon’s perception of cancer 

based on gross appearance and all available intraoperative surgical navigational systems, has 

shown to have 100% sensitivity and 40 to 50% specificity [7]. Overcoming this surgical 

challenge will enable both maximizing cancer resection and minimizing damage of healthy 

brain tissue, thus significantly improving both the overall survival rate (OS) and progression-

free survival (PFS). [8–10]

Several imaging techniques are currently being evaluated or already adopted as image-

guided surgical tools to assist with brain cancer resection. Magnetic resonance imaging 

(MRI) provides excellent visualization of soft tissue, but it is not sensitive at detecting 

microscopic diseases at tumor margin, even when used intraoperatively [11]. Intraoperative 

computed tomography (iCT) allows assessing for residual cancer, but has low resolution at 

the tumor periphery [12]. In addition, these imaging modalities are time-consuming, costly 

(upwards of $1 million dollars to adopt), and do not provide continuous real-time 

intraoperative guidance. Intraoperative ultrasound imaging (iUS) enables real-time imaging, 

but it has limited contrast and spatial resolution for brain cancer detection [13]. 

Intraoperative fluorescence imaging of 5-aminolevulinic acid (5-ALA) induced 

protoporphyrin-IX (PpIX) has shown a good correlation between fluorescence distribution 

and the presence of high-grade glioma [14], but it has shown limited sensitivity and 

specificity for detecting cancer-infiltrated brain tissue and low-grade gliomas [15, 16]. 

Raman spectroscopy and imaging have been broadly applied for brain tissue biochemical 

differentiation [17] and glioma infiltration detection by providing subcellular resolution and 

label-free imaging capabilities [18–22]. Unfortunately, several limitations are associated to 

these techniques, including the intrinsic weakness of the Raman signal, limited imaging 

depth and field of view (FOV), and slow imaging speed [23–25]. In addition, the capability 

of Raman spectroscopy and/or imaging for detecting cancer-infiltrated brain tissue 

Juarez-Chambi et al. Page 2

Clin Cancer Res. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intraoperatively has not yet fully demonstrated [26, 27]. More recently, coherent Raman 

Scattering (CRS) and Stimulated Raman Scattering Microscopy (SRS) have been explored 

for brain tumor margin differentiation; however, a definite intraoperative Computer-Aided 

Diagnosis system for human brain tissue differentiation has not been reported [23, 26, 28, 

29]. In summary, there is still an urgent need for image-guided tools capable of providing 

continuous, in situ and accurate assessment of brain cancer infiltration during brain tumor 

resection surgery.

Optical coherence tomography (OCT) is a non-invasive medical imaging technique capable 

of continuous, label-free, high-resolution, 2D and 3D imaging of biological tissues [30]. 

Since the imaging depth of OCT (1.5 – 3 mm) is similar to the resection depth of cancer 

infiltrated brain regions, OCT has been evaluated as an image-guided tool for brain tumor 

resection surgery [7, 31–35]. One common limitation of previous studies, however, is the 

lack of adequate computational methods for rapid, automated and accurate intraoperative 

detection of cancer-infiltrated brain tissue at high spatial resolution, particularly for glioma 

resection.

Previous computational methods for OCT-based detection of glioma-infiltrated brain tissue 

rely on estimating the tissue optical attenuation coefficient from the OCT signal, which 

require averaging multiple A-line signals to reduce the noise and thus sacrificing spatial 

resolution. In addition, previous methods also require performing calibration procedures 

using tissue phantoms [7, 31, 33, 36]. To overcome these major challenges, we have 

developed a novel artificial intelligence (AI) based computational method in which each 

depth-dependent OCT intensity measurement (or A-line) is modeled as a linear combination 

of underlying characteristic intensity-depth profiles. As a result, this method enables 

identifying and quantifying intensity-depth signatures specific to A-lines from glioma-

infiltrated brain tissue, which can be utilized as discriminative features within machine 

learning algorithms to detect glioma-infiltrated brain tissue. The method was successfully 

developed using a database of OCT 3D images taken from freshly resected human non-

cancerous and glioma-infiltrated brain tissue samples, and its performance was robustly 

quantified using an independent validation database. Owing to its demonstrated accuracy, 

low computational cost and high spatial resolution, this method has the potential to enable 

the development of OCT-guided surgical tools for continuous, real-time and accurate in situ 
intra-operative detection of glioma infiltration.

MATERIALS AND METHODS

Database of OCT scans from fresh brain tissue surgical samples

Intraoperative, fresh brain tissue samples were obtained from the edge of the surgical cavity 

based on neurosurgeon visual interpretation and image-guided navigation in 21 surgical 

glioma patients. The imaging protocol was approved by the Institutional Review Board at 

Johns Hopkins University, which follows the Belmont Report ethical guidelines. Informed 

written consent was obtained from each subject or each subject’s legal guardian. The tissue 

samples corresponded to either non-cancerous or glioma-infiltrated brain regions. A number 

of OCT volumes were acquired from different locations within each brain tissue sample. The 

measured OCT lateral (i.e. horizontal) and axial (i.e. vertical or depth) resolutions were 
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approximately 16.0 μm and 6.4 μm (in tissue), respectively [7]. Each volume consists of a 

series of 10 OCT cross-sectional images or B-scans of 1024 pixels (2 mm) laterally by 2048 

pixels (2.5 mm) in depth, where each B-scan was acquired at 0.5 mm intervals, resulting in a 

volume of 5×2×2.5 mm3 (W × L × D). In order to divide the database of OCT volumes into 

training and validation sets, the 21 patients were randomly divided into two groups, one with 

12 and another with 9 patients. All the volumes from the group of 12 patients were assigned 

to the training set, while all the volumes from the group of 9 patients were assigned to the 

validation set. All the samples underwent histopathological processing and evaluation by a 

neuropathologist [7]. The histopathological distributions of the OCT volumes in the training 

and validation sets are summarized in Table 1.

OCT B-scans preprocessing

Each original OCT B-scan was preprocessed following the procedure described in (Figure 

1). First, the original B-scan (Figure 1.a) was cropped to remove artifacts from above the 

tissue surface using a predefined fixed crop (Figure 1.b). Then, the tissue surface was 

detected from the cropped B-scan using the Canny Edge Detection algorithm (Figure 1.c) 

[37], and the B-scan was warped using a circle-shifting upward method in order to flatten 

the surface (Figure 1.d). Finally, in order to eliminate reflection artifacts within the tissue 

region caused by the cover glass or the saline surface (arrows in Figure 1.d), a peak detection 

algorithm was applied and the regions of the A-line around the detected peaks were 

smoothed using a 2D entropy filter of order 5×5. Although, these preprocessing steps do not 

guarantee the absolute elimination of all artifacts, the resulting preprocessed B-scans (Figure 

1.e) were adequate for the application of the A-line modeling method described in the 

following section.

Model-based OCT A-line feature extraction

The main idea behind our method for automated classification of non-cancerous vs. glioma-

infiltrated brain regions is to model every A-line yk of any OCT B-scan as a linear 

combination of N profiles or end-members pn (n = 1,…,N):

yk =  ∑n = 1
N αk, npn ∀k = 1, …, K . (1)

The profiles pn are assumed to be the same for all the A-lines of the available data, while the 

linear coefficients or abundances αk,n, are assumed to be unique to each A-line yk. The 

profiles pn were first estimated from the training set, consisting of 1,940 B-scans (Table 1). 

To accelerate the estimation of the profiles, only every other A-line in each B-scan of the 

training set were used (512 out of 1,024 A-lines per B-scan). All the selected training A-

lines (1,940 × 512 = 993,280) were arranged into a matrix Y = [y1 …yK] of size L × K, 

where L is the length of each A-line (1,024) and K is the total number of A-lines in the 

training set (993,280). The N unknown profiles pn were arranged into a matrix P = [p1 …pn] 

of size L × N, where L is the length of each profile (equal to the A-line length) and N is the 

number of profiles. The unknown abundances were arranged into a matrix A = [α1 …αK] of 

size N × K, respectively, where the abundance column vector at the kth A-line is denoted as 
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αk = [αk,1 …αk,N]′. Using this matrix notation, the modeling of all the A-lines, based on 

Eq. (1), can be expressed as: Y = PA.

The simultaneous estimation of the unknown profile P and abundance A matrices from the 

training OCT A-line data Y can be formulated as a nonlinear quadratic optimization 

problem, with the following specific constrains: a) the profiles can have positive values only 

(P ≥ 0), b) the abundances can have positive values only (A ≥ 0), and c) the values of the 

abundances for a given A-line should add to one, since they represent the relative 

contribution of each profile to that A-line (AT1 = 1). The resolution of this constrained 

nonlinear quadratic optimization problem can be performed by applying our recently 

developed and validated blind end-member and abundance estimation (BEAE) method [38, 

39], which minimizes the following cost function:

minP, A
1
2 Y − PA F

2 + ρ∑i = 1
N − 1 ∑ j = i + 1

N ‖pi − p j‖
2 − μ A F

2 . (2)

The first term is directly related to the quadratic optimization approach in Eq. (1). The 

second term is a regularization term that penalizes the distance between profiles by using a 

regularization parameter ρ > 0. The third term is a regularization parameter for the 

abundances which ensures low entropy conditions among A-lines by using μ > 0. Once the 

profiles P have been estimated from the training data, the abundances for any new set of A-

lines can be directly estimated by solving Eq. (1) using a constrained linear least square 

approach. This estimation is computationally fast, as it only involves solving a system of 

linear equations with positivity constrain on the abundances.

Classifier training

The abundances αk,n estimated for each A-line can be used as discriminative features within 

a machine learning algorithm designed to classify each A-line as from either a non-

cancerous or a glioma-infiltrated brain region. Due to the number of features (N − 1) vs. the 

number of training data (K), a simple logistic regression classifier was chosen over other 

more complex methods, such as support-vector machines and neural networks [40]. Since 

each whole OCT volume in the training set was annotated as either non-cancerous or 

glioma-infiltrated brain tissue (Table 1), all the A-lines in a given volume were labeled based 

on their volume annotation. The resulting abundances A from the 993,280 labeled A-lines in 

the training set (194 volumes × 10 B-Scans/volume × 512 A-lines/B-Scan, see Table 1) were 

then used to optimize the logistic regression classifier. Since the logistic regression classifier 

was trained to classify each A-line of a new OCT volume as either from a non-cancerous or 

a glioma-infiltrated brain region, not all the A-lines from the new OCT volume would 

necessarily be classified to the same class. Therefore, in order to classify a whole new OCT 

volume as either from a non-cancerous or a glioma-infiltrated brain region, a threshold on 

the percentage of A-lines classified as from a glioma-infiltrated region in that volume was 

used. This threshold was determined by performing a receiver-operating characteristic curve 

(ROC) analysis following a Leave-One-Patient-Out-Cross-Validation (LOPOCV) 

classification performance estimation strategy with the OCT volumes of the training set.
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Classification performance estimation

The overall machine learning classification computational scheme optimized with the 

training set was applied to the validation set. First, the same profiles P estimated from the 

training set were used to directly estimate the abundances of each of the A-lines in the 

validation set. Then, the resulting abundances A from the 3,020,800 A-lines in the validation 

set (295 volumes × 10 B-Scans/volume × 1024 A-lines/B-Scan, see Table 1) were used to 

classify each A-line as either from a non-cancerous or a glioma-infiltrated brain region using 

the same logistic regression classifier optimized with the training set. Finally, each of the 

295 OCT volumes in the validation set were classified as either from a non-cancerous or a 

glioma-infiltrated brain region using the same threshold on the volume percentage of A-lines 

classified as from a glioma-infiltrated region, previously optimized with the training set. The 

classification performance obtained from the validation set was quantified in terms of overall 

classification accuracy, sensitivity and specificity.

RESULTS

OCT A-line model performance

The BEAE method was applied using a model order of N=3 (number of profiles) to the A-

lines of the OCT volumes in the training set, as illustrated in (Figure 1.f). A detailed 

description of the method used to determine the optimal BEAE order value of N=3 is 

provided as Supplemental Material. All the 1940 B-scans analyzed are shown stacked up 

next to each other horizontally in the top panel. No clear distinction between A-lines from 

non-cancerous and glioma-infiltrated brain regions (separated by the red dashed line) can be 

observed from the stacked B-scans. The estimated abundances A of the 993,280 A-lines 

from the training set included in the BEAE analysis are shown in the middle panel. The 

three profiles P estimated from the training set, shown in the bottom panel, have 

complementary shapes and positive amplitude values as expected due to the positivity 

optimization constrain. To illustrate the capability of the BEAE method to model A-lines as 

a linear combination of the three estimated common profiles (P), sample A-lines and their 

model fits are shown in (Figure 1.g) (non-cancerous volume) and (Figure 1.h) (glioma-

infiltrated volume). It can be observed that the model fits capture the shape of the A-line 

without overfitting the noise in the OCT signal.

Model-based OCT A-line feature extraction

An important consequence of modeling any A-line yk as a linear combination of a set of 

commons profiles pn is the resulting unique representation of each A-line in terms of its 

abundances αk,n. Since these unique sets of abundances parameterize the unique shape of 

each A-line, they can be utilized as feature vectors within a machine learning classification 

algorithm. Since the abundances of each A-line add to 1, only (N-1) abundances are 

independent. Since the OCT training A-lines were modeled using three abundances (N=3), 

only two of them could be used as classification features. The distributions of each of the 

three abundances for the non-cancerous and glioma-infiltrated A-lines from the training set 

are shown in (Figure 2). It can be observed that the first abundance is distributed at lower 

values for the glioma-infiltrated A-lines (Figure 2.a), while the opposite can be observed for 

the third abundance (Figure 2.c). In addition, the distributions of the first and second 
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abundances are roughly the reflection of each other, providing redundant information 

(Figure 2.a,b). Following an exhaustive feature selection approach, the first and third 

abundances (αk,1, αk,3) were chosen for the optimal feature vector xk = [αk,1, αk,3] used for 

training the logistic regression classifier aiming to identify an A-line as either from a non-

cancerous or a glioma-infiltrated brain region. In Figure 2.d, the distributions of these 

feature vectors for the non-cancerous and glioma-infiltrated A-lines of the training set are 

shown in the two-dimensional space (αk,1, αk,3). A detailed description of the method used 

for feature selection is provided as Supplementary Material.

Classifier training

The logistic regression classifier was trained to classify any A-line as either from a non-

cancerous or a glioma-infiltrated brain region using the 194 OCT volumes in the training set. 

To classify a whole new OCT volume as either non-cancerous or glioma-infiltrated, the 

threshold on the percentage of A-lines classified as from a glioma-infiltrated region in that 

volume was determined by applying ROC analysis following a LOPOCV performance 

estimation strategy in all the 194 OCT volumes of the training set. The corresponding area 

under the ROC curve (AUC) was AUC=0.96, which indicates a very promising classification 

performance. Since the clinical emphasis is to obtain maximal glioma-infiltrated tissue 

resection while preserving as much healthy tissue as possible, sensitivity for detecting 

glioma-infiltrated tissue was prioritized over specificity. A threshold of 80% was selected in 

order to maximize the sensitivity for detecting glioma-infiltrated region (99.15%) while 

maintaining as much non-cancerous tissue as possible (86.21%). The results of the ROC 

analysis are shown in (Figure 3.a).

Classification performance estimation

The performance of the trained logistic regression classifier was estimated blindly on the 

totally independent validation set as follows. First, the abundances of each A-line in the 

validation set were estimated using the same profiles already estimated from the training set 

(Figure 1.f, bottom panel). The abundance estimation is computationally fast, due to the 

matrix operation approach, allowing computing a B-Scan (1024 A-lines) in 30 ms using 

MATLAB in a Core i7 4790K 4GHz processor. Once the abundances have been estimated, 

each A-line in the validation set was classified using the independently trained logistic 

regression classifier. After the A-line level classification, each OCT volume was finally 

classified as either from a non-cancerous or a glioma-infiltrated region using the previously 

selected threshold on the percentage of A-lines in that volume classified as from a glioma-

infiltrated region. The results on the classification of the OCT volumes in the validation set 

are summarized in Table 2. The applied double-blinded validation indicated promising levels 

of sensitivity (>90%) and specificity (>80%) for discriminating low-grade and/or high-grade 

glioma-infiltrated tissue from non-cancerous tissue. Nevertheless, ~15% of all volumes were 

misclassified, probably due to significant intra-class variability and extra-class similarity 

observed among the OCT images, as illustrated in (Figure 3.b–e). It is worth noting that this 

validation set was completely independent (collected from 9 different patients) and the 

validation was blindly performed, meaning that the validation set was provided unlabeled for 

the described performance estimation procedure.
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In order to demonstrate the potential of our computational framework for real-time accurate 

detection and volumetric visualization of cancerous and non-cancerous brain tissue, two 

unlabeled high-resolution OCT volumes (5×2×2.5 mm3; 256×2048×2048 pixels) from a 

non-cancerous and a glioma-infiltrated brain region were blindly processed with our trained 

computational framework. The computational speed for processing and classifying each A-

line was >100,000 A-lines per second. In order to visualize the classification results, the 

OCT volumetric data was 3D rendered, and the surface of the imaged brain region was 

color-coded using a colormap proportional to the estimated post-probability of each A-line 

being from a glioma-infiltrated brain region (Figure 3.f). For the OCT volume of a glioma-

infiltrated brain region (Figure 3.f, left panel), 100 % of the A-lines were correctly classified 

as from glioma-infiltrated brain region. For the OCT volume of a non-cancerous brain region 

(Figure 3.f, right panel), 92 % of the A-lines were correctly classified as from non-cancerous 

brain region.

DISCUSSION

Maximal tumor resection both improves the overall survival and delays cancer recurrence in 

low-grade and high-grade glioma patients [6, 41–43]. The limited ability of neurosurgeons 

to differentiate non-cancerous versus cancer-infiltrated brain tissues during resection surgery 

is the main challenge preventing higher rates of maximal tumor resection. Although several 

imaging techniques have been utilized routinely to assist brain cancer surgeries [7, 13, 29, 

44, 45], there are significant limitations to these modalities. An effective image-guided tool 

for brain cancer resection surgery should be capable of providing high-resolution, accurate, 

continuous, and real-time in situ discrimination between non-cancerous and cancer-

infiltrated brain tissue from intra-operative volumetric brain images.

Optical imaging modalities are well suited to enable such capabilities. Among them, 

intraoperative imaging of 5-ALA induced PpIX brain tissue fluorescence is perhaps the most 

extensively evaluated approach. Unfortunately, its performance for identifying glioma-

infiltrated brain regions has not been fully demonstrated, with different studies reporting a 

wide range of sensitivity (50–100%) and specificity (70–100%) [46]. One major limitation 

of this approach is its dependency on the sufficient and specific 5-ALA uptake by the glioma 

tissue, which can be affected by many factors, including blood-brain barrier permeability, 

cellular/vascular proliferation and glioma grade [16, 47]. Another limitation is the lack of 

quantitative methods to image the 5-ALA induced PpIX fluorescence, which has prevented 

successfully moving from a subjective to a more objective and accurate interpretation of 5-

ALA induced PpIX brain tissue fluorescence images [48].

OCT can be seemingly implemented as a hand-held surgical tool and/or integrated into 

standard surgical microscopes to provide label-free, high-resolution and fast volumetric 

tissue imaging. These capabilities and its relatively inexpensive implementation cost make 

OCT an ideal imaging modality to enable continuous real-time guidance during brain cancer 

resection surgery. However, for OCT to become an impactful image-guided tool for brain 

cancer resection surgery, computer-aided diagnostic (CAD) systems are needed to enable in 
situ intra-operative automated, objective and accurate detection of cancer-infiltrated brain 
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tissue, as well as real-time volumetric visualization of cancerous and non-cancerous brain 

tissue during tumor resection surgery.

Previously reported approaches for OCT-based detection of cancer-infiltrated brain tissue 

rely on estimating the tissue optical attenuation coefficient from the OCT signal, which is 

used as a discriminative feature for identifying cancerous or cancer-infiltrated brain tissue 

[7, 34, 49]. For instance, Kut et al. recently introduced a computationally efficient method to 

estimate the optical attenuation coefficient of brain tissue from OCT scans, and 

demonstrated the potential of this estimated optical parameter to detect glioma-infiltrated 

brain tissue (sensitivity ~90%, specificity ~80%) using an independent validation set of 59 

brain tissue samples [7].

One major limitation of all these OCT quantitative methods, however, is the need to spatially 

average neighboring OCT A-lines in order to attain signal-to-noise ratio levels that are 

adequate for estimating the tissue optical attenuation coefficient. For example, in the study 

by Kut et al., a B-scan of 1024 A-lines was divided in three adjacent regions, and all the 

~341 A-lines in each region were averaged to estimate three optical attenuation coefficient 

values per B-scan; thus, only three regions per B-scan could be classified using their 

approach [7]. In contrast, A-line averaging is not needed in our method; thus, each A-line 

can be classified, resulting in an improvement in spatial resolution of ~341:1 compared to 

the method by Kut et al. [7]. Moreover, since the spatial resolution of the classification map 

provided by our method is equal to the lateral optical resolution of the OCT instrument used 

(16.0 μm for this study), the resolution of the classification map can be as good as the best 

optical resolution possible with the available state-of-the-art OCT instrumentation 

technology. The demonstrated superior spatial resolution enabled by our method is 

particularly relevant for the accurate detection of glioma-infiltrated brain tissue, which is 

characterized by showing a wide range in the degree of cancer infiltration at the tumor 

margins.

Furthermore, the previously reported approaches for OCT-based detection of cancer-

infiltrated brain tissue, including the method by Kut et al. [7], is the need to perform 

calibration procedures which could be cumbersome. In comparison, our method reported 

here only requires a training set of labeled OCT brain tissue scans obtained with the same or 

a similar OCT instrument to estimate the depth profiles pn used to model each A-line and 

train the logistic regression classifier.

The classification performance of our computational framework for detecting glioma-

infiltrated brain tissue (sensitivity: >90%; specificity: >82%) was quantified following a 

robust and unbiased double-blinded validation strategy using an independent validation set 

of 295 brain tissue samples. Moreover, the methods adopted at each stage of our 

computational framework (preprocessing, feature extraction, classification) were also 

strategically chosen and designed to enable real-time processing of OCT volumetric images. 

Thus, another relevant feature of our computational framework is its high processing speed 

(100,020 A-lines per second, using MATLAB in a Core i7 4790K 4GHz processor), which 

would enable processing an arbitrary tissue volume of 5×5×2.5 mm3 (256×256×2048 pixels) 

in ~0.7 seconds. It should be noted that the processing speed of this novel computational 
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framework can be significantly increased by implementing it using object-oriented 

programming languages and parallel programing and computing. Altogether, the 

demonstrated classification accuracy and processing speed of our computational framework, 

once embedded within intra-operative OCT imaging instruments, would enable developing 

clinically relevant CAD systems for automated, accurate, real-time in situ detection of 

glioma infiltration during tumor resection surgery.

Study limitations

Although the results of this preliminary study are quite encouraging, it still has some 

limitations. First, our computational framework showed a misclassification rate of ~15%, in 

part due to the noticed intra-class variability and extra-class similarity observed among the 

OCT images (Figure 3.b–e), which might indicate the need for using additional OCT 

features and/or more sophisticated classification methods. Furthermore, from the 

computational point of view, noisy labeling is expected in medical imaging data, and in our 

OCT brain tissue datasets in particular due to the heterogeneity of the glioma tissue samples. 

To overcome this problem, the use of classification methods with higher tolerance to noisy 

labels (e.g. weakly supervised learning models) might improve the performance of the 

model. Moreover, the current OCT databases, when analyzed at the A-line level, could be 

sufficiently large to allow exploring state-of-the-art classifiers such as those based on 

Convolutional Neural Networks (CNN), which might also improve the detection of glioma-

infiltrated brain tissue.

In addition, it can be quite possible that a classification model designed and trained to detect 

infiltration of a specific tumor type and grade could outperform a more general model 

designed and trained to detect infiltration of a plurality of brain tumor types and/or grades. 

To investigate this alternative approach, two additional classification models were trained 

using either the available Low-Grade or High-Grade glioma-infiltrated samples, and their 

results are reported as Supplementary Material. Compared to the original more general 

classification model, these more targeted classifiers performed with lower sensitivity but 

better specificity. These observations suggest that once more comprehensive databases 

become available, more specific classification models can be developed and compared 

against more general ones to determine an optimal approach.

Another limitation is that the OCT datasets used for training and validating our 

computational framework were acquired from freshly resected non-cancerous, Low-Grade 

glioma-infiltrated and High-Grade glioma-infiltrated brain tissue samples from glioma 

patients undergoing tumor resection surgery. Since the training and validation datasets used 

in this study cannot be considered representative of the “universe” of tumor, the training of 

our computational framework needs to be repeated using more comprehensive databases of 

in vivo OCT volumes that include other tumor types. Once optimized, the computational 

framework would be embedded into a intraoperative OCT imaging instrument, and the 

performance of the resulting OCT-guided surgical tool for automated real-time in situ 
intraoperative detection of brain tumor infiltration will have to be quantified in a prospective 

clinical study, as depicted in (Figure 4).
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Conclusion

In conclusion, we have introduced a novel computational method for OCT-based automated 

detection of glioma-infiltrated from non-cancerous brain tissue. Our method applies a 

modeling approach to parametrize the information encoded in the shape of each depth-

dependent OCT intensity signal (A-line) and uses the A-line model parameters as features 

within a machine learning classification scheme. Since our method can process OCT images 

at their original high spatial resolution and does not require performing calibration 

procedures using tissue phantoms, it overcomes major challenges of previously reported 

methods. Due to its demonstrated detection accuracy, robustness and low computational 

cost, this method could enable developing faster, and more accurate OCT-guided surgical 

tools for continuous, real-time and accurate in situ intra-operative detection of any stage 

glioma infiltration, facilitating extensive glioma resection and improved surgical outcomes 

for glioma patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance:

Maximal tumor resection improves overall survival and delays cancer recurrence in 

glioma patients; however, the margins of highly infiltrating gliomas are often very 

difficult to delineate during glioma resection surgery. Various medical imaging modalities 

are used pre- and/or intra-operatively to assist in the delineation of glioma margins. 

Unfortunately, none of these technologies can provide quantitative, real-time, accurate 

and continuous guidance during glioma resection surgery. Optical Coherence 

Tomography (OCT) is a non-invasive, label-free, real-time, high-resolution volumetric 

imaging modality. Previous computational methods for OCT-based detection of glioma 

infiltration require sacrificing significantly spatial resolution and performing cumbersome 

calibration procedures. We have developed and validated an alternative accurate and fast 

artificial intelligence (AI) assisted computational method that overcomes these major 

limitations. Our method can be implemented within generic OCT instruments to enable 

real-time, high-resolution, automated, accurate, in situ, intraoperative detection of glioma 

infiltration, facilitating maximal tumor resection and improved surgical outcomes for 

glioma patients.
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Figure 1 –. 
Preprocessing steps applied to every B-scan in both the training and validation sets. a) 

Unprocessed B-scan. b) Cropped B-scan. c) Surface detection using the Canny Edge 

Detection algorithm. d) Warped B-scan to generate a flat surface. Arrows indicate reflection 

artifacts. e) Peak detection to identify locations of reflection artifacts, and entropy filtering 

around the detected peaks to obtain a completely preprocessed B-scan. f) Results of the 

BEAE analysis applied to the training set. Top panel: All the A-lines (Y) from the training 

set included in the BEAE analysis. Middle panels: Estimated abundances (A) for each A-line 

analyzed. Bottom panel: Estimated profiles (P) common to all the A-lines included in the 
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BEAE analysis. g) Sample A-line from a non-cancerous volume and its fit modeled as the 

linear combination of the estimated common profiles (P). h) Sample A-line from a glioma-

infiltrated volume and its fit modeled as the linear combination of the estimated common 

profiles (P).
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Figure 2 –. 
Distributions of the three abundances of the non-cancerous and glioma-infiltrated A-lines in 

the training set. a) The first abundance (αk,1) is distributed at lower values for the glioma-

infiltrated A-lines. b) The distribution of the second abundance (αk,2) roughly mirrors that of 

the first abundance. c) The third abundance (αk,3) is distributed at higher values for the 

glioma-infiltrated A-lines. d) Distributions of the feature vectors xk = [αk,1, αk,3] for the 

non-cancerous and glioma-infiltrated A-lines (only 0.02 % of the total training set is shown 

for clarity).
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Figure 3 –. 
a) Results of the ROC analysis performed on the training set to select the threshold in the 

volume percentage of A-lines classified as from a glioma-infiltrated region used to classify 

the whole volume as either from a non-cancerous or a glioma-infiltrated region. The 

AUC=0.96 indicates a very promising classification performance. A threshold of 80% was 

selected in order to maximize the sensitivity (99.15%) at the best specificity level possible 

(86.21%) for classifying volumes from a glioma-infiltrated region. Sample classified B-

scans from the validation set, in which the surface was color-coded based on each A-line 

classification (red: glioma-infiltrated; green: non-cancerous): b) True Positive, c) False 

Positive, d) False Negative, and e) True Negative. f) Sample OCT 3D rendered images of 

brain regions in which the surface of the imaged brain tissue is color-coded using a colormap 

proportional to the estimated post-probability of each A-line being from a glioma-infiltrated 

brain region. For the sample OCT volume of a glioma-infiltrated brain region (left panel), 
100 % of the A-lines were correctly classified as from glioma-infiltrated brain region. For 

the sample OCT volume of a non-cancerous brain region (right panel), 92 % of the A-lines 

were correctly classified as from non-cancerous brain region.
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Figure 4 –. 
Methodology for an OCT-based CAD system. a) After a preoperative MRI-imaging for 

evaluation, we will use a b) OCT probe for c) intraoperatively image guidance during 

surgery. Finally, after preprocessing, feature extraction and classification, e) the automated 

real-time classification using a volumetric color-coded map of the tissue will be displayed 

for real-time guidance.
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Table 1 –

Training set (12 patients, 194 OCT volumes, 1940 B-scans) and validation set (9 patients, 295 OCT volumes, 

2950 B-scans).

Patient # (Location) # Non-cancerous OCT 
Volumes

# Glioma-infiltrated 
OCT Volumes

Grade of Cancer

TRAINING SET

Patient-1 1A 3 - -

Patient-2 2A 4 - -

Patient-3 3A 3 - -

Patient-4
4A 13 - -

4B 8 - -

Patient-5 5A 10 - -

Patient-6

6A - 8 Grade II

6B - 9 Grade II

6C 11 Grade II

6D - 13 Grade II

6E - 16 Grade II

Patient-7
7A - 5 Grade II

7B - 11 Grade II

Patient-8

8A - 8 Grade II

8B - 10 Grade II

8C - 11 Grade II

Patient-9 9A 18 - -

Patient-10

10A - 5 Grade IV

10B - 5 Grade IV

10C - 5 Grade IV

Patient-11 11A - 8 Grade IV

Patient-12 12A 10 - -

Total in Training Set 69 125

VALIDATION SET

Patient-13

13A - 13 Grade II

13B - 17 Grade II

13C - 14 Grade II

Patient-14 14A 18 - -

Patient-15

15A 15 - -

15B 9 - -

15C 9 - -

Patient-16

16A 16 - -

16B 8 - -

16C 16 - -

Patient-17
17A 23 - -

17B 16 - -

Clin Cancer Res. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Juarez-Chambi et al. Page 21

Patient # (Location) # Non-cancerous OCT 
Volumes

# Glioma-infiltrated 
OCT Volumes

Grade of Cancer

Patient-18 18A 21 - -

Patient-19
19A - 22 Grade IV

19B - 14 Grade IV

Patient-20
20A 12 - -

20B - 17 Grade II

Patient-21

21A 5 - -

21B - 15 Grade IV

21C - 15 Grade IV

Total in Validation Set 168 127
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Table 2 –

Confusion matrix of the blind validation classification results. Left column: results for the classification of 

low-grade glioma-infiltrated vs. non-cancerous brain tissue. Middle column: results for the classification of 

high-grade glioma-infiltrated vs. non-cancerous brain tissue. Right column: results for the classification of 

low/high-grade glioma-infiltrated vs. non-cancerous brain tissue.

Low-Grade vs. Non-cancerous High-Grade vs. Non-cancerous Low/High-Grade vs. Non-cancerous

Predicted

Sensitivity 
90.16%

Specificity 
80.95%

Sensitivity 
95.45%

Specificity 
82.14%

Sensitivity 90.55% Specificity 82.73%

55 32 63 30 115 29

6 136 3 138 12 139
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