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Abstract

Chemical modification of nucleotide bases in DNA provides one mechanism for conveying added 

information to the genetic code. 5-methylcytosine (5mC), represents the most common chemically 

modified base in eukaryotic genomes. Sometimes referred to simply as DNA methylation, in 

eukaryotes, 5mC is most prevalent at CpG dinucleotides and is frequently associated with 

transcriptional repression of transposable elements. However, 5mC levels and distributions are 

variable across phylogenies, and emerging evidence suggests functions for DNA methylation may 

be more diverse and complex than previously appreciated. Here, we summarize our current 

understanding of DNA methylation profiles and functions in different eukaryotic lineages.
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Expanding roles of DNA methylation throughout eukaryotes:

DNA methylation has been the subject of intense investigation for decades. Interest in this 

modification was stimulated in the 1970s, when it was proposed that DNA methylation 

might be a mechanism for controlling multicellular development, though at the time there 

was no experimental evidence to support this idea [1, 2]. Interest in DNA methylation 

continued to grow following key findings that 5mC is required in certain plant and animal 

species for proper development, as well as transposon silencing in plants, animals, and some 

fungi [3, 4]. Additional work uncovered roles for 5mC in mammalian X-chromosome 

inactivation and mono-allelic expression of imprinted genes in mammals and plants [5–7]. 

Despite decades of work, however, many key questions about how 5mC is controlled and 

how this modification functions in eukaryotic genomes remain unanswered. Most early work 

on DNA methylation was restricted to a handful of model systems, but the emergence of 
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new technologies has facilitated studies of 5mC in diverse organisms and provided new and 

surprising insights into the control of DNA methylation and its diverse functions in 

eukaryotes.

Mechanisms for establishment and maintenance of DNA methylation:

DNA methyltransferase enzymes are responsible for formation of 5mC through the transfer 

of a methyl group from the cofactor S-Adenosyl-L methionine (SAM) to the 5’-position of 

the cytosine ring in DNA [8]. At the amino acid level, DNA methyltransferases are identified 

by a series of highly conserved motifs associated with catalytic activity [9]. Most DNA 

methyltransferase enzymes can be categorized into one of two groups. The first group 

comprises de novo DNA methyltransferases, which are primarily responsible for 

establishing 5mC at previously unmethylated sites. The second group includes proteins that 

function primarily to maintain already established DNA methylation marks during DNA 

replication [3, 4].

The mechanisms responsible for targeting 5mC establishment to specific sequences are only 

partially understood. There is evidence to suggest that recruitment by select histone tail 

modifications, pairing of repetitive sequences, and small RNA pathways can all be involved 

in guiding the establishment of 5mC [10–12]. In addition, transcription factor binding 

provides a potent mechanism for shaping the global landscape of 5mC establishment 

through occlusion of potential DNA methyltransferase target sequences [13–16]. The 

relative importance of these targeting approaches appears to vary between species, and 

different mechanisms may be used to direct 5mC to different sequences within the same 

species.

The process of DNA replication presents a challenge for the propagation of methylation 

states through mitosis. In some cases, this problem may be solved through the de novo 

reestablishment of 5mC at target sites during each round of cell division [4, 17]. More 

commonly, maintenance mechanisms promote preservation of 5mC patterns at symmetrical 

CpG sites following replication (Figure 1). Propagation of methylation at CpGs is achieved 

by recruitment of maintenance methyltransferases to hemimethylated CpG sites at 

replication forks [18–20]. This recruitment, in turn drives methylation of reciprocal 

unmethylated cytosines in the newly synthesized DNA. The high fidelity of this maintenance 

mechanism may explain why methylation of CpGs predominates over other dinucleotide 

contexts in most species with methylated genomes.

Methods to detect DNA methylation:

Bisulfite sequencing represents the current gold standard method for detection of 5mC in 

DNA. In this approach, treatment with sodium bisulfite preferentially deaminates 

unmethylated cytosines in DNA [21, 22]. Deaminated cytosines are subsequently converted 

to uracil through desulfonation and replaced by thymines during PCR amplification. 

Methylated cytosines are protected from the bisulfite reaction, allowing their detection 

through sequencing of the converted, amplified DNA. In the past decade, the coupling of the 

bisulfite reaction to high-throughput sequencing has made it possible to map genome-wide 
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cytosine methylation states at single-base resolution for any species that has a publicly 

available reference genome [23,24], and new innovations are extending the power of these 

approaches to species that lack reference genomes [25]. Although powerful, these types of 

Whole Genome Bisulfite Sequencing (WGBS) approaches have some limitations. For 

example, vertebrate genomes also harbor low levels of the modified base 5-

hydroxymethylcytosine, which cannot be distinguished from 5mC using standard bisulfite 

sequencing approaches. It is also important to recognize that in genomes with very low 

levels of 5mC or extensive 5mC in non-CpG contexts, it may be difficult to distinguish 

background levels of bisulfite non-conversion from true methylation events. Controls 

including known methylated and unmethylated DNA standards can provide useful context in 

these cases.

Diversity of methylation profiles and functions across eukaryotic genomes:

Traditional views of 5mC distribution and function in eukaryotes have been heavily 

influenced by early analysis of a few species including humans, mouse, the flowering plant 

Arabidopsis thaliana, and the filamentous fungus Neurospora crassa. Today, WGBS data 

exists for more than 150 eukaryotic genomes. This wealth of new sequencing data has 

revealed more extensive taxonomic diversity among methylomes and methyltransferase 

enzymes than previously appreciated. Below we summarize our current understanding of 

5mC distribution and function in different eukaryotic lineages and discuss similarities and 

differences across species.

Vertebrates:

Vertebrate genomes are extensively methylated, with 5mC detected at more than 70% of 

CpGs in somatic tissues [26]. Low levels of non-CpG methylation have also been reported in 

some cellular contexts, most prominently in neurons and embryonic stem cells [27–29]. At 

the sequence level, transposable elements and satellite repeats near centromeres and 

telomeres are commonly cited as being highly enriched in 5mC in vertebrate genomes. 

However, it may be more accurate to describe vertebrate genomes as being methylated at 

CpGs in all sequences, with two types of exceptions. The first exception is non-methylated 

islands (NMIs). Located near gene promoters, NMIs represent the only sequence class that 

consistently escapes DNA methylation in vertebrate species [30]. In mammals, NMIs are 

often referred to as CpG islands due to their high CpG density, whereas in other vertebrates, 

NMIs may exhibit significantly lower CpG densities [30, 31]. In general, there is a relatively 

small fraction of CpG dinucleotides in vertebrate genomes that exhibit dynamic changes in 

5mC levels between different tissues and developmental stages [32]. These differentially 

methylated regions (DMRs) often include binding sites for transcription factors, and their 

hypomethylation correlates with active transcription of nearby genes.

Cytosine methylation in vertebrates is achieved through a combination of de novo and 

maintenance methyltransferases (Figure 2). Most vertebrate genomes encode for one 

maintenance DNA methyltransferase of the Dnmt1 family and a variable number of de novo 

DNA methyltransferases of the Dnmt3 family. In mammals, two Dnmt3 proteins, Dnmt3a 

and Dnmt3b, cooperate to establish the bulk of 5mC [33]. An additional Dnmt3 gene, 
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Dnmt3c is specifically found in rodents, and is important for the methylation of young 

retrotransposons in the male germ line [34, 35]. In addition to these catalytically active de 

novo methyltransferases, mammalian genomes also encode for a stimulatory cofactor, 

DNMT3L, which shares homology to other Dnmt3 proteins but lacks key catalytic motifs. 

This cofactor is critical for de novo methylation in the germline [36, 37]. Other non-

mammalian vertebrate lineages appear to lack Dnmt3L orthologs, but exhibit larger 

expansions of the Dnmt3 de novo methyltransferase family. For example, the zebrafish 

genome encodes for six Dnmt3 genes [38]. The reasons for this expansion remain unclear. 

The mechanisms that target vertebrate Dnmt3 enzymes to particular sequences are not 

completely understood. However, pathways associated with small RNAs called piRNAs 

have been implicated in establishing 5mC at transposons in germ cells [39]. Histone tail 

modifications have also been identified as potential modulators of 5mC deposition. For 

example, Dnmt3 proteins can directly bind H3K36me3 to facilitate de novo methylation[10, 

40]. Recent evidence also suggests that methylation may actually be broadly targeted across 

vertebrate genomes, with protection by bound transcription factors serving as a dominant 

force driving hypomethylation at DMRs [13–16].

Mutation or inhibition of the maintenance DNA methyltransferase Dnmt1 leads to global 

loss of 5mC and embryonic lethality in all vertebrates tested to date [41–43]. Global loss of 

5mC is associated with significant derepression of transposable elements, suggesting that a 

major function of the vertebrate DNA methyltransferase machinery is to suppress 

transcription from these parasitic elements [44]. In addition to roles in controlling 

transposon expression, 5mC has long-been hypothesized to be a key regulator of tissue-

specific gene expression. However, while altered gene expression profiles at autosomal, 

biallelically expressed genes have been noted in vertebrate genomes following 5mC 

depletion, expression of most genes remains unaffected and not all observed expression 

changes can be easily attributed to methylation changes at corresponding DMRs [45–47]. 

Where DNA methylation changes impact transcription, these changes are likely mediated by 

sequence-specific DNA binding proteins that preferentially bind either methylated or 

unmethylated recognition sites [13]. In mammals, 5mC is also important for monoallelic 

expression from imprinted genes with high levels of 5mC typically accumulating on the 

silenced allele [5, 6]. Similarly, the silent X chromosome of mammalian females is 

associated with high levels of DNA methylation [7]. Global reprogramming of 5mC patterns 

is observed in the mammalian germ line and the early embryo. In contrast, the zebrafish 

methylome does not appear to undergo similar widespread global demethylation during 

embryogenesis [48, 49].

Insects:

To date, methylomes of more than 40 insect species have been reported, with representation 

from at least six different orders [26, 50–61]. 5mC is not detected in all insect genomes, and 

5mC and the DNA methyltransferases that mediate this mark seem to have been 

independently lost multiple times in the insect lineage. Most notably, 5mC appears to be 

absent from the genomes of dipteran insects [50] including the popular laboratory model 

Drosophila melanogaster. When methylation is present in insects, it predominates in CpG 

contexts. However, the levels and localization of CpG methylation are quite distinct from 
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vertebrates. Methylation levels in insects are typically much lower than in vertebrate 

genomes, as most insect genomes exhibit methylation at fewer than 15% of CpGs [50]. 5mC 

is consistently enriched in exon sequences of expressed insect genes, with genes that possess 

housekeeping functions most likely to be methylated [56, 57, 62]. Methylation of repetitive 

sequences is highly variable in the insect lineage. Transposons and other repetitive 

sequences are not primary targets of DNA methyltransferases in holometabolous insects 

such as the honey bee, Apis mellifera and the jewel wasp, Nasonia vitripennis, while similar 

repeats are often methylated in hemimetabolous insects such as the milkweed bug, 

Oncopeltus fasciatus and the termite, Zootermopsis nevadensis [51, 57]. The mechanistic 

basis for this distinction is unknown, but it likely involves how DNA methyltransferases are 

recruited to their targets.

Although 5mC distributions vary significantly between vertebrates and insects, the 

methyltransferase enzymes that mediate this modification are closely related in both 

phylogenies. Insect species with 5mC typically encode for one or more maintenance DNA 

methyltransferase of the Dnmt1 family and at least one de novo methyltransferase with high 

similarity to vertebrate Dnmt3 proteins (Figure 2) [50]. Duplication of Dnmt1 has occurred 

in certain families within the Hymenoptera and other lineage-specific duplications have 

occurred [50]. Curious exceptions have been noted in which only Dnmt1 or Dnmt3 

methyltransferase genes can be detected in a given insect genome. This observation raises 

the possibility that in some insects, DNA methyltransferase enzymes of the Dnmt1 or Dnmt3 

family may have developed the capacity to efficiently perform both de novo and 

maintenance functions. Alternatively, in some cases the loss of Dnmt1 or Dnmt3 orthologs 

may reflect an intermediate stage in the lineage specific decay or adaptation of the DNA 

methylation machinery.

To date, there have been few studies addressing the functional roles for DNA methylation 

and DNA methyltransferases in insects. The lack of tractable insect species for reverse 

genetics that also harbor 5mC has represented one challenge to such exploration. However, 

new studies have begun to fill this void. Knockdown of Dnmt1 in the milkweed bug, O. 
fasciatus, was recently used to successfully reduce genome wide 5mC levels in ovary tissues, 

providing an experimental framework for assessing function in an insect genome [51]. 

Affected females produced only limited numbers of poor-quality eggs, which developed 

abnormally when fertilized. Yet, loss of methylation within transposable elements or genes 

did not appear to significantly affect their expression [51]. Intriguingly, similar 

developmental arrest of progeny was also noted following maternal depletion of Dnmt1 in 

the red flour beetle Tribolium castaneum, even though the Tribolium genome appears to lack 

5mC [63]. Together, these two experiments raise the possibility that Dnmt1 may have DNA 

methylation independent functions in at least some insect species. Future reverse genetic 

studies of 5mC pathway components will enable testing of hypothesized effects of DNA 

methylation on gene regulation in insect genomes.

Plants:

5mC has been found in all examined plant species. In plants, DNA methylation is primarily 

found at transposons and other repetitive sequences. In some angiosperm species, DNA 
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methylation at CpG sites is also common in exons of genes that are moderately and broadly 

expressed [64–66]. This type of methylation is referred to as gene body methylation (gbM) 

and is not associated with silencing of gene expression [67, 68]. Although its function, if 

any, is unknown, angiosperm gene body methylation shares similarities with the exonic 

DNA methylation of highly conserved housekeeping genes noted in insects [69, 70]. 

Curiously, gbM has been lost from the genomes of some angiosperm species, further adding 

to the mysterious nature of this subclass of methylated loci [71].

The composition of DNA methyltransferases present in plants is somewhat similar to 

animals, in that there are maintenance and de novo enzymes (Figure 2). However, there are 

also features of the plant DNA methylation machinery that are unique. DNA 

methyltransferases of the MET 1 family, which are orthologous with Dnmt1 

methyltransferases found in animals, are responsible for maintaining methylation at CpG 

sites in all plant species examined. De novo methyltransferase proteins with strong similarity 

to animal Dnmt3 enzymes can be detected in the genomes of some early land plants such as 

mosses [72], but clear Dnmt3 orthologs are absent from the majority of plant species studied 

to date. Instead, most plants encode for domains rearranged methyltransferases of the DRM2 

family. Although related to Dnmt3 proteins, the motifs important for methyltransferase 

activity are rearranged in DRM2 proteins compared to Dnmt3 enzymes [73, 74]. In addition, 

unlike Dnmt3 proteins, DRM2 methyltransferases appear similarly effective in catalyzing de 

novo methylation at CpHpH sites (H = A, C or T) with increased activity at CpG, CpT and 

CpA sites [74]. In contrast to mammals, targeting of this unique family of de novo DNA 

methyltransferases appears to be mediated almost exclusively through small RNAs via the 

RNA directed DNA methylation pathway [4]. These small RNAs are typically 24 

nucleotides long and are generated by the repetitive sequences that are ultimately methylated 

by these enzymes. Plant genomes also possess DNA methyltransferases called 

chromomethylases, which are mostly responsible for methylating CpHpG sites in repetitive 

DNA [75]. To date, these methyltransferases have not been found outside of the plant 

kingdom. Chromomethylases in angiosperm species are recruited to sequences by H3 

histone tail methylation at lysine 9 (H3K9me2) [76, 77]. Following recruitment, CMT-

dependent methylation is subsequently able to recruit the enzymes that mediate H3K9 

methylation to these same sequences [78]. In this way, CMT methyltransferases participate 

in a feed forward loop that allows long-term propagation of both non-CpG and histone 

H3K9 methylation at target loci.

The majority of our knowledge regarding the function of DNA methylation in plants is 

derived from studies in two angiosperm species, Arabidopsis thaliana and Zea mays. 

Somewhat remarkably, viable A. thaliana plants with significant depletion of methylation in 

CpG or CpHpG contexts can be isolated, although they do not develop normally. In contrast, 

significant depletion of 5mC is lethal in Z. mays [79, 80]. In both species, decreases in 5mC 

levels are associated with increased expression of transposable elements and aberrant 

expression of some gene loci. However, there is currently only a limited understanding of 

how these changes drive the development abnormalities observed in 5mC depleted plants. 

DNA methylation is also involved in genome imprinting in the endosperm of flowering 

plants [81], though it should be noted that imprinting evolved independently in flowering 

plants and vertebrates despite mechanistic similarities in both groups.
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Fungi:

DNA methylation is absent from genomes of several extensively studied fungi including 

Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Aspergillus nidulans. 

However, a recent broad survey of DNA methyltransferases and DNA methylomes from 

representative fungal species indicates that 5mC is more widespread than previously 

appreciated in this kingdom, with highest levels of 5mC detected among basidiomycetes 

[82]. Although gene body methylation is a common feature of animal and plant genomes, it 

is notably absent in the vast majority of fungal genomes and instead methylation is localized 

primarily to repeat sequences [82]. In most fungal species where 5mC is observed, 

methylation of cytosines in all dinucleotide contexts can be detected. Four classes of fungal 

DNA methyltransferases have been observed: DNMT1, DNMT5, DIM-2 and RID (Figure 

2). Fungal Dnmt1 orthologs share strong homology to Dnmt1/MET1 enzymes from plants 

and animals, suggesting extensive conservation of this maintenance machinery across 

eukaryotes. Phylogenetic evidence would suggest DNMT5 proteins are likely maintenance 

enzymes. There is evidence to suggest DIM-2 and RID can function as a de novo 

methyltransferases, though the methylation capacities of RID homologs are not well defined 

[83, 84]. As a general rule, ascomycete fungi encode homologs of DIM-2, whereas 

basidiomycetes encode DNMT1 and DNMT5 homologs, but all possible combinations of 

DNMTs are observed, presumably due to horizontal transfer of DNMT genes between fungi 

[82].

To date, most functional studies of DNA methylation in fungi have been performed using the 

ascomycete fungus N. crassa. Most 5mC in N. crassa is associated with repeat sequences 

that have been altered by a homology-based genome defense system called repeat-induced 

point mutation (RIP) [85]. RIP was first identified in N. crassa and involves DNA 

methylation and subsequent mutation of duplicated sequences in DNA [86, 87]. RIP has 

been reported to occur in other ascomycete fungi [88–93], and a RIP-like process called MIP 

(methylation induced premeiotically) methylates but does not mutate repeats during sexual 

development in the ascomycete Ascobolus immersus [84, 94, 95]. Interestingly, homologs of 

RID are required for sexual development in A. immersus and Aspergillus nidulans, but the 

precise role of these proteins in meiotic tissues is not understood [84, 96].

In N. crassa, 5mC in is not limited to symmetrical sites and a mechanism for maintenance 

methylation does not appear to exist, instead it is likely that 5mC is reestablished de novo at 

every round of cell division [97–102]. This de novo targeting is mediated primarily by H3K9 

methylation of AT-rich targets [99, 101, 103], although antisense transcripts have been 

implicated in targeting 5mC to certain genes that are GC-rich and present as single-copies 

[104]. In N. crassa, loss of 5mC is not associated with significant gene expression changes, 

but 5mC is required to restrict the mobility of functional transposons [105]. 5mC was shown 

to inhibit transcriptional elongation in N. crassa, but the mechanism is not understood [106].

Concluding Remarks and Future Perspectives:

The ever-increasing availability of eukaryotic methylomes allows for a more holistic 

analysis of DNA methylation in eukaryotes than could be performed just a decade ago. Still, 
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there are many lineages that remain under or unexplored. For example, analysis of 5mC in 

the parasitic nematode Trichinella spiralis has recently challenged the long-standing 

assumption that the nematode lineage lacks this modification [107]. In the ciliate, Oxytricha 
trifallx, DNA methylation is likely required for DNA elimination supporting function 

independent of gene regulation [108]. Many other protostome lineages have been similarly 

neglected and almost nothing is known regarding methylation in cnidaria, porifera and entire 

groups of protists. These omissions suggest that there is still much to learn regarding the 

diversity of methylomes and DNA methyltransferase systems in eukaryotes.

There are numerous outstanding questions in this field (Box 1). The question of why there is 

such outstanding natural diversity in eukaryotic DNA methyltransferases and 5mC 

distributions remains an open question. The loss of a subset of methylation pathways in 

addition to the complete loss of methylation in some lineages emphasizes that 5mC is not 

absolutely required for gene regulation, transposon control or survival in eukaryotes, 

suggesting that compensatory pathways can support these functions in some contexts. Still, 

the essential nature of 5mC in vertebrates and Z. mays argues that in other organisms such 

redundancies are lacking or are insufficient to compensate for newly evolved 5mC 

requirements. Specialist functions for 5mC such as imprinted gene regulation in mammals 

and in the endosperm of flowering plants, repeat induced point mutation in N. crassa and 

gene body methylation in insects and angiosperms suggest that the base functions of 5mC 

can readily be usurped to support unique requirements in different lineages. Indeed, the lack 

of 5mC in repetitive sequences of some insect species suggests that common functions for 

5mC in transposon control may not always be retained as the predominant 5mC function in 

species with 5mC. There is clearly much more to learn about 5mC in eukaryotes. However, 

new methylome data underscores the risks of broadly extrapolating findings regarding DNA 

methylation and DNA methyltransferase function from one species to the next.
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Outsanding Questions:

Is there a specialized role for DNA methylation during meiosis? In mammals, disruption 

of DNA methylation leads to failed meiosis. Similarly, knockdown of DNMT1 in the 

milkweed bug, Oncopeltus fasciatus, caused females to cease laying eggs, and eggs that 

were preduced failed to develop. In fungi, homologs of RID are required for sexual 

development in two ascomycetes, Ascobolus immersus and Aspergillus nidulans.

Is there a function of gene body DNA methylation in plants and insects? Gene body DNA 

methylation is found within moderately and constitutively expressed housekeeping genes 

in flowering plants and insects. It is often evolutionary conserved, yet a well-defined 

function has yet to be determined.

Why are DNA methyltransferases and DNA methylation lost in numerous independent 

insect taxa? Curiously some insect species have only lost Dnmt1 or Dnmt3, yet still retain 

DNA methylation. These findings suggest that additional undiscovered enzymatic 

activities of DNA methyltransferases might exist or that compensatory mechanisms have 

evolved to allow the loss of DNA methylation.

Does DNA methylation regulate gene expression beyond transponson silencing in fungi? 

In N. crassa, a small number of protein-coding genes are associated with DNA 

methylation directed by a class of small RNAs, and in several basidiomycetes, large 

methylated domains found on chromosome arms span multiple protein coding genes. 

These observations raise the possibility that 5mC could regulate gene expression during 

development or in response to changing environmental conditions.
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Highlights:

Although DNA methyltransferase content is generally conserved across eukaryotes, there 

is exists extensive variation in how this modified base is used for a variety of cellular 

processes.

The manner in which DNA methyltransferases are recruited to target sequences leads to a 

diversity of genome-wide DNA methylation patterns between eukaryotes.

Continued exploration of DNA methylation patterns and DNA methyltransferase content 

in diverse eukaryotic lineages will lead to an expanded understanding of mechanism by 

which the modified base functions in genomes.
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Figure 1. Schematic diagram of de novo and maintenance DNA methylation.
Methylation of cytosines de novo is independent of existing 5mC and can be targeted to 

cytosines in CpG and non-CpG contexts. Recruitment of de novo cytosine 

methyltransferases is regulated by small RNAs and/or specific chromatin modifications. 

Maintenance methylation involves recognition of hemi-methylated CpG sites generated 

during DNA replication. Maintenance methyltransferases target CpG sequences on the 

newly synthesized strand to generate a fully methylated CpG site.
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Figure 2: Evolutionary relationship of eukaryotic DNA methyltransferases.
DNMT1 homologs are found in essentially all eukaryotes that utilize 5mC, whereas lineage-

specific losses and gains of DNA methyltransferases are found in specific taxa. This 

phylogeny is a representation and is not applicable to all species within each lineage due to 

the recurrent loss of DNA methylation machinery. Figure courtesy of Adam Bewick.

Schmitz et al. Page 18

Trends Genet. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Expanding roles of DNA methylation throughout eukaryotes:
	Mechanisms for establishment and maintenance of DNA methylation:
	Methods to detect DNA methylation:
	Diversity of methylation profiles and functions across eukaryotic genomes:
	Vertebrates:
	Insects:
	Plants:
	Fungi:
	Concluding Remarks and Future Perspectives:
	References
	Figure 1.
	Figure 2:

