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Abstract

Objective: To date, The Cancer Genome Atlas (TCGA) has provided the most extensive 

molecular characterization of invasive cervical cancer (ICC). Analysis of reverse phase protein 

array (RPPA) data from TCGA samples showed that cervical cancers could be stratified into 3 

clusters exhibiting significant differences in survival outcome: hormone, EMT, and PI3K/AKT. 

The goals of the current study were to: 1) validate the TCGA RPPA results in an independent 

cohort of ICC patients and 2) to develop and validate an algorithm encompassing a small antibody 

set for clinical utility.
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Methods: Subjects consisted of 2 ICC patient cohorts with accompanying RPPA and clinical-

pathologic data: 155 samples from TCGA (TCGA-155) and 61 additional, unique samples 

(MCW-61). Using data from 173 common RPPA antibodies, we replicated Silhouette clustering 

analysis in both ICC cohorts. Further, an index score for each patient was calculated from the 

survival-associated antibodies (SAAs) identified using Random survival forests (RSF) and the Cox 

proportional hazard regression model. Kaplan-Meier survival analysis and the log-rank test were 

performed to assess and compare cluster or risk group survival outcome.

Results: In addition to validating the prognostic ability of the proteomic clusters reported by 

TCGA, we developed an algorithm based on 22 unique antibodies (SAAs) that stratified women 

with ICC into low-, medium-, or high-risk survival groups.

Conclusions: We provide a signature of 22 antibodies which accurately predicted survival 

outcome in 2 separate groups of ICC patients. Future studies examining these candidate 

biomarkers in additional ICC cohorts is warranted to fully determine their clinical potential.
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Cervical cancer; reverse phase protein array; survival risk; prognostic biomarkers; The Cancer 
Genome Atlas (TCGA)

Introduction

In March 2017, The Cancer Genome Atlas (TCGA) published data on the largest molecular 

characterization of invasive cervical cancer (ICC; [1]). The study included resampling-based 

consensus clustering analysis of protein expression data from 192 antibodies on a reverse 

phase protein analysis (RPPA) platform and identified 3 distinct clusters defined as EMT 

(epithelial-mesenchymal transition), PI3K/AKT, and hormone (see Figure 3 of [1]). In their 

analysis, consensus clusters of 155 samples were found and a silhouette clustering approach 

identified the core members of each RPPA cluster with a silhouette width >0.02 (n=115) 

associated with 5-year survival. Patients falling within the EMT cluster had the poorest 

survival, while those within the hormone cluster had the best. Although very informative, 

these results have not yet been validated in other datasets and need further refinement to 

translate to a clinical approach.

Protein expression arrays offer complementary information to RNA sequencing data. 

Frequently, however, proteomic data do not correlate directly with those obtained from RNA 

sequencing, suggesting that protein content might reflect a tissue’s dynamic state more 

accurately than its nucleic acid content. mRNA expression studies also do not reflect 

posttranslational modifications that can heavily influence a protein’s structure and/or 

function and thus its potential role in tumorigenesis. Moreover, a protein signature that 

predicts poor clinical outcome in a patient population can also provide important 

information for steering therapeutic decisions. The main goal of the current study was to 

validate RPPA-based prediction of survival results in an independent cohort of subjects with 

ICC. We also sought to build a prediction model with a reduced number of proteins in the 

prognostic signature that could be assessed by simpler technologies than RPPA, thus making 

it more applicable to clinical management. Indeed, we identified a novel signature that 
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associates with patient outcome using a the TCGA samples and datasets developed in this 

project. Studies like these that focus on prognostic markers with clinical utility are greatly 

needed to improve our understanding of cervical cancer and to provide useful data for 

generating targeted therapies for this disease which has limited options for cure in metastatic 

cases.

Material and methods

Study Population

Subjects included 155 women with ICC and associated TCGA RPPA data [1], as well as 61 

additional ICC samples with associated clinical-pathologic features recruited through the 

CerGE study (MCW-61 cohort; Table 1) [2]. All samples were obtained at the time of cancer 

diagnosis and prior to treatment. Procedures for the collection, shipping, processing, and 

quality management of samples used in the current study were generated according to the 

guidelines provided in The NCI Best Practices for Biospecimen Resources (https://

biospecimens.cancer.gov/bestpractices/). ICC biopsies from the operating room or clinic 

were flash frozen in liquid nitrogen within 1 hour of their removal and stored at −80°C. 

Human papillomavirus (HPV) typing was performed as previously published for each study 

[1–3]. There were 33 ICC tumors with HPV typing data from both MCW and TCGA, and 

the results showed excellent concordance except for 1 discrepant case for which MCW 

typing identified 2 HPV types, while only 1 was found by TCGA. The study protocol was 

approved by the institutional review board at the Medical College of Wisconsin and all 

patients consented.

RPPA

Fresh-frozen ICC tumors (10 mg) from the MCW-61 cohort were shipped to The Functional 

Proteomics RPPA Core Facility at The University of Texas MD Anderson Cancer Center 

(https://www.mdanderson.org/research/research-resources/core-facilities/functional-

proteomics-rppa-core.html) for protein extraction and RPPA identical to that employed by 

TCGA [1]. Tumor samples contained ≥60% tumor nuclei and ≤20% necrosis. Protein was 

extracted as previously described [1] and specific protein expression was examined using 

282 unique antibodies. Of note, TCGA RPPA analysis employed 192 antibodies, 173 of 

which were shared across both RPPA platforms (Table S1). The 19 antibodies used in TCGA 

but subsequently excluded from the RPPA platform are: 4EBP1PT70, 

ACETYLATUBULIN_LYS40, ALPHACATENIN, ASNS, BRCA2, CD20, CIAP, 

CYCLINE2, ERALPHAPS118, ERK2, KU80, LKB1, MRE11, P62LCKLIGAND, 

P90RSK, P90RSKPT359S363, PRDX1, S6, and VHL. These 19 antibodies were excluded 

from the RPPA platform for 2 reasons: 1) the antibody used was discontinued in the market 

and/or 2) there was a change in antibody validation status due to antibody lot/batch 

variation.

Statistical Analysis

There were 173 common proteins across the 2 RPPA platforms (see Table S1) in 2014 

(TCGA-155) and 2015 (MCW-61) used by the RPPA Core Facility. Following the 

methodology published by the TCGA [1], we performed consensus clustering and silhouette 
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clustering [4] on the expression of 173 common proteins in the TCGA-155 cohort and 

validated them in the MCW-61 cohort (Figure 1). Silhouette width values (defined as the 

ratio of each sample’s average distance to patients in the same cluster to the smallest 

distance to patients not in the same cluster) were calculated for the TCGA-155 cohort and 

patients with a silhouette cluster width >0.02 were identified as core patients. MCW-61 

patients were assigned to a cluster with minimum Euclidean distance to the centroids, which 

were calculated using the silhouette core patients of TCGA-155 cohort. Then, patients with a 

silhouette cluster width >0.02 were identified as core patients of MCW-61 cohort. Kaplan-

Meier survival analysis was then performed to assess 5-year survival and the log-rank test 

was used to compare survivals of the different clusters in the silhouette core patients. Raw 

RPPA expression data from the 173 common antibodies across RPPA platforms is provided 

in Table S2.

To further explore RPPA’s ability to identify small protein groups that could accurately 

predict survival, we performed a machine learning technique called Random forests [5]. 

Random Forests are collections of decision trees that are grown by recursive binary 

partitioning on a different, random subsample of the training data. Random survival forests 

(RSF) [6], an extension of Random forests, was employed using the TCGA-155 data and a 

classification tree was generated using survival status as the outcome variable. The 

predictors were the 173 common antibodies across the 2 RPPA platforms. The optimal 

candidate variables were chosen using a log-rank splitting rule. The resulting parameters 

used were: (1) Number of trees: 10000, (2) Forest terminal node size: 3, and (3) Number of 

variables tried at each split: 14.

RSF and a Cox proportional hazard regression model were further used to identify the 

antibodies with expression data that associated with survival status (survival-associated 

antibodies: SAAs). Cox proportional hazard regression models examined 1 protein at a time, 

while RSF was used to account for interdependent relationships of many proteins. RSF 

variable importance (VIMP) and minimal depth were used for variable selection. VIMP 

ranks the proteins by their impact on a forest’s predictive ability, while minimum depth is 

based on the forest construction [7]. To ensure a more robust selection of informative 

proteins, we used a combination of VIMP and minimal depth or VIMP and Cox proportional 

hazard regression models.

Graphic assessment of standardized score process versus follow-up time and Kolmogorov-

type supremum test were used to check the proportional hazards assumption for each 

predictor for Cox proportional hazard regression model. If the test were rejected implying 

the assumption of proportionality was rejected, then to see if the assumption could hold, 

with modification, we included an interaction of the predictor and a function of survival time 

(log) in the final model. An interaction term was generated and included in the final model. 

The proteins that remained significant using the selection criteria that we have described, 

namely using RSF VIMP & COX, were chosen for further examination.

An index score for each patient was calculated from the significant SAAs using RSF and the 

Cox proportional hazard regression model. The direction of the hazard for each protein was 

determined by Cox proportional hazard regression. An index score was calculated as the 
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sum of genes with increased hazard minus the sum of genes with reduced hazard. The 

terciles of the index score were used to divide patients into 3 survival risk groups (LR – low 

risk; MR – medium risk; HR – high risk). We then used Kaplan-Meier survival analysis and 

the log-rank test to assess risk group survival and to compare risk group survivals, 

respectively.

Ancillary clinical-pathologic associations of SAA protein expression were performed on the 

combined TCGA-155 and MCW-61 cases. Patients’ characteristics were summarized as 

median and interquartile range (IQR) or n (%). Non-parametric Mann-Whitney-Wilcoxon 

tests were used to compare differences between continuous variables, while a Chi-square test 

or Fisher’s exact test was employed to examine associations between categorical variables. 

A p<0.05 was considered significant. No correction for multiple testing was done since RSF 

and Cox proportional hazard were used for selection of candidates. Statistical analyses were 

performed using SAS 9.4 (SAS Institute, Cary, NC) and R version 3.4.2 (Vienna, Austria).

Results

Validation of TCGA cluster survival results in the MCW-61 cohort

We completed consensus clustering in the TCGA-155 using expression data from the 173 

common antibodies across both RPPA platforms in the same manner as the TCGA study 

performed with 192 antibodies [1]. From that analysis, we classified subjects with a 

silhouette width of >0.02 as core patients (n=109; Figure 1). As with the original TCGA 

survival data, we found that overall survival in these core patients was significantly better for 

patients harboring tumors with hormone-classified RPPA pathway scores and significantly 

worse for those falling within the EMT cluster (Figure 2A). Further, using the 42 core 

patients identified from the MCW-61 cohort, we validated the significant difference in 

survival probability between the EMT and hormone groups (p=0.038; Figure 2B). Somewhat 

unexpectedly, we found that the prognostic ability of the PI3K signature was not consistent 

across the 2 patient cohorts as the MCW-61 PI3K group exhibited significantly worse 

survival than its hormone group (p=0.030; Figure 2B).

Identification of 22 antibodies that associate with survival outcome and risk

RSF and Cox proportional hazard models were used to further explore the ability of the 

RPPA data to identify small protein groups that could accurately predict survival. RSF 

analysis, using minimum depth and VIMP, identified 11 antibodies that associated 

significantly with survival status (Table 2). In addition, 52 proteins given an importance 

score of >0 by VIMP but not identified by minimum depth were further tested using Cox 

proportional hazard regression. For those proteins that violated the proportional hazard 

assumption, the protein was selected if it remained significant in the final model. From these 

analyses, we found that expression data from 11 of the 52 antibodies significantly associated 

with survival (p<0.05), bringing our total number of candidates for further study to 22. Table 

2 lists these 22 antibodies and their hazard ratios for risk of death. Of note, the 22 antibodies 

represent 21 proteins as Her3 was represented twice.
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We next calculated an index score for each patient to investigate whether these 22 SAAs 

could accurately stratify patients into survival risk groups. Indeed, an index score from the 

protein hazard ratios predicted 3 significantly different survival risk groups (low risk=LR, 

medium risk=MR, and high risk=HR) from the TCGA-155 cohort (Figure 3A), which we 

then tested in the MCW-61 dataset (Figure 3B). We found a significant difference in survival 

between the MR and HR groups (p=0.039 for TCGA-155; p=0.045 for MCW-61) and the 

HR and LR groups (p<0.0001 for TCGA-155; p=0.001 for MCW-61). While outcomes 

between the MR and LR groups in the MCW-61 cohort were not statistically significant 

(p=0.077; Figure 3B), the TCGA-155 cohort’s LR and MR groups survival was significantly 

different (p=0.007; Figure 3A). A linear-by-linear association test showed that the 

correlation between the SAA risk groups and the TCGA clusters was significant (p=0.0028; 

Table S3).

A subgroup of 22 SAAs associate with clinical and pathologic features

Finally, we determined whether protein expression detected by the 22 SAAs associated with 

clinical and/or pathologic data from the combined TCGA and MCW cohorts (n=216; Figure 

4). Expression of the phosphorylated forms of both checkpoint kinase 1 (Chk1_pS345) and 

jun proto-oncogene (cJun_pS73) was significantly lower in HPV clade A7 than in HPV 

clade A9 and HPV-negative cancers (p=0.0036 and p=0.048, respectively; Figure 4A and 

4B). On the other hand, N-cadherin expression was significantly lower in HPV clade A9-

positive cancers compared to HPV clade A7 and HPV-negative cancers (p=0.029; Figure 

4C). Further, we found that HPV-negative cancers expressed significantly higher levels of 

the cell cycle-related protein cyclin D1 (p=0.008; Figure 4D) and significantly lower levels 

of both the multifunctional enzyme acetyl-coA carboxylase alpha (Acc1; p=0.021; Figure 

4E) and phosphorylated Erb-B2 receptor tyrosine kinase 3 (Her3_pY1298; p=0.012; Figure 

4F). Finally, expression of the DNA repair protein, RAD51 recombinase (Rad51), was 

significantly higher in stage 3 cancer patients than in those with either stage 1 or 2 disease 

(p=0.043; Figure 4G).

Discussion

We began this study by validating TCGA [1] results that characterized patient survival risk 

clusters based on protein expression data from RPPA. Due to the number of antibodies 

analyzed in RPPA, we reanalyzed the TCGA data along with the new MCW cohort using the 

173 common antibodies across both datasets. Through this work, we were able to again 

demonstrate that the hormone cluster exhibited the best survival, while the EMT cluster 

exhibited the worst. The survival outcome of PI3K groups, however, were noticeably 

different across the 2 patient cohorts studied here. As stated before, the original TCGA 

manuscript used RPPA expression data from 192 antibodies, while our TCGA reanalysis and 

MCW validation used data from 173 common antibodies. Thus, the expression data 

examined here are different than that in the original TCGA paper and could have contributed 

to the observed differences. Additionally, it could simply be that the PI3K signature is not as 

robust as the EMT and hormone signatures, leading to inconsistencies in its prognostic 

ability across different antibody platforms and sample cohorts.
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Building on the above results, we developed and validated an SAA index score using Cox 

proportional hazard and RSF, which integrates gene interaction information when selecting 

meaningful protein biomarkers to predict survival outcome. Using this methodology, we 

were able to stratify women with cervical tumors into 3 survival risk groups based solely on 

expression data obtained from 22 unique antibodies (SAA index) making this assay more 

clinically applicable. Fourteen of the 22 antibodies (Table 2) indicated an increased hazard 

ratio for death while 8 indicated a reduced hazard ratio. The increased hazard ratio group 

included oncogenic drivers such as Rad51, PAI1, cyclin D1, FASN, and phosphorylated 

isoforms of Her3 and Raf-1. Finally, when we further analyzed data from the 22 antibodies, 

we found significant associations between their expression and patients’ HPV status and 

clinical stage (Figure 4).

Several of the 22 antibodies highlight the prognostic biomarker results obtained from 

previous mRNA gene expression studies in cervical cancer. Rad51 is central to the 

homologous recombination DNA repair pathway, and its overexpression associates with 

treatment resistance and worse outcome in multiple cancer types [8]. Importantly, Rad51 has 

been identified as a prognostic biomarker and therapeutic target for cervical cancer. 

Inhibition of Rad51 significantly suppresses proliferation of cervical cancer cells in vitro and 

tumor growth in vivo, and its downregulation sensitizes cervical cancer cells to 

chemotherapy and radiation [9]. Gene expression microarrays used to examine pretreatment 

cervical tumor biopsies have indicated that the most significantly altered canonical pathway 

associated with intrinsic resistance is the BRCA-related DNA damage response [10]. Rad51 

is a key member of this pathway, and this RNA-based result extends to 

immunohistochemistry experiments demonstrating that Rad51 protein expression is 

significantly higher in non-responsive cervical tumors compared to responsive tumors [10]. 

Finally, high Rad51 expression significantly predicts poor outcome and is associated with a 

lower likelihood of response to chemoradiation in women with locally advanced cervical 

cancer [11].

In support of previous findings, we found that PAI1 protein expression was associated with 

an increased hazard ratio (Table 2). PAI1 is encoded by the Serpin Family E Member 1 

(SERPINE1) gene, which is a member of the serine proteinase inhibitor superfamily and the 

principal inhibitor of tissue plasminogen activator and urokinase. The plasminogen activator 

system contributes to tumor progression and metastasis by initiating a series of proteolytic 

cascades to degrade components of the extracellular matrix [12]. High expression levels and 

activity of PAI1 associate with prognostic factors in cervical cancer such as advanced stage, 

positive lymph nodes, tumor size, and lymph-vascular invasion [13–15]. Additionally, PAI1 

expression is a strong independent prognostic factor for overall and disease-free survival in a 

group of 108 women with cervical cancer [15]. Phosphorylation of serine 1943 of MYH9 

enhances invadopodia function and is critical for matrix degradation in vitro and 

experimental metastasis in vivo [16]. These data suggest that extracellular matrix 

degradation and tumor cell invasion and metastasis networks warrant additional work to 

further define their potential as prognostic markers and therapeutic targets.

FASN (fatty acid synthase) is involved in fatty acid synthesis, with its main function being 

catalyzation of palmitate synthesis from acetyl-CoA and malonyl-CoA. High expression of 
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FASN associates with significantly shorter overall survival in women treated by surgical 

exenteration for recurrent cervical cancer [17]. cBioPortal [18, 19] mutual exclusivity 

analysis of genomic alterations in cervical cancer suggests a strong co-occurrence of 

alterations in FASN and ACC1 (acetyl-CoA carboxylase alpha), which encodes the rate-

limiting enzyme in fatty acid synthesis. A recent study by Stoiber et al. [20] targeted 

lipogenesis using Acc1 and FASN inhibitors and found that they induce cell membrane 

alterations, which result in the inhibition of cancer cell migration and invasion, proliferative 

potential, and tumor growth in vivo [20]. FASN and ACC1 are also target genes of sterol 

regulatory element-binding proteins (SREBPs), which are key transcription factors in lipid 

biosynthesis that can be targeted for degradation using clinically-approved heat shock 

protein 90 (Hsp90) inhibitors [21]. In addition to the effects on SREBPs, Hsp90 inhibitors 

have also been shown to result in degradation of Rad51 [22] and loss of Her3-associated 

PI3K activity due to Her2 degradation [23]. Together, these results and ours suggest that 

targeting lipogenesis, potentially with these existing Hsp90 inhibitors, may be beneficial for 

a subset of cervical cancer patients with poor prognosis.

The work here complements available genomic-based studies, provides important 

information on prognostic biomarkers, and identifies tumor protein signatures that may be 

examined for identification of more efficacious combinatorial drug therapies for invasive 

cervical cancer. Examination and analysis of SAA expression data in additional datasets 

could help to further support and refine this set of protein prognostic biomarkers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The prognostic ability of TCGA RPPA signatures was validated

• Expression data from 22 antibodies predicts cervical cancer survival risk

• A subgroup of the 22 antibodies associate with clinical features of cervical 

cancer
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Figure 1. Cluster data survival analysis methods.
See Statistical analysis section of Materials and Methods for detailed description of 

analyses.
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Figure 2. Validation of TCGA cluster survival results in the TCGA-155 and MCW-61 cohorts 
using 173 common antibodies.
Tumors from the TCGA-155 (A) and MCW-61 (B) cohorts were assigned to survival-

associated clusters that were previously identified by TCGA (EMT, Hormone, and PI3K/

AKT). In agreement with the original TCGA data, we found that overall survival was 

significantly better for patients assigned to the hormone cluster and significantly worse for 

those within the EMT cluster in both TCGA-155 and MCW-61 cohorts in our analysis of 

expression data from the 173 common antibodies across RPPA platforms.
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Figure 3. Expression data from 22 antibodies can stratify cervical cancer patients into risk 
groups with significant differences in survival outcome.
Using RSF and Cox proportional hazard models, we determined that expression data from 

22 specific antibodies (SAAs) could accurately predict survival. An index score from the 

protein hazard rations predicted 3 significantly different survival risk groups (low, medium, 

and high) in both the TCGA-155 cohort (A) and MCW-61 cohort (B).
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Figure 4. A subgroup of the 22 SAAs associate with clinical and pathological features of cervical 
cancer.
Expression of chk1_pS345 (A), cjun_pS73 (B), N-cadherin (C), cyclin D1 (D), accl (E), and 

her3_pY1298 (F) associated with HPV clade, while expression of rad51 (G) associated with 

cervical cancer stage.
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Table 1.

Patient characteristics.

TCGA-155 MCW-61

Age (years) 47 (38, 56) 45 (37, 60)

Race White 112 (72) 43 (70)

African American 11 (7) 18 (30)

Asian 15 (10) 0

American Indian or Alaska Native 2 (1) 0

Other 15 (10) 0

Ethnicity

Hispanic or Latino 12 (8) 2 (3)

Not Hispanic or Latino 99 (64) 40 (66)

Not specified 44 (28) 19 (31)

Stage

1 (Ib, Ib1, Ib2) 97 (63) 40 (66)

2 (IIa, IIb) 31 (20) 8 (13)

3 (IIIb, IVa, IVb) 24 (15) 13 (21)

Unstaged 3 (2) 0

Histology

Adenocarcinoma 22 (14) 9 (15)

Adenosquamous 3 (2) 5 (8)

Squamous cell carcinoma 130 (84) 47 (77)

HPV clade A7 43 (28) 25 (41)

A9 100 (64) 32 (52)

Other 4 (3) 1 (2)

Negative 8 (5) 3 (5)

Median age (interquartile range) or n (%) are presented.
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Table 2.

SAA candidates: Proteins selected using RSF and a Cox proportional hazards model.

Proteins Gene Selection algorithm Hazard*** Hazard ratio and 95% CI p-value****

her3 ERBB3 RSF Minimum Depth & VIMP* Reduced 0.825 (0.337, 2.022) 0.674

hsp70 HSPA1A RSF Minimum Depth & VIMP Increased ***** 0.238

acc1 ACACA RSF Minimum Depth & VIMP Increased 1.779 (0.838, 3.778) 0.134

chk1_pS345 CHEK1 RSF Minimum Depth & VIMP Reduced 0.041 (0.005, 0.371) 0.004

myosin-Ila pS1943 MYH9 RSF Minimum Depth & VIMP Increased 1.939 (0.521, 7.222) 0.323

rad51 RAD51 RSF Minimum Depth & VIMP Increased ***** 0.029

paxillin PXN RSF Minimum Depth & VIMP Increased 1.758 (0.780, 3.962) 0.173

p70S6K_pT389 RPS6KB1 RSF Minimum Depth & VIMP Increased ***** 0.024

fasn FASN RSF Minimum Depth & VIMP Increased 1.991 (0.962, 4.121) 0.064

p27_pT198 CDKN1B RSF Minimum Depth & VIMP Reduced 0.066 (0.004, 1.156) 0.063

cyclin D1 CCND1 RSF Minimum Depth & VIMP Increased 6.091
(2.145, 17.294) 0.0007

bak BAK1 RSF VIMP & Cox** Reduced 0.050 (0.005, 0.490) 0.010

src_pY416 SRC RSF VIMP & Cox Reduced 0.386 (0.191, 0.780) 0.008

pai1 SERPINE1 RSF VIMP & Cox Increased 1.382 (1.012, 1.886) 0.042

cjun_pS73 JUN RSF VIMP & Cox Reduced 0.327 (0.111, 0.959) 0.042

raptor RPTOR RSF VIMP & Cox Increased 15.710 (1.783, 138.390) 0.013

her3_pY1298 ERBB3 RSF VIMP & Cox Increased 6.245 (1.107, 35.244) 0.038

C-raf_S338 RAF1 RSF VIMP & Cox Increased ***** 0.037

E-cadherin CDH1 RSF VIMP & Cox Reduced ***** 0.035

N-cadherin CDH2 RSF VIMP & Cox Increased ***** 0.044

yb1 YBX1 RSF VIMP & Cox Increased 5.554 (1.048, 29.422) 0.044

bcl2 BCL2 RSF VIMP & Cox Reduced 0 319 (0.141, 0.720) 0.0059

*
Proteins selected by both RSF minimum depth & VIMP: RSF minimum depth & RSF VIMP >0

**
Proteins selected by RSF VIMP & Cox: RSF VIMP >0 & Cox proportional hazards model p<0.05

***
Increased or reduced risk of death determined by Cox proportional hazards model

****
p value from Cox proportional hazards model

*****
Proportional hazard assumption was violated and an interaction of the predictor and survival time (log) was included in the final model; only 

direction and p value were reported
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