
Cancer Medicine. 2019;8:6487–6502.	﻿	     |  6487wileyonlinelibrary.com/journal/cam4

Received: 20 June 2019  |  Revised: 13 July 2019  |  Accepted: 15 August 2019

DOI: 10.1002/cam4.2524  

O R I G I N A L  R E S E A R C H

Prognostic value of Kinesin‐4 family genes mRNA expression 
in early‐stage pancreatic ductal adenocarcinoma patients after 
pancreaticoduodenectomy

Quanfa Han  |   Chuangye Han  |   Xiwen Liao   |   Ketuan Huang  |   Xiangkun Wang  |   
Tingdong Yu  |   Chengkun Yang  |   Guanghui Li  |   Bowen Han  |   Guangzhi Zhu  |   
Zhengqian Liu  |   Xin Zhou   |   Junqi Liu  |   Hao Su  |   Liming Shang  |   Tao Peng   |   
Xinping Ye

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Department of Hepatobiliary Surgery, The 
First Affiliated Hospital of Guangxi 
Medical University, Nanning, People’s 
Republic of China

Correspondence
Xinping Ye, Department of Hepatobiliary 
Surgery, The First Affiliated Hospital of 
Guangxi Medical University, Shuang_Yong 
Road 6#, Nanning, 530021, Guangxi 
Zhuang Autonomous Region, People’s 
Republic of China.
Email: yexinpinggx@163.com

Funding information
This study was sponsored in part by the 
2018 Innovation Project of Guangxi 
Graduate Education (No.: JGY2018037 and 
YCBZ2018036), Guangxi Key Laboratory 
for the Prevention and Control of Viral 
Hepatitis (No.GXCDCKL201902), the 
National Natural Science Foundation 
of China (Grant No.81802874), the 
Natural Science Foundation of the 
Guangxi Province of China (Grant 
No.2018GXNSFBA138013), the Key 
laboratory of High‐Incidence‐Tumor 
Prevention & Treatment (Guangxi Medical 
University), Ministry of Education 
(GKE2018‐01), the Guangxi Key R & D 
Program (GKEAB18221019).

Abstract
Background: The aim of this study was to investigate the potential prognostic value 
of Kinesin‐4 family genes mRNA expression in early‐stage pancreatic ductal adeno-
carcinoma (PDAC) patients after pancreaticoduodenectomy.
Methods: Kaplan‐Meier survival analysis method with log‐rank test and Cox pro-
portional hazards regression analysis were performed to figure out the association 
between Kinesin‐4 family genes expression and PDAC patients overall survival 
time. Joint‐effect survival analysis and stratified survival analysis were carried out 
to assess the prognosis prediction value of prognosis‐related gene. Nomogram was 
constructed for the individualized prognosis prediction. In addition, we had used 
the gene set enrichment analysis and genome‐wide co‐expression analysis to further 
explore the potential mechanism.
Results: KIF21A expression level was significantly associated with PDAC patient 
clinical prognosis outcome and patient with a high expression of KIF21A would have 
a shorter overall survival time. The prognosis prediction significance of KIF21A was 
well validated by the joint‐effect survival analysis, stratified survival analysis, and 
nomogram. Meanwhile, the gene set enrichment analysis and genome‐wide co‐ex-
pression analysis revealed that KIF21A might involve in DNA damage and repair, 
transcription and translation process, post‐translation protein modification, cell 
cycle, carcinogensis genes and pathways.
Conclusions: Our current research demonstrated that KIF21A could serve 
as a potential prognostic biomarker for patient with early‐stage PDAC after 
pancreaticoduodenectomy.
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1  |   INTRODUCTION

Pancreatic cancer (PC) is the seventh leading cause of 
cancer‐related death worldwide, with about 458 918 new 
cases and 432  242 deaths in 2018 alone.1 Furthermore, 
it was estimated that about 90 100 newly diagnosed PC 
cases and 79 400 death cases were recorded in China in 
2015.2 The incidence rate and mortality rate of PC were 
10.9/105 and 8.4/105, respectively.3 Previous research 
has reported that PC with a very poor prognosis and the 
age‐standardized 5‐year relative survival rate for PC was 
11.7% in China.4 The low survival rate is partly attributed 
to most patients had no symptom until the disease devel-
ops to an advanced stage that will ultimately lead to the 
patients at a late stage when diagnosed.5 Pancreatic ductal 
adenocarcinoma (PDAC) is the most common histologi-
cal type of PC, accounting for more than 80% of all pan-
creatic neoplasms.6 Several risk factors are considered to 
be significantly associated with the development and pro-
gression of PC, including cigarette smoking,7,8 alcohol 
consumption,9 chronic pancreatitis,10,11 diabetes melli-
tus,12,13 obesity,14 and a family history of pancreatic can-
cer.15 Surgical resection is at present the only potentially 
curative therapy strategy that can significantly prolong 
patient survival time.5 Currently, the surgical resection 
techniques for PC include pancreaticoduodenectomy, 
distal pancreatectomy with splenectomy, and total pan-
createctomy.5 The pancreaticoduodenectomy is needed to 
remove tumors in the head and neck of pancreas and dis-
tal pancreatectomy with splenectomy that resects tumors 
in the body or tail of pancreas.16

Kinesin superfamily (KIF) genes consist of more than 
40 members that are classified into 14 families (Kinesin‐1 
to Kinesin‐14 family).17,18 Kinesin‐4 family genes com-
prise 6 members (KIF4A, KIF4B, KIF7, KIF21A, KIF21B, 
and KIF27).19 Numerous studies had proved that the 
Kinesin‐4 family genes were notably related to several dis-
eases. KIF4A expression was significantly associated with 
the prognosis outcome of prostate cancer,20 breast can-
cer,21,22 lung cancer,23 colorectal carcinoma,24 and hepa-
tocellular carcinoma.25 Li et al found that KIF7 regulated 
Gli2 localization and activity in the Hedgehog signaling 
pathway during the formation of basal cell carcinoma.26 In 
addition, researchers had demonstrated that the missense 
mutation in KIF21A could cause congenital fibrosis of the 
extraocular muscles.27-29 Meanwhile, its expression level 
affected the axonal transport and nervous system develop-
ment in patients with Down syndrome.30 Finally, it was im-
portant to note that the expression of KIF21B could predict 
the prognosis of patients with renal cell carcinoma 31 and 
multiple myeloma.32

Given the poor prognosis of PC, especially for the late 
stage patient, it is very imperative to find more sensitive 

biomarkers to predict clinical prognosis outcome in the 
early time. So that we could take effective intervention 
measures in the early‐stage to improve this gloomy situ-
ation. By retrieving the relevant literature, we found that 
Kinesin‐4 family genes played a crucial role in cancer 
prognosis and treatment. More importantly, Kinesin‐4 
family genes could affect tumor biological behavior, such 
as proliferation, invasion, metastasis, and so on.22-25 It 
is well known that the poor prognosis of tumor depends 
largely on its malignant behavior. So, we speculated that 
Kinesin‐4 family genes might be associated with pancre-
atic cancer prognosis. The aim of this study was to explore 
the potential prognostic value of Kinesin‐4 family genes 
mRNA expression in early‐stage PDAC patients after pan-
creaticoduodenectomy established on the public resource 
and bioinformatic analysis.

2  |   MATERIAL AND METHODS

2.1  |  Bioinformatic analysis of Kinesin‐4 
family genes
Gene enrichment analysis including Gene Ontology (GO) 
function analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis were carried out by 
the bioinformatics resources Database for Annotation, 
Visualization and Integrated Discovery (DAVID) v6.8 
(https​://david.ncifc​rf.gov/, accessed March 6, 2019)33,34 to 
investigate the possible biological functions and potential 
pathways of Kinesin‐4 family genes. Biological Network 
Gene Ontology (BiNGO) in Cytoscape (version 3.7.1)35 
was used to further validate the result of GO terms in 
DAVID. Interaction networks of Kinesin‐4 family genes 
in gene‐gene and protein‐protein were performed by the 
Gene Multiple Association Network Integration Algorithm 
(GeneMANIA) (http://genem​ania.org/, accessed March 
12, 2019)36,37 and the Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING) (https​://string-db.
org/cgi/input.pl, accessed March 12, 2019),38,39 respec-
tively. The web‐based tool Gene Expression Profiling 
Interactive Analysis (GEPIA) (http://gepia.cancer-pku.
cn/, accessed March 12, 2019)40 was used to compare the 
expression level of each gene between pancreatic adeno-
carcinoma (PAAD) tumor tissue and normal tissue by the 
unpaired t test.

2.2  |  Patient information in TCGA database
The clinicopathologic information and corresponding gene 
expression level of patients were obtained from public da-
tabase The Cancer Genome Atlas (TCGA) (https​://portal.
gdc.cancer.gov/, accessed March 2, 2019), and the raw data 
were normalized by DESeq41,42 In order to enhance the 
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reliability of our research conclusion, patient inclusion cri-
teria and exclusion criteria were established as in our previ-
ous article.43 Briefly, the inclusion criteria were as follows: 
(a) patient with complete survival information; (b) the his-
tological type was PDAC; (c) the pathologic stage was I or 
II; (d) patient underwent pancreaticoduodenectomy. In our 
research, PDAC patients with III or IV stage or underwent 
other surgical resection techniques were excluded. Based 
on these criteria, a total of 112 patients were enrolled into 
this study for the prognosis analysis. The clinical data of the 
patients including age, gender, alcohol history, histologic 
grade, pathologic stage, radical resection, radiation therapy, 
targeted molecular therapy, survival time, and survival 
statue. The dataset included in this study was downloaded 
from TCGA public database, approval from the ethics com-
mittee was not required.

2.3  |  Survival analysis
Kaplan‐Meier survival analysis method with log‐rank test 
was used to evaluate the association between clinicopatho-
logic parameters and patient overall survival (OS) time. 
Log‐rank P < .05 was considered to indicate statistical sig-
nificance and the clinicopathologic feature was identified 
as the prognosis‐related factor. In order to explore whether 
the expression level of KIF4A, KIF4B, KIF7, KIF21A, 
KIF21B, and KIF27 were notably connected with patient 
prognosis outcome, the patients were divided into two 
groups (low expression group and high expression group) 
according to the median value of gene expression level in 
tumor tissue. The cut‐off value is the median value of each 
gene expression level according to the gene sequencing re-
sult. Multivariate Cox regression analysis was performed 

after adjusting for the prognosis‐related factors. Hazard 
ratio (HR) and 95% confidence interval (CI) were calcu-
lated to evaluate the survival difference. Joint‐effect sur-
vival analysis for the combination of gene expression level 
and prognosis‐related factors was used to assess the com-
bined predictive effect on patient prognosis. Stratified sur-
vival analysis for the clinicopathological parameters was 
carried out to further explore the effect of gene expression 
level on prognosis in each variable.

2.4  |  Prognostic nomogram construction
A nomogram was constructed using all the enrolled patients 
as the source population, and clinicopathologic factors and 
prognosis‐related gene to obtain an individualized prognosis 
prediction. We could predict the survival probability in the 
future several years for each patient according to their total 
point by the nomogram.

2.5  |  Gene set enrichment analysis
In order to further investigate the potential mechanism of 
different expression level of the prognosis‐related gene af-
fected patient clinical survival outcome, the gene set enrich-
ment analysis (GSEA) (http://softw​are.broad​insti​tute.org/
gsea/index.jsp, accessed March 12, 2019)44,45 was conducted 
in our present study. In GSEA, the Molecular Signatures 
Database (MSigDB) included C2 (c2.all.v6.2.symbols.gmt), 
C5 (c5.all.v6.2.symbols.gmt), and C6 (c6.all.v6.2.symbols.
gmt)46,47 were used to explore the potential mechanism. The 
latest version of MSigDB gene sets were divided into 8 major 
collections, in which the C2 for curated gene sets, C5 for 
GO gene sets, and C6 for oncogenic gene sets. The nominal 

F I G U R E  1   Gene Ontology function enrichment analysis of Kinesin‐4 family genes carried out by the Database for Annotation, Visualization 
and Integrated Discovery
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P < .05 and false discovery rate < 0.25 were defined as the 
significantly enriched gene sets.

2.6  |  Genome‐wide co‐expression analysis of 
prognostic Kinesin‐4 family genes
To further explore the possible function of prognosis‐related 
gene in PDAC, the genome‐wide co‐expression analysis 
was carried out in the current research. Pearson correlation 
coefficient was calculated. The genes with Pearson corre-
lation coefficient  >  0.35 and P  <  .05 were considered as 
the co‐expression genes. The prognosis‐related gene and its 
co‐expression genes were used to construct the co‐expres-
sion network using Cytoscape software (version 3.7.1).35 
In addition, GO function analysis and KEGG pathway 
analysis by the DAVID33,34 and GO term validation by the 

BiNGO plugin in the Cytoscape were performed for func-
tion assessment.

2.7  |  Statistical analysis
The SPSS software (version 18.0) was used for all the sta-
tistical analysis. Survival analysis was performed using the 
Kaplan‐Meier method with log‐rank test. Cox proportional 
hazards regression model was carried out for the univariate 
and multivariate analysis. The prognosis‐related factors were 
entered into the multivariate Cox regression analysis for ad-
justment. Hazard ratio and 95% confidence interval were cal-
culated to evaluate the survival difference. The comparison 
of gene expression level between tumor tissue and normal 
tissue was performed by using the unpaired t test. P <  .05 
was considered to indicate statistical significantly.

F I G U R E  2   Gene Ontology terms of Kinesin‐4 family genes conducted by Biological Network Gene Ontology in Cytoscape software
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3  |   RESULTS

3.1  |  Bioinformatic analysis of Kinesin‐4 
family genes
The GO function enrichment analysis showed that Kinesin‐4 
family genes were mainly enriched in microtubule‐based 
movement, mitosis process, intracellular transport, micro-
tubule motor activity, and ATPase activity (Figure 1). No 
potential pathway was observed in the KEGG pathway en-
richment analysis. As shown in Figure 2, the result of BiNGO 
was consistent with the GO term in DAVID. Interaction 
networks in gene–gene and protein–protein performed by 
the GeneMANIA and STRING, respectively, showed that 
KIF4A, KIF4B, KIF7, KIF21A, KIF21B, and KIF27 were 
co‐expressed with each other, interacted within a network, 
and homologous at the protein level (Figure 3). GEPIA anal-
ysis comparing the gene expression level between PAAD 
tumor tissue and normal tissue showed that KIF4A, KIF7, 
and KIF21B were significantly upregulated in tumor tissue 
(P < .05), while the expression level for KIF4B, KIF21A, and 
KIF27 were not significantly different between tumor tissue 
and normal tissue (Figure 4).

3.2  |  Survival analysis
In order to evaluate the association between clinicopatho-
logic parameters and patient OS time, we conducted the 
Kaplan‐Meier survival analysis with log‐rank test. As 
shown in Table S1, the tumor histologic grade and pa-
tient whether underwent radical resection, radiation 
therapy, targeted molecular therapy were significantly 

associated with OS time (all log‐rank P <  .05). The me-
dian survival time of these prognosis‐related factors were 
histologic grade (596  days vs 470  days), radical resec-
tion (381 days vs 603 days), radiation therapy (473 days 
vs 691  days), and targeted molecular therapy (224  days 
vs 634  days), respectively. The Cox regression analysis 
adjusted for the prognosis‐related factors indicated that 
KIF21A expression level was closely connected with pa-
tient OS time (adjusted P =  .020, adjusted HR = 1.876, 
95%CI = 1.102‐3.194), and the median survival time for 
the low and high expression groups were 652 and 476 days, 
respectively (Table 1 and Figure 5). The joint‐effect sur-
vival analysis for the combination of KIF21A expression 
level and each prognosis‐related factor showed better pre-
dictive performance for prognosis (Table 2 and Figure 6). 
Stratified survival analysis was then carried out to further 
explore the effect of KIF21A expression level on prog-
nosis for each clinicopathological parameters. As shown 
in Figure 7, high KIF21A expression could notably lead 
to poor clinical prognosis outcome in three subgroups, 
such as patient age >60  years (P  =  .005, HR  =  2.245, 
95%CI = 1.258‐4.007), tumor histologic grade was G1/G2 
(P =  .014, HR = 2.124, 95%CI = 1.147‐3.933), and pa-
tient who did not underwent radiation therapy (P = .038, 
HR = 1.862, 95%CI = 1.026‐3.379).

3.3  |  Prognosis nomogram construction
All the clinicopathologic parameters and KIF21A expres-
sion level were used to develop the nomogram. With each 
variable was assigned a score, the total point was calculated 

F I G U R E  3   Interaction networks of Kinesin‐4 family genes performed by Gene Multiple Association Network Integration Algorithm 
(GeneMANIA) and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). A, Gene–gene interaction network by GeneMANIA. B, 
Protein–protein interaction network by STRING
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by summing up these scores of all the variables and located 
to the scale. We could obtain an individualized prognosis 
prediction and predict the survival probability in the future 
several years according to their total points. We performed 

nomogram analysis for the probabilities of 1‐, 2‐, and 3‐year 
OS (Figure 8). As shown in the nomogram, the expression 
level of KIF21A contributed to the patient prognosis in some 
degree.

F I G U R E  4   Gene expression level distribution of Kinesin‐4 family genes in pancreatic adenocarcinoma tumor tissue and normal tissue. (A) 
KIF4A; (B) KIF4B; (C) KIF7; (D) KIF21A; (E) KIF21B; (F) KIF27. *P < .05
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T A B L E  1   Prognostic value of Kinesin‐4 family genes expression in PDAC patients OS

Gene expression Patients No. of events MST (days) Crude HR (95%CI) Crude P value
Adjusted HR 
(95%CI)a 

Adjusted P 
valuea 

KIF4A         .057   .575

Low 56 31 607 1   1  

High 56 38 473 1.606 (0.987‐2.615)   1.163 (0.686‐1.972)  

KIF4B         .089   .046

Low 56 32 592 1   1  

High 56 37 511 1.514 (0.938‐2.443)   1.726 (1.011‐2.949)  

KIF7         .652   .935

Low 56 40 485 1   1  

High 56 29 592 0.894 (0.549‐1.455)   0.978 (0.573‐1.671)  

KIF21A         .026   .020

Low 56 31 652 1   1  

High 56 38 476 1.735 (1.067‐2.820)   1.876 (1.102‐3.194)  

KIF21B         .019   .064

Low 56 37 467 1   1  

High 56 32 603 0.555 (0.339‐0.907)   0.595 (0.343‐1.031)  

KIF27         .442   .114

Low 56 32 568 1   1  

High 56 37 486 1.206 (0.748‐1.945)   1.526 (0.903‐2.578)  

Abbreviations: CI, confidence interval; KIF, kinesin family; HR, hazard ratio; MST, median survival time; OS, overall survival; PDAC, pancreatic ductal 
adenocarcinoma.
aAdjusted for histologic grade, radical resection, radiation therapy, targeted molecular therapy. 

F I G U R E  5   Kaplan‐Meier survival curves of Kinesin‐4 family genes in pancreatic ductal adenocarcinoma patient overall survival. Overall 
survival stratified by (A) KIF4A; (B) KIF4B; (C) KIF7; (D) KIF21A; (E) KIF21B; (F) KIF27
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3.4  |  Gene set enrichment analysis of 
KIF21A in PDAC
GSEA was performed to figure out the potential mechanism 
of different KIF21A expression level affected PDAC patient 
clinical prognosis. In current research, we analyzed the cu-
rated gene sets (C2), GO gene sets (C5), and oncogenic gene 
sets (C6) of the MSigDB. Enrichment of C2 indicated that 

high expression of KIF21A involved in DNA damage, tumor 
invasiveness, carcinogenesis role of KRAS gene, and WNT 
pathway (Figure 9A‐E). Enrichment of C5 showed that high 
expression of KIF21A connected with DNA integrity check-
point, transcription process and cell cycle (Figure 9F‐I). 
Enrichment of C6 suggested that high expression of KIF21A 
related to various oncogene signatures such as EGFR, VEGF, 
and TGFB (Figure 9J‐L).

F I G U R E  6   Joint‐effect survival 
analysis for the combination of KIF21A 
and prognosis‐related clinical factors in 
pancreatic ductal adenocarcinoma patient 
overall survival. (A) Histologic grade; (B) 
Radical resection; (C) Radiation therapy; 
(D) Targeted molecular therapy
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F I G U R E  7   Stratified survival analysis of KIF21A in each clinicopathological parameters. HR, hazard ratio; CI, confidence interval
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3.5  |  Genome‐wide co‐expression analysis of 
KIF21A in PDAC
Genome‐wide co‐expression analysis was carried out for fur-
ther exploring possible function of KIF21A in PDAC. A total 
of 1640 genes met the Pearson correlation coefficient > 0.35 
and P < .05 that were considered as the co‐expression genes. 
The co‐expression network was constructed which included 
449 negative co‐expression genes and 1191 positive co‐
expression genes (Figure 10, Table S2). GO function en-
richment analysis by DAVID showed that KIF21A and its 
co‐expression genes were mainly enriched in the following 
biological processes and molecular functions, such as intra-
cellular transport, DNA damage and repair, RNA splicing, 
cell division, transcription and translation process, protein 
phosphorylation and ubiquitination (Figure 11A, Table S3). 
GO term validation result by the BiNGO was consistent with 
the result of DAVID (Figures S1‐S3). Meanwhile, KEGG 
pathway enrichment analysis suggested that KIF21A and its 
co‐expression genes were notably enriched in Sphingolipid 
pathway, WNT pathway, mRNA surveillance pathway, 
Hedgehog pathway, Hippo pathway and so on (Figure 11B, 
Table S4).

4  |   DISCUSSION

In our current research, we investigated the relationship 
between Kinesin‐4 family genes mRNA expression and 

early‐stage PDAC patient clinical prognosis outcome by 
collecting data from public resource and performing a 
series of bioinformatic analysis. We have demonstrated 
that KIF21A expression level was significantly associated 
with early‐stage PDAC patient overall survival time and 
patient with a high expression of KIF21A would have a 
shorter overall survival time. So we could conclude that 
KIF21A might serve as a potential prognostic biomarker 
for early‐stage PDAC patient after pancreaticoduodenec-
tomy. Meanwhile, we further explored the potential mech-
anism for KIF21A mRNA expression level affected PDAC 
patient prognosis outcome based on the GSEA and ge-
nome‐wide co‐expression analysis. As is shown above the 
potential mechanism might involve in DNA damage and 
repair, transcription and translation process, post‐transla-
tion protein modification, cell cycle, carcinogensis genes, 
and pathways. However, the exact mechanism still needs 
more research to further validate in the future.

Kinesin superfamily proteins, as the important molec-
ular motor proteins, played a crucial role in the process of 
intracellular transport.48,49 Furthermore, they had an import-
ant function in spindle self‐orgnization and chromosome 
segregation during mitosis process.50-52 Kinesin‐4 family 
genes were involved in a wide range of biological functions 
and its dysregulation might lead to some pathological pro-
cesses. Previous studies have reported that KIF4A and KIF4B 
participated in the chromosome condensation and segrega-
tion, anaphase spindle midzone formation, and cytokine-
sis.53-56 KIF4A was associated with DNA damage response 

F I G U R E  8   Prognostic nomogram for pancreatic ductal adenocarcinoma patient 1‐, 2‐, 3‐y overall survival prediction
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by modulating the BRCA2/Rad51 pathway.57 Researchers 
have demonstrated that during the process of mitosis, loss of 
KIF4A would lead to aneuploidy which ultimately triggered 

the tumorigenesis.58 KIF4B and KIF4A are two closely re-
lated but distinct proteins with over 90% homologous with 
each other and they play the multiple, possible identical role 

F I G U R E  9   Gene set enrichment analysis (GSEA) of KIF21A. (A‐E) GSEA results of C2 gene sets for high KIF21A expression groups; (F‐I) 
GSEA results of C5 gene sets for high KIF21A expression groups; (J‐L) GSEA results of C6 gene sets for high KIF21A expression groups. NES, 
normalized enrichment score; FDR, false discovery rate
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during mitosis. Recent studies have revealed that KIF21A 
was related to some neuronal diseases. Missense mutation 
in KIF21A could cause congenital fibrosis of the extraocular 
muscles27 and the expression level of KIF21A might affect 
axonal transport and nervous system development in patients 
with Down syndrome.30

Moreover, researchers have reported that Kinesin‐4 family 
genes played a crucial role in the development, progression, 
treatment, and prognosis of numerous cancers. KIF4A could 
enhance cell proliferation, promote tumor metastasis, predict 
patient prognosis and act as the potential therapeutic target 
in cancer treatment for breast cancer, lung cancer, colorec-
tal cancer, and hepatocellular carcinoma.22-25 Researchers 
had reported that KIF21B as a downstream target gene regu-
lated by the miR‐144‐5p/syndecan‐3 axis which participated 
in the pathogenesis of renal cell carcinoma and its expres-
sion could predict the patient prognosis outcome.31 Agnelli 
et al. reconstructed the gene regulatory networks in multiple 
myeloma and revealed that KIF21B with a prognostic im-
portance could predict the survival of patients.32 Numerous 
researches had proved that the Hedgehog signaling pathway 
played a crucial role in the development, progression, and 
therapy of various cancers, such as oesophageal squamous 
cell carcinoma, gastric cancer, colon cancer, and pancre-
atic cancer.59-64 KIF7 and KIF27 were both involved in the 
Hedgehog signaling pathway.65,66 Li et al. found that KIF7 
regulated Gli2 localization and activity in the Hedgehog 

signaling pathway during basal cell carcinogenesis.26 In 
our current research, we demonstrated that high KIF21A 
expression level was significantly associated with the poor 
prognosis in early‐stage PDAC patients, making it serve as a 
potential prognostic biomarker for patients with early‐stage 
PDAC after pancreaticoduodenectomy.

The GSEA and genome‐wide co‐expression analysis were 
conducted to figure out the potential mechanism of KIF21A 
expression level affect PDAC patient prognosis. As the re-
sults showed that, the mechanism might be implicated in 
several biological processes and signaling pathways, such as 
DNA damage and repair, transcription and translation pro-
cess, post‐translation protein modification, cell cycle, car-
cinogensis genes and pathways (KARS, EGFR, VEGF, WNT 
pathway, Hedgehog pathway). It is important to note that the 
above biological processes and pathways are significantly 
associated with cancer prognosis.67-75 A number of studies 
have demonstrated the involvement of several of these pro-
cesses in pancreatic cancer prognosis. For example, the low 
expression of CHD5 could activate DNA damage response 
and function as useful biomarker for pancreatic cancer poor 
clinical outcome.76 Similarly, phosphorylation status of 
IRAK4 was a predictor for postoperative relapse and poor 
overall survival in patient with PDAC.77 Upregulation of 
CIAPIN1 could delay cell cycle progression and induce cell 
apoptosis. The expression level of CIAPIN1 could act as an 
independent prognosis factor in pancreatic cancer.78 Nectin‐4 

F I G U R E  1 0   Co‐expression network of KIF21A co‐expression genes in pancreatic ductal adenocarcinoma tumor tissue. The green nodes 
represent negative correlation with KIF21A, and the red nodes represent positive correlation with KIF21A
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gene expression was notably related to VEGF expression and 
intratumoral microvessel density in pancreatic cancer, and 
therefore its expression level had a significant postoperative 
prognosis value.79 Finally, dysregulation of WNT signaling 
pathway was significantly connected with lymphvascular 
invasion and worse survival outcome of pancreatic cancer 
patients.80

To summarize, we have established the prognostic sig-
nificance of KIF21A in early‐stage PDAC patient and in-
ferred the possible mechanism by GSEA and genome‐wide 
co‐expression analysis. We are committed to obtain a can-
didate prognosis‐related biomarker for pancreatic cancer 
and to predict clinical prognosis outcome for the patient. So 

that we could take effective treatment measures in the early 
time to improve patient gloomy prognosis. In addition, we 
also hope to provide an applicable effect target for PDAC 
therapy. Meanwhile, there are still some limitations in our 
study that need to be clarified. First, our subject mainly fo-
cused on a select group of early‐stage PDAC patient who 
underwent pancreaticoduodenectomy, so the sample size 
is limited. Therefore, a large sample size and multi‐center 
clinical cohort research is needed to enhance the reliabil-
ity of our conclusion. Second, the GSEA and genome‐wide 
co‐expression analysis as an analysis approach which just 
provided inference of the potential mechanism underlying 
the KIF21A expression level affect prognosis outcome. The 

F I G U R E  1 1   Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEEG) pathway analysis of KIF21A 
co‐expression genes in pancreatic ductal adenocarcinoma tumor tissue. A, GO function analysis. B, KEGG pathway analysis
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exact mechanism can only be elucidated with more molec-
ular and functional studies validation in the future. Third, 
since our research performed by bioinformatics analysis 
that involved whole genome data, some results that reached 
statistical significance may be contingent. In addition, the 
results of our study are only based on a TCGA cohort analy-
sis, lacking of the validation cohort. Therefore, our research 
results have yet to be further verified in future research. 
Fourth, our current study was mainly established on col-
lecting data from public resource and performing a series 
of bioinformatic analysis. So, further experiment validation 
about the expression, function, and molecular mechanism 
of KIF21A is very necessary to enhance the credibility of 
our current study.

5  |   CONCLUSION

In our current research, we demonstrated that KIF21A could 
serve as a potential prognostic biomarker for early‐stage 
PDAC patients after pancreaticoduodenectomy and patient 
with a high expression of KIF21A would have a poor prog-
nosis. The potential mechanism of KIF21A expression level 
affect patient clinical prognosis outcome might involve in 
DNA damage and repair, transcription and translation pro-
cess, post‐translation protein modification, cell cycle, car-
cinogensis genes and pathways.
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