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1  |   INTRODUCTION

Rett syndrome (RTT; OMIM 312750) is a severe neurode-
velopmental disorder dominantly affecting females with an 
incidence of 1/10,000 female births. It was first connected 
with Methyl‐CpG‐binding protein 2 (MECP2) gene at 1999 
by Amir, which is a crucial milestone for this disease (Amir 

et al., 1999). After then, 95% of patients with typical RTT 
and 73.2% of patients with RTT variants were found with 
MECP2 pathogenic variants (Percy et al., 2007, 2010). 
Subsequently, CDKL5 (cyclin‐dependent kinase‐like 5) and 
FOXG1 (forkhead Box protein G1) were discovered as patho-
genic genes of early seizure variant and congenital variant 
of RTT, respectively (Ariani et al., 2008; Tao et al., 2004; 
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Abstract
Background: This study aimed to investigate the new genetic etiologies of Rett 
syndrome (RTT) or Rett‐like phenotypes.
Methods: Targeted next‐generation sequencing (NGS) was performed on 44 Chinese 
patients with RTT or Rett‐like phenotypes, in whom genetic analysis of MECP2, 
CDKL5, and FOXG1 was negative.
Results: The detection rate was 31.8% (14/44). A de novo pathogenic variant 
(c.275_276ins AA, p. Cys92*) of KIF1A was identified in a girl with all core fea-
tures of typical RTT. A patient with atypical RTT was detected having de novo 
GRIN1 pathogenic variant (c.2337C > A, p. Val793Phe). Additionally, compound 
heterozygous pathogenic variants of PPT1 gene were detected in a girl, who ini-
tially displayed typical RTT features, but progressed into neuronal ceroid lipofus-
cinoses (NCL) afterwards. Pathogenic variants in KCNQ2, MEF2C, WDR45, TCF4, 
IQSEC2, and SDHA were also found in our cohort.
Conclusions: It is the first time that pathogenic variants of GRIN1 and KIF1A were 
linked to RTT and Rett‐like profiles. Our findings expanded the genetic heterogene-
ity of Chinese RTT or Rett‐like patients, and also suggest that some patients with 
genetic metabolic disease such as NCL, might displayed Rett features initially, and 
clinical follow‐up is essential for the diagnosis.
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Weaving et al., 2004). According to the newly revised criteria 
of RTT, it is more appropriate for the early seizure variant of 
RTT to be classified as congenital RTT because these indi-
viduals lack the clear period of regression (Neul et al., 2010). 
Even so, there remains a subset of RTT or Rett‐like patients 
without pathogenic variants in commonly known Rett genes 
(MECP2, CDKL5, and FOXG1). With the increasing use of 
next‐generation sequencing (NGS), more and more genes re-
lated to RTT has been discovered in the last few years (Allou 
et al., 2017; Gold & Christodoulou, 2015; Lopes et al., 2016; 
Lucariello et al., 2016; Vidal et al., 2017).

In this study, targeted NGS panel consisting of 512 candi-
date genes was designed, and performed on 44 RTT and Rett‐
like patients in whom no pathogenic variants of MECP2, 
CDKL5, and FOXG1 were found.

2  |   MATERIALS AND METHODS

2.1  |  Ethics
This study was approved by the Medical Ethics Committee, 
Peking University First Hospital. Written informed consent 
was obtained from the parents of the patients.

2.2  |  Patients
Patients who met the diagnostic criteria of RTT (Neul et al., 
2010), or patients who did not completely fulfil the criteria, 
but shared some clinical features resembled RTT, including 
psychomotor retardation with or without regression, stereo-
typic hand movements, loss of hand use, and poor language, 
were recruited. The latter group was termed as Rett‐like phe-
notypes. Meanwhile, genetic analysis of MECP2, CDKL5, 
and FOXG1 was negative in the subjects. Finally, 44 Chinese 
patients including 41 females and 3 males, aged from 
13 months to 12.5 years old, were enrolled into this study. 
This cohort consists of 21 patients with typical RTT, 19 pa-
tients with Rett‐like phenotypes, and 4 patients with atypical 
RTT (3 patients with the congenital variant and 1 patient with 
the preserved speech variant).

Detailed clinical information including clinical manifes-
tation, electroencephalogram (EEG), magnetic resonance 
imaging (MRI), family history, etc., was collected. Genomic 
DNA was extracted from peripheral leukocytes.

2.3  |  Targeted NGS
Use “Rett syndrome,” “RTT,” “Rett,” “RTT‐like,” and 
“Rett‐like” as keywords to search the related genetic infor-
mation in Online Mendelian Inheritance in Man (OMIM) 
and PubMed database. Finally, 46 genes were selected as 
candidate genes. These genes were added into commonly 
used genetic panel related to neurodevelopmental disorders, 

including epilepsy, developmental delay, and intellectual 
disability. Totally, 512 genes (Table S1) were contained.

Gene sequence was obtained from http://genome.ucsc.edu/, 
and probes were designed to capture the coding regions, in-
cluding exons and exon–intron boundaries, by Roche SeqCap 
Target Enrichment technique. Next, NGS was performed on 
Ion torrent Proton high‐throughput platform (Themofisher), 
using paired‐end sequencing of 100 bp. Bioinformatic anal-
ysis included: (a) imaging analysis and base calling using 
Ion Torrent Suite 5.04 software; (b) aligned clean paired‐end 
reads to the human reference genome build hg19 using Tmap 
software; (c) single‐nucleotide polymorphisms (SNPs) and 
insertion–deletions (indels) identification using the Genome 
Analysis Tool kit (GATK); and (d) annotated rare variants 
using ANNOVAR (http://www.openb​ioinf​ormat​ics.org/en/
latest). Reported pathogenic variants in HGMD Professional 
database and Pubmed were marked, whereas the pathogenic-
ity of other rare variants was annotated by SIFT, Polyphe‐2 
and Mutationtaster. PCR‐Sanger sequencing was performed 
to confirm variations and analyze parental origin.

3  |   RESULTS

Disease causing variants were identified in 14 patients. The 
hit rate was 31.8% (14/44). Aside from two MECP2 patho-
genic variants missed by previous PCR‐Sanger sequencing, 
pathogenic variants in nine genes were identified.

Notably, a de novo KIF1A pathogenic variant 
(c.275_276insAA, p.Cys92*) was detected in patient R609, a 
13 months old in vitro fertilization girl, who met the diagnos-
tic criteria of classical RTT. Development was delayed, with 
raising head at 4 months, sitting alone at 7–8 months. She did 
not achieve independent ambulation and cannot speak any 
language when coming to our hospital at 13 months of age. 
Microcephaly was obvious with head circumference of 42 cm 
(13  months). Hand clapping and mouthing, loss of hand 
skills, grinding teeth, breathing, and sleeping disturbance ap-
peared around 8 months of age. Brain MRI was normal.

A de novo GRIN1 gene pathogenic variant (c.2377C > A, 
p. Val793Phe) was found in patient R625, a girl aged 4 years 
and 2 months. She developed epilepsy at 2 months of age, 
which was controlled by PB. Developmental milestones 
were prominently delayed. She could not control her head 
until 6  months old, and was unable to walk independently 
until 1.5 years old. She even could not speak any meaningful 
words at 4 years of age. She had some purposeful hand use 
before 3.5 years of age, such as pinching beans and passing 
things from one hand to another. Hand clapping and mouth-
ing, as well as breathing disturbance has been noticed since 
3.5 years old, and then she gradually lost the hand skills.

The pathogenic variants identified in this study and clin-
ical information of patients were summarized in Table 1 and 

http://genome.ucsc.edu/
http://www.openbioinformatics.org/en/latest
http://www.openbioinformatics.org/en/latest
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Table S2, respectively. The referential transcript was listed 
in Table S3. Detailed clinical information was described in 
supplemental material 2.

4  |   DISCUSSION

Aside from MECP2, nine genes were identified to be associ-
ated with RTT or Rett‐like syndrome. KIF1A gene is located 
at 2q37.3, encoding kinesin family member 1A, which is in-
volved in anterograde transport cargoes of synaptic vesicle 
precursors along axons. It plays a critical role in maintaining 
cell viability and function of neurons (Riviere et al., 2011). 
KIF1A pathogenic variants have been found in patients with 
variable neurological manifestations, including hereditary 
spastic paraplegia type 30 (OMIM 610357) and hereditary 
sensory and autonomic neuropathy type 2 (OMIM 614213), 
both inherited as autosomal recessive pattern, as well as au-
tosomal dominant mental retardation type 9 (MRD9; OMIM 
614255). Core features of MRD9 are developmental delay 
and intellectual disability. Additional features included pro-
gressive spasticity, optic nerve atrophy, peripheral neuropa-
thy, progressive cerebral, and/or cerebellar atrophy. Some 
patients had epilepsy (Erlich et al., 2011; Esmaeeli Nieh et 
al., 2015; Lee et al., 2015). In this study, a truncated vari-
ant of KIF1A gene was discovered in a female. The patient 
had core features of classical RTT, including profound psy-
chomotor retardation, lack of speech, hand stereotypies, and 
poor hand skills, as well as abnormal breathing patterns. 
Unlike previously reported patients with KIF1A pathogenic 
variants, our patient did not display any signs of brain at-
rophy on neuroimaging. Ophthalmologic examination was 
uneventful, and no seizures were reported at the last inves-
tigation (13 months old). Maybe, a long‐term clinical track-
ing is important to evaluate the above manifestations. It can 
be seen that there was overlapped clinical features between 
KIF1A‐related disorders and RTT, including psychomotor 
stagnation, stereotypic hand movements, and breathing dis-
turbance. In addition, functional analysis revealed that vesi-
cles containing the neurotrophin brain‐derived neurotrophic 
factor (BDNF) might be controlled by Kif1a (Carabalona, 
Hu, & Vallee, 2016; Kondo, Takei, & Hirokawa, 2012). It 
is well established that BDNF is one of the target genes of 
MECP2 (W. Li & Pozzo‐Miller, 2014). Hence, it is specu-
lated that crosstalk between KIF1A and MECP2 through 
BDNF, their common target gene, may explain their overlap. 
To our knowledge, it is the first time that KIF1A was associ-
ated with RTT, which expands the phenotypic spectrum of 
KIF1A‐related disorders.

GRIN1 gene, located at 9q34.3, encoding GluN1 subunit 
(NR1) of N‐methyl‐D‐aspartate receptor (NMDAR), plays a 
key role in the synaptic functions (Sin, Haas, Ruthazer, & 
Cline, 2002). Pathogenic variants of NMDAR subunits are 

associated with a variety of neurodevelopmental phenotypes, 
such as intellectual disability, epilepsy, and autism spectrum 
disorders (Lemke et al., 2016). The expression of NMDAR is 
disrupted in the brain of Mecp2‐null mice, including diminish 
in GluN1, and increasing in GluN2A/GluN2B (Maliszewska‐
Cyna, Bawa, & Eubanks, 2010). NMDAR channel blocker 
was proved effective in ameliorating symptoms in RTT mice 
(Katz, Menniti, & Mather, 2016). Additionally, NR1 knock-
down (KD) mice presented with erethism, repetitive behav-
ior, impairments in memory and sociability, which is also 
observed in RTT mice (Milenkovic, Mielnik, & Ramsey, 
2014). So far, the Rett‐like phenotype as NR1 KD mice has 
not been described in humans yet. In our study, a de novo 
GRIN1 pathogenic variant was found in a female, whose clin-
ical features mimicked congenital variant of RTT, including 
early onset seizures, developmental delay, abnormal breath-
ing pattern, no speech, stereotypical hand movements, and 
loss of hand use. This is the first time that GRIN1 gene was 
linked to RTT, which indicated that GRIN1 may involve in 
its pathogenic network, and should be referred as a candidate 
gene of RTT or Rett‐like phenotypes.

KCNQ2 gene, located at 20q13.13, encoding a voltage‐
gated potassium (Kv7.2) channel, has been associated with 
early onset epileptic encephalopathy type 7 (EIEE7; OMIM 
613720) and benign familial neonatal seizures (OMIM 
121200) (Dedek et al., 2001; Weckhuysen et al., 2012). So 
far, KCNQ2 pathogenic variants have been identified in three 
Rett patients (Kato et al., 2015; Sajan et al., 2017). In our 
cohort, a de novo KCNQ2 pathogenic variant has been dis-
covered in a patient with congenital variant of RTT, who dis-
played early onset seizures, global developmental delay, lack 
of speech, stereotypic hand movements, abnormal breathing 
patterns, and scoliosis. Our study provided supporting evi-
dence that KCNQ2 is a candidate gene of RTT.

The PPT1 gene is located at 1p34.2 and encodes palmi-
toyl‐protein thioesterase (Heinonen et al., 2000). PPT1 is 
a causative gene for NCL (OMIM 256730), a progressive 
neurodegenerative disorder, which is autosomal recessively 
inherited. NCL is characterized by progressive psychomo-
tor deterioration, epilepsy, visual loss, and premature death 
(Mole, Williams, & Goebel, 2005). In our cohort, a girl with 
compound heterozygous pathogenic variants of PPT1 pre-
sented Rett‐like phenotypes at the early stage of the disease, 
including psychomotor regression, repetitive acts and loss of 
hand skills. The typical features of NCL such as refractory 
seizures, visual loss, and joint contractures occurred gradu-
ally after 3 years of age. Dana et al. reported a similar patient 
before. A girl with NCL manifested with Rett‐like symptoms 
at onset, including psychomotor regression, microcephaly, 
stereotypic hand movements, and hyperventilation episodes. 
A full picture of NCL developed after 5 years old. The girl 
was detected with a compound heterozygous pathogenic 
variant in MFSD8, another gene related to NCL (Craiu et al., 
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2015). Dana's report and our study showed that there were 
clinical overlaps between RTT and the early stage of NCL. 
The genetic analysis of genes associated with NCL is import-
ant in Rett or Rett‐like patients, for the definite diagnosis.

MEF2C gene, located at 5q14, encodes myocyte en-
hancer‐binding factor 2 C, which was pivotal in myogenesis, 
hematopoiesis, neurogenesis, and synaptogenesis (Leifer et 
al., 1993). MEF2C (OMIM 613443) is a causative gene for 
neurodevelopmental disorders, which has relatively uniform 
clinical presentations, including severe mental retardation, 
delayed motor development, limited walking abilities, lack 
of speech, stereotypic movements, and various minor brain 
malformations on MRI (Vrecar et al., 2017). It is demon-
strated that MEF2C gene can activate promoters of MECP2 
and CDKL5. In patient with MEF2C haploinsufficiency, ex-
pression of MECP2 and CDKL5 was diminished (Zweier et 
al., 2010). Mef2c brain null mutant mice displayed behav-
ioral phenotypes which mimicked RTT mice model, includ-
ing marked paw wringing/clasping stereotypy. Moreover, 
conditional knockout of Mef2c in mice impaired neuronal 
differentiation, resulting in aberrant compaction and smaller 
somal size, which resembled the mouse models of RTT (Li 
et al., 2008). This phenomenon had been concluded that Rett 
or Rett‐like phenotypes were caused by the disruption of a 
common pathway involving MECP2, CDKL5, and MEF2C. 
In this study, three females were detected with MEF2C point 
pathogenic variants, of whom one displayed typical RTT and 
the other two presented with RTT‐like features, which has 
been described previously in another study of us (Wang et al., 
2018). The majority of MEF2C dysfunctions were caused by 
large intragenic deletions or completely deletions. Until now, 
only 13 point pathogenic variants of MEF2C were reported, 
including our patients, which limit the study of possible gen-
otype‐phenotype correlations (Vrecar et al., 2017). Our find-
ings further delineated the clinical features of patients with 
MEF2C point pathogenic variants.

WDR45 gene, located at Xp11.23, encodes a beta‐propel-
ler scaffold protein, which is involved in autophagy (Saitsu et 
al., 2013). WDR45 pathogenic variants have been associated 
with X‐linked neurodegeneration with iron accumulation‐5 
(NIBA5; OMIM 300894), inherited as dominant pattern. 
NIBA5 is featured by global developmental stagnation in 
childhood and a secondary neurological deterioration in early 
adulthood, including parkinsonism, dystonia, and dementia 
(Gregory, Polster, & Hayflick, 2009). MRI revealed evidence 
of iron deposition in the substantia nigra and globus pallidus 
(Kruer et al., 2012). Recent studies revealed that the pheno-
typic spectrum may be substantially broader. At initial stage, 
a subset of patients presented with some Rett features, such 
as normal development during infancy, followed by develop-
mental stagnation or regression, as well as loss of acquired 
speech, deterioration of hand skills, and hand stereotypies 
(Hoffjan et al., 2016; Ohba et al., 2014). In our study, two 

female patients had WDR45 pathogenic variants. They were 
diagnosed as typical RTT initially (3 years old), as they had 
a normal early developmental period, followed by develop-
mental stagnation, repetitive hand acts and decline of hand 
skills. MRI (3 years old) was unremarkable for both of them. 
From above it can be seen that there are overlaps in clini-
cal manifestations between NIBA5 and RTT. Typically, iron 
accumulation in the brain was not visible at the early stage, 
which makes it difficult to distinguish. In Chihiro's report, a 
girl displaying classical RTT had iron deposition in brain at 
11 years of age, but before that several MRI (4 and 3.5 years, 
respectively) were normal (Ohba et al., 2014). Hence, long‐
term follow‐up is essential.

TCF4 gene is located at 18q21.2, encoding basic helix‐
loop‐helix transcription factor 4, playing pivotal roles 
in the development of nervous system (de Pontual et al., 
2009). TCF4 pathogenic variants are associated with Pitt‐
Hopkins syndrome (PTHS; OMIM 610954) (Amiel et al., 
2007). There is overlap between PTHS and RTT, including 
secondary microcephaly, stereotypic hand movements and 
loss of purposeful hand use, autistic behaviors, intermit-
tent hyperventilation, and epilepsy (Marangi & Zollino, 
2015). In this study, a micro‐deletion of TCF4 gene was 
identified in a female, who had some Rett‐like features, 
without craniofacial anomalies. But not all PTHS patients 
had recognizable facial features (Marangi et al., 2011). 
The overlapped features bring challenges to make differen-
tial diagnosis solely based on the clinical manifestations. 
Hence, TCF4 genetic analysis for RTT (‐like) cohort is 
important.

IQSEC2 gene, encoding IQ motif and Sec 7 domain pro-
tein 2, is involved in cytoskeletal organization, dendritic 
spine morphology, and excitatory synaptic organization. It is 
located at Xp11.22, and escapes from X‐chromosome inacti-
vation (Shoubridge et al., 2010). IQSEC2 pathogenic variants 
cause moderate to severe intellectual disability in males and a 
variable phenotype in females (Alexander‐Bloch, McDougle, 
Ullman, & Sweetser, 2016). Most female carriers, of whom 
the variant was inherited from the parents, were reported un-
affected. In Zerem's review, 8 of 24 female carriers had bor-
derline intelligence and 2 had intellectual disability (Zerem 
et al., 2016). However, with contrary to female carriers with 
inherited pathogenic variants, female patients with de novo 
IQSEC2 pathogenic variants usually have profound mental 
retardation and epilepsy (OMIM 309530). Several female pa-
tients were described with clinical symptoms similar to RTT, 
such as language regression, repetitive hand acts, micro-
cephaly, and seizures (Allou et al., 2017; Olson et al., 2015). 
In this study, a girl was detected having a de novo IQSEC2 
pathogenic variant (c.2776C>T, p. Arg926*). She presented 
with mental retardation, lack of speech, hand stereotypies, 
poor eye‐contact, and microcephaly, which resembles those 
of RTT. Besides, there is significant overlap between the 
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expression profile of Iqsec2 and Cdkl5 in murine adult brain, 
suggesting a possible functional link between them (Morleo 
et al., 2008). These findings provided supports that IQSEC2 
is responsible for Rett or Rett‐like syndrome.

SDHA gene, located at 5p15.33, is a causative gene of 
Leigh syndrome (OMIM 256000) and mitochondrial com-
plex II deficiency (OMIM 252011) (Pagnamenta et al., 
2006; Van Coster et al., 2003). Both Leigh syndrome and 
mitochondrial complex II deficiency were progressive neu-
rodegenerative disorders involving multiple systems and 
organs. Neurological symptoms were characterized by pro-
gressive deterioration in psychomotor, hypotonia, ataxia, 
epilepsy, and visual loss. MRI of patients with Leigh syn-
drome usually showed characteristic neuropathology con-
sisting of focal, bilateral lesions in one or more areas of the 
central nervous system, including the brainstem, thalamus, 
basal ganglia, cerebellum, and spinal cord. Prior to the dis-
covery of MECP2, RTT was thought to be a mitochondrial 
disease (Eeg‐Olofsson et al., 1990). There is clear evidence 
that mitochondria function was impaired in RTT, both in 
animal models and patients (Dotti et al., 1993). In our co-
hort, compound heterozygous pathogenic variant of SDHA 
gene was identified in a girl. Her clinical presentation led 
to the diagnosis of typical RTT, which was not completely 
in conformity with typical features of Leigh syndrome or 
mitochondrial complex II deficiency. There were no typi-
cal signs of Leigh Syndrome on the MRI (4 years old), for 
that reason Leigh syndrome was not highly suspected. Our 
findings indicate that SDHA is also a candidate gene of Rett 
profiles.

Through our study, pathogenic variant of GRIN1 and 
KIF1A was firstly linked to Rett or Rett‐like phenotypes. 
Several genes identified in this study were involved in the 
common pathway of MECP2, directly or indirectly, which 
might be the mechanism underlying their overlapped fea-
tures of RTT. However, there is still a lot of work to do to 
identify the relationship between these genes. What is more, 
it is essential to add the new identified genes into the NGS 
panel of Rett or Rett‐like syndrome. In summary, for Rett or 
Rett‐like patients without common gene pathogenic variants, 
new causative genes should be considered. On the other hand, 
mosaic pathogenic variants in MECP2 should also be taken 
into consideration, which has been described in another study 
of our group (Zhang et al., 2019).
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