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Abstract: Single-photon-excitation-based miniaturized microscope, or miniscope, has 
recently emerged as a powerful tool for imaging neural ensemble activities in freely moving 
animals. In the meanwhile, this highly flexible and implantable technology promises great 
potential for studying a broad range of cells, tissues and organs. To date, however, 
applications have been largely limited by the properties of the imaging modality. It is 
therefore highly desirable for a method generally applicable for processing miniscopy images, 
enabling and extending the applications to diverse anatomical and functional traits, spanning 
various cell types in the brain and other organs. We report an image processing approach, 
termed BSSE, for background suppression and signal enhancement for miniscope image 
processing. The BSSE method provides a simple, automatic solution to the intrinsic 
challenges of overlapping signals, high background and artifacts in miniscopy images. We 
validated the method by imaging synthetic structures and various biological samples of brain, 
tumor, and kidney tissues. The work represents a generally applicable tool for miniscopy 
technology, suggesting broader applications of the miniaturized, implantable and flexible 
technology for biomedical research. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Single-photon-excitation-based miniaturized microscope, or mini-scope, enables in vivo, 
wide-field calcium imaging in freely behaving animals [1–3]. Compared to conventional 
micro-endoscopic and electrophysiological techniques, the miniscope technology allows for 
longitudinal, population-scale recording of neural ensemble activities during complex 
behavioral, cognitive and emotional states [1,2,4–8]. The technique has thus far been 
successfully used to explore neural circuits in various brain regions such as cortical, 
subcortical and deep brain areas [5,7,9–15]. 

In practice, the miniscope technique mainly uses gradient-index (GRIN) rod lenses that 
offer several advantages compared to compound objective lenses, including low cost, light 
weight (<1 g), small diameters (<1 mm), long relay lengths (>1 cm), and relatively high 
numerical aperture (NA, >0.45). These features of the miniscope thus enable minimally 
invasive imaging of a significant volume of the brain with a cellular-level resolution in freely 
moving animals. However, broader applications have thus far been largely limited by the 
properties of the imaging modality. Specifically, unlike compound objectives, GRIN lenses 
suffer from severe optical aberrations such as distortions and spherical aberrations, mainly 
due to the radially-distributed parabolic (or non-aplantic) refractive index. These aberrations 
inherently deteriorate image quality, image resolution, contrast and effective field-of view 
(FOV) [16]. As a result, the deficiency becomes severely restrictive for single-photon-
excitation-based, wide-field imaging in thick tissues, leading to extensively overlapping 
signals, high background and artifacts in miniscopy images. 
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Although such aberrations can be compensated using additional optical elements [16–18], 
these methods either require special design for different GRIN lenses or are incompatible 
with a miniaturized system. Computational methods have thereby been developed as an 
alternative, efficient strategy to separate the background and denoise and extract the signals. 
Unlike previous assays for processing optically-sectioned (thus high-SNR) data resulted from 
two-photon or light-sheet microscopy [19–22], these computational methods are designed to 
handle typical miniscope imaging conditions with high fluctuating background, movements, 
distortions, and low SNR. Specifically, current methods mainly rely on region of interest 
(ROI) analysis [7,11,12,23], principal-component analysis/independent component analysis 
(PCA/ICA) [22,24] or constrained nonnegative matrix factorization (CNMF_E) approaches 
[25,26]. 

However, all existing methods are solely developed for extracting neuronal calcium 
imaging signals. This is mainly due to the fact that current miniscopy applications have 
remained almost exclusively focused on functional brain imaging, despite the promising 
potential for imaging a broader range of cells, tissues and organs. It is therefore highly 
desirable for a method generally applicable for processing miniscopy images, extending the 
applications to diverse anatomical and functional studies on various cell types in the brain and 
other organs. 

Here, we develop a computational approach, termed BSSE, allows for automatic 
processing, background suppression and signal enhancement of single-photon-excitation-
based miniscopy images. The approach provides a simple solution to the intrinsic challenges 
to separate the high background and denoise the overlapping signals. We demonstrated the 
method using synthetic structures, in vitro brain and kidney sections in mice, and in vivo 
calcium imaging data. We validated the method on both the lab-built and commercially 
available miniscopes. We expect this new algorithm to enable miniscopes for broader 
applications in biomedical research. 

2. Methods 

2.1 System setup and characterization 

We constructed the miniaturized imaging system based on the open-source design protocols 
(http://miniscope.org), as shown in Figs. 1(a) and 1(b). In particular, we used an infinitely-
corrected (0.25-pitch), 0.5NA GRIN lens (GT-IFRL-200-inf-50-NC, GRINTECH). The 
sample was illuminated with a 488-nm LED (LXML-PB01-0030, Lumileds), filtered by an 
excitation filter (FF01-480/40, Semrock) and collimated by a drum lens (45549, Edmund 
Optics). The corresponding emitted fluorescence was collected using a dichroic mirror 
(FF506-Di03, Semrock) and an emission filter (FF01-535/50, Semrock) and imaged by an 
aspherical tube lens (D-ZK3, Thorlabs) onto a CMOS sensor (MT9V032C12STM, ON 
Semiconductor). The use of an aspherical lens as the tube lens instead of an achromatic lens 
was to moderately enhance the optical sectioning capability (Appendix A and Fig. 7). The 

miniscope body (~5.0 
3cm ) was designed with Solidworks software and 3D-printed using a 

3D printer (RS-F2-GPBK-04, FormLabs2). The system uses single, flexible coaxial cables to 
supply power, control hardware, and transmit image data. 

To characterize the miniscope, we imaged water-immersed 200-nm fluorescent beads 
(FSDG002, Bangs Laboratories) and measured the point-spread function (PSF) of the system 
at varying depths, as shown in Fig. 1(c). The PSF images were Gaussian-fitted and exhibited 
FWHM values of ~3 µm and ~30 µm in the lateral and axial dimensions, respectively. 
Notably, the axial PSF is substantially extended due to the strong spherical and other 
aberrations in the system, which lead to severe spatial overlaps of signals while imaging thick 
samples. Furthermore, a negative USAF target (R1DS1N, Thorlabs), attached to fluorescent 
tapes and immersed in water, was used to determine the magnification (~6x) and effective 
pixel size (1 μm) of the system, as shown in Figs. 1(d) and 1(e). 
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Fig. 1. System setup and characterization. (a) Solidworks design scheme. (b) Comparison of 
the 3D-printed miniscope with a U.S. quarter coin. The LED illuminates blue light peaked at 
488 nm. The indicator on the camera sensor emits red light when turned on. (c) Representative 
point-spread function (PSF) of the miniscope, taken with a 200-nm fluorescent bead, exhibits 
FWHM values of 3.6 µm and 33 µm in the lateral and axial dimensions, respectively. (d) 
Image of a 1951 USAF target, with fluorescent tapes attached to the rear surface. (e) Cross-
sectional profile along the solid line in the inset, which shows the zoomed-in image of the 
boxed region in (d). The profile resolves the caliber lines separated by a known distance of 8.8 
µm over 9 pixels (physical pixel size = 6 μm), determining the ~6x magnification of the 
system. Scale bars: 5 mm (a), 3 μm (c), 50 μm (d), 10 μm (e). 

2.2 Animal and tissue sample preparation 

For brain tumor tissue, C57BL/6 mice (wild type, WT) were purchased from Jackson 
Laboratory. GL261 cells were stably transfected with EGFP and stereo-tactically injected into 
the striatum of the brain, near the ventricles [27–29]. 

For the kidney tissue, the transgenic mouse line with enhanced GFP (EGFP) cDNA under 
the control of a beta-actin promoter and cytomegalovirus enhancer was purchased from 
Jackson Laboratory [30]. 

For the brain tissue, the Macgreen transgenic mouse line with EGFP under the control of 
the mouse Csf1r promoter was purchased from Jackson Laboratory. The EGFP is expressed 
in macrophages and trophoblast cells, and specifically in microglia cells in the brain [31]. 

All animal procedures were approved by the Stony Brook University Institutional Animal 
Care and Use Committee (IACUC). Mice were bred in-house under maximum isolation 
conditions on a 12:12 hour light: dark cycle with food ad libitum. 
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algorithm separates and suppresses different frequency components of the background. The 
predominant low-frequency background is initially rejected from the raw image using 
morphological image processing [33]. The resulting image was then modulated by a weight 
mask [34,35] to remove the frequency components primarily responsible for the fluctuating 
background (inhomogeneous background due to the sample or the evolution of background 
over time). Next, the algorithm enhances the resolution of the background-suppressed image 
by exploiting the gradient information of the overlapping signals [36,37]. Specifically, we 
considered the radial symmetry of the 2D PSF of a single emitter or a sub-diffraction-limited 
point source, as well as its gradient distribution, in the background-suppressed miniscopy 
image. The signals are initially sharpened by subtracting the weighted first derivative of the 
image. To ensure the signals are narrowed at a moderate and constant ratio, we selected the 
scale factor σ for the sharpened signal image IS = IBF – σ · IG1, where σ is determined as the 
ratio between the values of the simulated Gaussian PSF and its first derivative at the 
inflection point. To enhance the resolution between the overlapping signals, we combined the 
second derivative of the image to identify and segment the crossings of the overlapping 
regions by zero-concavity analysis. The removal of the background in the first module 
circumvents artifacts generated by the sensitive response of the image gradients to the 
fluctuating background. The outcome image of the algorithm exhibits both substantially 
suppressed background and enhanced signals, as shown in Fig. 2 and Appendix B. For tissue 
images, a post-smoothing step using a Gaussian filter is included to maintain the continuity of 
biological structures [33,38]. The BSSE algorithm works with the proprietary software 
package MATLAB R2015a and above. The source code is available from the authors and on 
Github (https://github.com/shujialab/BSSE). 

The method was first demonstrated using synthetic caliber patterns with various spacing, 
SNRs and intensity, as shown in Appendix C and Figs. 9-13. As seen, using BSSE, we 
noticed that the method can improve the image quality of the diffraction-limited images. It 
was also shown that the high background at varying levels was suppressed, and the close-by, 
low-SNR structures were enhanced and better resolved. Also, as illustrated in Appendix C, 
the original intensity relationship can be retained for most of the intensity levels and gradually 
deviates from the linear manner when it reaches noticeably strong or weak intensity regime, 
considering the fact that the denoising step of the method is intrinsically nonlinear. In 
addition, in Appendix C, we demonstrated our strategy to process highly dense structure to 
maintain high-resolution structures while avoiding the loss of weak signals. 

Next, we imaged and measured the profiles of fluorescent beads (FSDG, Bangs 
Laboratories) attached to the surface of a cover slide, as shown in Fig. 3. It is shown that the 
method not only suppressed the fluctuating background, but also enhanced the signals from 
single emitters across a FOV of ~300 µm × 300 µm, as shown in Figs. 3(a)-3(d). Because 
BSSE considers the gradient symmetry of the PSFs, the image degradation caused by the 
intrinsic aberrations in the system can also be reduced due to their lack of radial symmetry, 
recovering the Gaussian-like PSFs, as shown in Figs. 3(e)-3(h). It should be addressed that 
BSSE improves the image quality mainly through enhancing the SNR. We observed that the 
relatively high SNR of Fig. 3(h) can be further improved, mainly by rejecting the background, 
thus making the nearby dim bead resolvable as shown in the right peak of Fig. 3(i). It should 
be noted that here the improvement was demonstrated for the fluorescent beads located on a 
2D surface, where the background is mainly resulted from any floating beads or the CMOS 
camera sensor. In Results, we demonstrated the method by imaging 3D, thick biological 
samples. 
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Fig. 3. Characterization of the BSSE method. (a) Raw and BSSE-processed images of 1-µm 
fluorescent beads, respectively. Additional Gaussian noisy background was added to the raw 
image. It can be observed that the fluctuating background was substantially suppressed. (b) 
Gaussian fitted cross-sectional profiles along the solid line in (a) of both raw and processed 
images, which showed enhanced signals using BSSE. (c, d) Raw (c) and BSSE-processed (d) 
images of 200-nm fluorescent beads. (e-h) Zoomed-in images the corresponding boxed regions 
in (c, d). (i) Cross-sectional profiles with respect to the corresponding solid line in (h) in the 
raw and processed images, showing enhanced signals of two nearby emitters separated <5 µm. 
Scale bars: 5 µm (a), 50 µm (c, d), 5 µm (e-h). 

3. Results 

3.1 Imaging mouse brain tumor tissue 

We first imaged orthotopic mouse brain tumor sections, where EGFP-expressing GL261 cells 
(GL261-EGFP) were stereo-tactically injected into the striatum of the brain near the 
ventricles. As seen in Fig. 4(a), the GL261-EGFP cells that were out-of-focus of the 
miniscope resulted in high background, deteriorating the in-focus signals detected. The 
signals were further diminished due to the stronger aberrations near the outer range of the 
FOV. In contrast, the use of BSSE substantially removed the background and enhanced the 
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Fig. 4. Imaging mouse brain tumor. (a,b) Raw (a) and BSSE-processed (b) images of mouse 
brain tumor tissue after implantation of glioma GL261-EGFP cells. (c) Merged image of (a,b), 
showing the suppressed background and enhanced signals using BSSE. (d-g) Zoomed-in raw 
(d, f) and BSSE-processed (e,g) images of the corresponding boxed regions in (a,b). (h,i) 
Cross-sectional profiles along the solid lines in (d,e) and (f,g), respectively, exhibit enhanced 
resolution of cellular structures of the tumor tissue. RSP = 0.773. Scale bars: 100 µm (a), 15 
µm (d). 

SNR by more than two orders of magnitude, as shown in Figs. 4(b)-4(g). The in-focus 
information from the previously overlapping signals can now be well sectioned and resolved, 
as shown in Figs. 4(h) and 4(i). By extracting the signals out of the high background and 
reducing the influence of aberrations, the method also effectively enlarged the FOV by >1.5 
times (>300 µm × 300 µm). It should also be noted that the dynamic range of the images has 
been varied due to the improved SNR, so some existing dim structures become less visible, 
but they can be well displayed by adjusting the contrast of the BSSE-processed images. For 
the brain tissue images, a good correlation (>0.75) was shown between the raw and processed 
images by the Resolution Scaled Pearson’s coefficient (RSP), which scores the image quality 
with a normalized value between [-1, 1] [39]. 
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Fig. 5. Imaging mouse kidney tissue. (a,b) Raw (a) and BSSE-processed (b) images of the 
kidney cortex of beta actin-EGFP mice. (c) Merged image of (a, b), showing enhanced tubular 
structures with suppressed background using BSSE. RSP = 0.879. (d,e) Raw (d) and BSSE-
processed (e) images of the kidney medulla of beta actin-EGFP mice. (f) Merged image of 
(d,e). (g-j) Zoomed-in images of the corresponding boxed regions in (d,e). (k,l) Cross-sectional 
profiles along the solid lines in (g, h) and (i, j), respectively, exhibiting enhanced resolution of 
cellular structures. The arrows in (h) indicate a well-resolved structure separated as close as 3.8 
µm. RSP = 0.827. Scale bars: 100 µm (a,d), 15 µm (a inset and g). 
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3.2 Imaging transgenetic mouse tissue 

We next imaged mouse kidneys expressing EGFP driven by the beta-actin promoter using the 
miniscope, as shown in Fig. 5. The image of the mouse kidney cortex exhibited both highly 
overlapping signals and out-of-focus background from the convoluted tubules and 
glomerulus, as shown in Fig. 5(a). After BSSE processing, the image revealed substantially 
improved lining of tubular structures, as shown in Figs. 5(b) and 5(c). Furthermore, compared 
to the cortex, lower SNR was observed near the kidney medulla, where the kidney cells were 
barely visible, as shown in Fig. 5(d). The use of BSSE demonstrated improvement in this 
region, allowing enhanced resolution of the kidney medullar structures separated as close as 
~3 µm, consistent with the measurement from the PSF, as shown in Fig. 1(c) and Figs. 5(e)-
5(l). In addition, compared to deconvolution, BSSE can more effectively reduce the 
background and enhance the signals, as shown in Appendix D and Fig. 14. 

Furthermore, healthy brains from mice in which cells express GFP under the Csf1r 
promoter [31] were also imaged, as shown in Appendix E and Fig. 15. Csf1r-driven GFP 
fluorescence primarily labels microglial cells in the brain. Using BSSE, the miniscope can 
detect GFP signal at the single cell level, where the nearby cellular structures as close as a 
few micrometers were resolved from the high background of the tissue and blood vessels after 
processing with BSSE. 

3.3 Calcium imaging 

We next validated the performance of BSSE for in vivo calcium imaging of neural ensembles 
in freely behaving mice. The images were recorded using a commercially available single-
photon based miniscope (Inscopix) at a frame rate of 20 Hz [32]. Due to the strong 
aberrations and background in the awake brain, the images were initially processed by BSSE 
using both Gaussian filtering and block-matching and 3D filtering [40] (the step IRaw to I0 in 
Fig. 2). As a result, the BSSE algorithm efficiently denoised the calcium transient activity of 
each cell and removed the strong, uneven background in the time-lapse data. With the BSSE 
processed image data, we were able to improve the maximum projection that allowed 
accurate manual identification of ROI components. In contrast, the identification became 
considerably restrictive using the raw images because of the highly overlapping signals and 
strongly fluctuating background, as shown in Fig. 6(a). Using the contours determined in the 
BSSE-processed image, we extracted normalized fluorescence traces ΔF/F from ROI 
components in both the raw and BSSE-processed images, as shown in Fig. 6(b). As seen, 
without processing, the raw data generated false positives or failed to identify neurons from 
overlapping ROIs, as shown in Figs. 6(c)-6(n). It should be mentioned that due to the intrinsic 
nonlinearity in the denoising process, the ΔF/F values may not be accurately preserved, 
though the more essential correlations or mutual information between the neurons can be 
correctly retained. 

In Fig. 6, we also confirmed our results using MIN1PIPE [26], an automatic, state-of-the-
art method for processing calcium imaging data of miniscopes. MIN1PIPE contains several 
stand-alone modules to accurately separate spatially localized neural activity signals. For non-
biased comparison, we used all suggested and optimized parameters in [26] and excluded 
automatic movement correction and post-extraction refinement steps for manually adding or 
removing neurons. Notably, the BSSE-processed calcium data provided comparable image 
quality that can facilitate identification with very few visually apparent false positives, as 
shown in Figs. 6(c)-6(n). It should be emphasized that the presentation of BSSE is not to 
compare with the cutting edge methods like CNMF [25] or MIN1PIPE [26]. On the other 
hand, we aimed to demonstrate its simplicity as a generic tool to improve wide-field 
miniscopy images for various tissue studies beyond functional brain imaging. The purpose of 
Fig. 6 is mainly to show that the method is compatible with calcium image processing, but we 
admit that the method has not been specialized to achieve many functions obtained with 
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CNMF or MIN1PIPE such as accuracy and automation, though it can be readily compatible 
and implemented as a module in the automatized pipelines. 

 

Fig. 6. In vivo transient calcium imaging in freely behaving mice. (a) Left, example of the field 
of view of CA1 using the miniscope, displayed as the maximum temporal projection of 
fluorescence activity. Middle and right, the maximum projections of the frames individually 
processed by BSSE and MIN1PIPE, respectively. (b) The identified ROI contours 
superimposed on the corresponding boxed regions in (a), respectively. Left and middle, the 
contours were identified manually from the BSSE-processed data (a, middle). Right, the 
contours were identified using MIN1PIPE. (c,e,g,i,k,m) Six zoomed-in (top panel) and their 
contrast-adjusted (bottom panel) raw, BSSE-processed and MIN1PIPE-processed images of 
the corresponding ROI regions as marked in (b). (d,f,h,j,l,n) The corresponding normalized 
temporal fluorescence traces of six ROI examples as marked in (b). The shaded zones 
represent the false traces due to the cross-talk between neighboring neurons in the raw data, 
which were corrected by BSSE and MIN1PIPE. Scale bars: 100 µm (a), 50 µm (b), 10 µm (c), 
5 sec (j). 
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4. Conclusion 

In summary, we demonstrated an image processing approach, termed BSSE, for single-
photon-excitation-based, wide-field miniscopy images. It provides a simple, automatic 
solution to the challenges of overlapping signals, high background and artifacts in miniscopy 
images. We validated the method by imaging synthetic caliber patterns and biological 
samples of brain, tumor, and kidney tissues, as well as extracting neural functional signals. In 
addition, the method was demonstrated on both lab-built and commercial miniscopes, and the 
algorithmic framework can be readily integrated with many miniscopy control and processing 
modules, allowing for addressing a wide range of problems. Furthermore, the presented 
imaging results beyond neural activity suggests broader applications of the miniaturized, 
implantable and flexible technology. 

Appendix A: The point-spread function (PSF) of the miniscope using an 
achromatic lens. 

 

Fig. 7. (a) The PSF of the miniscope using an achromatic lens as suggested by the open-source 
protocol. (b) The images were taken with a 200-nm fluorescent bead, exhibits FWHM values 
of 3.8 µm (left) and 39 µm (right) in the lateral and axial dimensions, respectively, showing 
slightly broadened PSF profiles compared to the profiles using an aspheric lens in Fig. 1. Scale 
bar: 3 μm. 
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Appendix B: Illustration of the BSSE algorithm using beta-actin EGFP mouse 
kidney tissue. 

 

Fig. 8. Illustration of the BSSE algorithm using beta-actin-EGFP mouse kidney tissue. (a-c) 
Architecture of the BSSE algorithm and BSSE-processed images of the kidney cortex of beta-
actin-EGFP mice. As described in detail in Fig. 2, the results illustrate that the two main 
modules of the algorithm suppress the background (b) in the image IRaw, obtaining the image 
IBF, and enhance the signals (c), thus to obtain the final image IBSSE. (d) Cross-sectional profiles 
in the image IBF and its first-derivative image IG1 along the corresponding solid line in IG1. (e) 
Cross-sectional profiles along the solid color lines in IS and IG2, where IS represents the 
difference image between IBF and IG1, and IG2 is the second-derivative image of IBF. Concavity 
analysis is conducted to identify and segment the crossings of the overlapping signals (e.g. the 
shaded regions in (e)), obtaining the final image IBSSE. (f) Cross-sectional profiles in the images 
IRaw and IBSSE along the corresponding solid line in IBSSE. Scale bars: 100 µm (a, top row), 50 
µm (a, left of the second row), 10 µm (a, right of the second row). 
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Appendix C: BSSE processing of synthetic caliber patterns. 

 

Fig. 9. BSSE processing of synthetic caliber patterns. (a) Left to right, simulated raw image 
(left, IRaw), intermediate background-suppressed image (middle, IBF), and the final BSSE-
processed image (right, IBSSE). (b) Intensity profiles of the images IRaw, IBF and IBSSE along the 
corresponding line in (a). The solid red lines in (b) denote the ground truth of the line positions 
of the pattern. The intervals between the two nearby lines start at 1 pixel and are constantly 
increased by 1 pixel from left to right. The two lines separated by 3 pixels were resolved in the 
image IBSSE but not in the images IRaw and IBF. 

 

Fig. 10. BSSE processing of the same synthetic caliber patterns as in Fig. 8 with varying 
SNRs. (a) Top, simulated raw image with PSNR = 61.58 dB. Bottom, the BSSE-processed 
image. The SSIM values compared to the ground truth are 0.1787 and 0.4581 for the raw and 
processed images, respectively. (b) Intensity profiles of the images along the corresponding 
lines in (a). (c) Top, simulated raw image with PSNR = 59.78 dB. Bottom, the BSSE-
processed image. The SSIM values compared to the ground truth are 0.1319 and 0.3768 for the 
raw and processed images, respectively. (d) Intensity profiles of the images along the 
corresponding lines in (c). 
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Fig. 11. BSSE processing of synthetic caliber patterns with varying distances. (a, c, e) The 
simulated raw (left) and BSSE-processed (right) images of two lines separated by 1 pixel (a), 2 
pixels (b), and 3 pixels (c), respectively. (b, d, f) The intensity profiles of the images along the 
corresponding lines in (a, c, e), respectively. The results show that BSSE enhances the image 
quality by improving the SNR of the diffraction-limited images. A distance of 2 pixels is 
related to the diffraction limit in practice. 

 

Fig. 12. BSSE processing of synthetic caliber patterns with varying intensity. (a) Simulated 
underlying pattern with linearly varying intensity. (b,d,f) The simulated raw (top) and BSSE-
processed (bottom) images of the pattern added with three different random noise patterns. (c, 
e, g) The intensity profiles of the images along the corresponding lines in (b,d,f), respectively. 
(h) BSSE processing of the same synthetic caliber pattern without noise. (i) Average peak 
intensity of BSSE-processed images (bottom panels in (b,d,f)) (green dots and error bars) and 
the peak intensity of the profile corresponding to the red line in (h) (gray dots). The green dots 
represent the mean value of BSSE-processed profiles of each row of pixels in (b,d,f) and the 
error bars stand for the standard deviation of these pixel values at each peak. The solid black 
line shows the linear relationship. Although the linear trend is largely retained, deviations from 
the linear relationship within the pattern can be observed for the BSSE-processed images with 
noisy raw data when the intensity becomes strong or weak. In contrast, the BSSE-processed 
image with noise-free raw data maintains acceptable linear relationship. 
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Fig. 13. BSSE processing of synthetic caliber patterns. (a) Raw image of synthetic Siemens 
target caliber pattern with non-parallel and crossing structures. (b) BSSE-processed image. A 
gap can be observed near the center strong intensity region, because the algorithm processes 
the region as the background of the crossing region. (c) Merged image of the raw (a) and 
BSSE-processed (b) images. (d) Angular intensity plot of BSSE-processed image and the 
corresponding raw image along the red circle. BSSE shows distinct 12 caliber bars whereas 
raw have less resolved intensity peaks. (e) Intermediate signal-sharpened image IS’ using a 
halved the scale factor 0.5 × σ (see Fig. 2 caption), recovering the gap region as in (b). (f) 
Merged image of the original BSSE-processed (b) and adjusted intermediate image (e), 
showing the high-resolution structure without compromising background-like information. 

Appendix D: Comparison with blind-deconvolution image processing. 

 
Fig. 14. Comparison with blind-deconvolution image processing. Left panel, raw (a), 
deconvolved (b), and BSSE-processed (c) images of the kidney cortex of beta actin-EGFP 
mice as in Fig. 5(a). Right panels, zoomed-in images of the corresponding color boxed regions. 
It can be observed that although deconvolution (10 iterations) sharpens the images, BSSE 
further reduces the background and enhances the signals. Scale bars: 100 µm (a, left), 15 µm 
(a, right). 
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Appendix E: Imaging and BSSE processing of Csf1r-EGFP mouse brain tissue. 

 

Fig. 15. Imaging and BSSE processing of Csf1r-EGFP mouse brain tissue. (a) Merged image 
of the raw and BSSE-processed images of Csf1r-EGFP mouse brain tissue. Csf1r-driven GFP 
fluorescence primarily labels microglial cells in the brain. (b) Zoomed-in raw (top) and BSSE-
processed (bottom) images of the corresponding boxed region in (a). (c) Cross-sectional 
profiles of the raw and BSSE-processed images along the solid lines in (b). The results 
demonstrate enhanced cellular-level resolution of microglial structures, which otherwise would 
not be observed due to the strong background from the out-of-focus tissue and blood vessels 
(e.g. in (b)). RSP = 0.749. Scale bars: 100 µm (a), 15 µm (b). 

Funding 

National Institutes of Health grant R35GM124846 (to S.J.), SBMS program T32 GM127253 
(to S.E.T.), National Science Foundation grants CBET1604565 and EFMA1830941 (to S.J.). 

Acknowledgments 

We acknowledge the support of the NSF-CBET Biophotonics program, the SBU-SBMS 
program, the NSF-EFMA program, and the NIH-NIGMS MIRA program. 

Disclosures 

The authors declare that there are no conflicts of interest related to this article. 

References 

1. K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, 
“Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011). 

2. B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. 
Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. 
Methods 5(11), 935–938 (2008). 

3. Y. Ziv and K. K. Ghosh, “Miniature microscopes for large-scale imaging of neuronal activity in freely behaving 
rodents,” Curr. Opin. Neurobiol. 32, 141–147 (2015). 

4. J. N. Betley, S. Xu, Z. F. H. Cao, R. Gong, C. J. Magnus, Y. Yu, and S. M. Sternson, “Neurons for hunger and 
thirst transmit a negative-valence teaching signal,” Nature 521(7551), 180–185 (2015). 

5. F. Carvalho Poyraz, E. Holzner, M. R. Bailey, J. Meszaros, L. Kenney, M. A. Kheirbek, P. D. Balsam, and C. 
Kellendonk, “Decreasing Striatopallidal Pathway Function Enhances Motivation by Energizing the Initiation of 
Goal-Directed Action,” J. Neurosci. 36(22), 5988–6001 (2016). 

6. A. M. Douglass, H. Kucukdereli, M. Ponserre, M. Markovic, J. Gründemann, C. Strobel, P. L. Alcala Morales, 
K. K. Conzelmann, A. Lüthi, and R. Klein, “Central amygdala circuits modulate food consumption through a 
positive-valence mechanism,” Nat. Neurosci. 20(10), 1384–1394 (2017). 

7. L. Pinto and Y. Dan, “Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior,” Neuron 
87(2), 437–450 (2015). 

8. Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, 
“Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci. 16(3), 264–266 (2013). 

9. D. J. Cai, D. Aharoni, T. Shuman, J. Shobe, J. Biane, W. Song, B. Wei, M. Veshkini, M. La-Vu, J. Lou, S. E. 
Flores, I. Kim, Y. Sano, M. Zhou, K. Baumgaertel, A. Lavi, M. Kamata, M. Tuszynski, M. Mayford, P. 
Golshani, and A. J. Silva, “A shared neural ensemble links distinct contextual memories encoded close in time,” 
Nature 534(7605), 115–118 (2016). 

10. J. C. Jimenez, K. Su, A. R. Goldberg, V. M. Luna, J. S. Biane, G. Ordek, P. Zhou, S. K. Ong, M. A. Wright, L. 
Zweifel, L. Paninski, R. Hen, and M. A. Kheirbek, “Anxiety Cells in a Hippocampal-Hypothalamic Circuit,” 

                                                                                           Vol. 27, No. 13 | 24 Jun 2019 | OPTICS EXPRESS 17635 

 



Neuron 97(3), 670–683 (2018). 
11. G. Barbera, B. Liang, L. Zhang, C. R. Gerfen, E. Culurciello, R. Chen, Y. Li, and D. T. Lin, “Spatially Compact 

Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information,” Neuron 92(1), 202–213 
(2016). 

12. A. Klaus, G. J. Martins, V. B. Paixao, P. Zhou, L. Paninski, and R. M. Costa, “The Spatiotemporal Organization 
of the Striatum Encodes Action Space,” Neuron 95(5), 1171–1180 (2017). 

13. J. Cox, L. Pinto, and Y. Dan, “Calcium imaging of sleep-wake related neuronal activity in the dorsal pons,” Nat. 
Commun. 7(1), 10763 (2016). 

14. T. C. Harrison, L. Pinto, J. R. Brock, and Y. Dan, “Calcium Imaging of Basal Forebrain Activity during Innate 
and Learned Behaviors,” Front. Neural Circuits 10, 36 (2016). 

15. K. Yu, S. Ahrens, X. Zhang, H. Schiff, C. Ramakrishnan, L. Fenno, K. Deisseroth, F. Zhao, M. H. Luo, L. Gong, 
M. He, P. Zhou, L. Paninski, and B. Li, “The central amygdala controls learning in the lateral amygdala,” Nat. 
Neurosci. 20(12), 1680–1685 (2017). 

16. R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution 
microlenses,” Nat. Methods 6(7), 511–512 (2009). 

17. W. M. Lee and S. H. Yun, “Adaptive aberration correction of GRIN lenses for confocal endomicroscopy,” Opt. 
Lett. 36(23), 4608–4610 (2011). 

18. T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. 
Biomed. Opt. 17(2), 021106 (2012). 

19. R. Maruyama, K. Maeda, H. Moroda, I. Kato, M. Inoue, H. Miyakawa, and T. Aonishi, “Detecting cells using 
non-negative matrix factorization on calcium imaging data,” Neural Netw. 55, 11–19 (2014). 

20. M. Pachitariu, A. M. Packer, N. Pettit, H. Dalgleish, M. Hausser, and M. Sahani, “Extracting regions of interest 
from biological images with convolutional sparse block coding,” NIPS, Proc. Adv. Neural Inf. Process. Syst. 1, 
1745–1753 (2013). 

21. E. A. Pnevmatikakis, D. Soudry, Y. Gao, T. A. Machado, J. Merel, D. Pfau, T. Reardon, Y. Mu, C. Lacefield, W. 
Yang, M. Ahrens, R. Bruno, T. M. Jessell, D. S. Peterka, R. Yuste, and L. Paninski, “Simultaneous Denoising, 
Deconvolution, and Demixing of Calcium Imaging Data,” Neuron 89(2), 285–299 (2016). 

22. J. Reidl, J. Starke, D. B. Omer, A. Grinvald, and H. Spors, “Independent component analysis of high-resolution 
imaging data identifies distinct functional domains,” Neuroimage 34(1), 94–108 (2007). 

23. W. A. Liberti III, L. N. Perkins, D. P. Leman, and T. J. Gardner, “An open source, wireless capable miniature 
microscope system,” J. Neural Eng. 14(4), 045001 (2017). 

24. E. A. Mukamel, A. Nimmerjahn, and M. J. Schnitzer, “Automated Analysis of Cellular Signals from Large-Scale 
Calcium Imaging Data,” Neuron 63(6), 747–760 (2009). 

25. P. Zhou, S. L. Resendez, J. Rodriguez-Romaguera, J. C. Jimenez, S. Q. Neufeld, A. Giovannucci, J. Friedrich, E. 
A. Pnevmatikakis, G. D. Stuber, R. Hen, M. A. Kheirbek, B. L. Sabatini, R. E. Kass, and L. Paninski, “Efficient 
and accurate extraction of in vivo calcium signals from microendoscopic video data,” eLife 7, e28728 (2018). 

26. J. Lu, C. Li, J. Singh-Alvarado, Z. C. Zhou, F. Fröhlich, R. Mooney, and F. Wang, “MIN1PIPE: A Miniscope 1-
Photon-Based Calcium Imaging Signal Extraction Pipeline,” Cell Reports 23(12), 3673–3684 (2018). 

27. H. Zhai, F. L. Heppner, and S. E. Tsirka, “Microglia/macrophages promote glioma progression,” Glia 59(3), 
472–485 (2011). 

28. J. T. Miyauchi, D. Chen, M. Choi, J. C. Nissen, K. R. Shroyer, S. Djordevic, I. C. Zachary, D. Selwood, and S. 
E. Tsirka, “Ablation of Neuropilin 1 from glioma-associated microglia and macrophages slows tumor 
progression,” Oncotarget 7(9), 9801–9814 (2016). 

29. J. T. Miyauchi, M. D. Caponegro, D. Chen, M. K. Choi, M. Li, and S. E. Tsirka, “Deletion of neuropilin 1 from 
microglia or bone marrow–derived macrophages slows glioma progression,” Cancer Res. 78(3), 685–694 (2018). 

30. M. Okabe, M. Ikawa, K. Kominami, T. Nakanishi, and Y. Nishimune, “‘Green mice’ as a source of ubiquitous 
green cells,” FEBS Lett. 407(3), 313–319 (1997). 

31. R. T. Sasmono, D. Oceandy, J. W. Pollard, W. Tong, P. Pavli, B. J. Wainwright, M. C. Ostrowski, S. R. Himes, 
and D. A. Hume, “A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is 
expressed throughout the mononuclear phagocyte system of the mouse,” Blood 101(3), 1155–1163 (2003). 

32. W. Mau, D. W. Sullivan, N. R. Kinsky, M. E. Hasselmo, M. W. Howard, and H. Eichenbaum, “The Same 
Hippocampal CA1 Population Simultaneously Codes Temporal Information over Multiple Timescales,” Curr. 
Biol. 28(10), 1499–1508 (2018). 

33. R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition) (2007). 
34. N. Otsu, “A threshold selection method from gray level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–

66 (1979). 
35. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising with block-matching and 3D filtering,” 

Proc. SPIE-IS&T Electron. Imaging 6064, 606414 (2006). 
36. H. Ma, F. Long, S. Zeng, and Z. L. Huang, “Fast and precise algorithm based on maximum radial symmetry for 

single molecule localization,” Opt. Lett. 37(13), 2481–2483 (2012). 
37. N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, and R. Henriques, “Fast live-cell 

conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations,” Nat. Commun. 
7(1), 12471 (2016). 

38. J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda, “Uniqueness of the Gaussian Kernel for Scale-Space 
Filterng,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8, 26–33 (1986). 

                                                                                           Vol. 27, No. 13 | 24 Jun 2019 | OPTICS EXPRESS 17636 

 



39. S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, and R. Henriques, “Quantitative 
mapping and minimization of super-resolution optical imaging artifacts,” Nat. Methods 15(4), 263–266 (2018). 

40. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising with block-matching and 3D filtering,” 
Proc. SPIE 606414, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning 
(2006). 

 

                                                                                           Vol. 27, No. 13 | 24 Jun 2019 | OPTICS EXPRESS 17637 

 




