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Top-down or bottom up: decreased stimulus salience
increases responses to predictable stimuli of auditory
thalamic neurons

Srinivasa P. Kommajosyula1,∗, Rui Cai1,∗, Edward Bartlett2 and Donald M. Caspary1

1Southern Illinois University School of Medicine, Department of Pharmacology, Springfield, IL, USA
2Department of Biological Sciences, Purdue University, West Lafayette, IN, USA

Edited by: Kim Barrett & Ian Forsythe

Key points

� Temporal imprecision leads to deficits in the comprehension of signals in cluttered acoustic
environments, and the elderly are shown to use cognitive resources to disambiguate these
signals.

� To mimic ageing in young rats, we delivered sound signals that are temporally degraded, which
led to temporally imprecise neural codes.

� Instead of adaptation to repeated stimuli, with degraded signals, there was a relative increase
in firing rates, similar to that seen in aged rats.

� We interpret this increase with repetition as a repair mechanism for strengthening the internal
representations of degraded signals by the higher-order structures.

Abstract To better understand speech in challenging environments, older adults increasingly
use top-down cognitive and contextual resources. The medial geniculate body (MGB) integrates
ascending inputs with descending predictions to dynamically gate auditory representations based
on salience and context. A previous MGB single-unit study found an increased preference for
predictable sinusoidal amplitude modulated (SAM) stimuli in aged rats relative to young rats.
The results suggested that the age-degraded/jittered up-stream acoustic code may engender an
increased preference for predictable/repeating acoustic signals, possibly reflecting increased use
of top-down resources. In the present study, we recorded from units in young-adult MGB,
comparing responses to standard SAM with those evoked by less salient SAM (degraded) stimuli.
We hypothesized that degrading the SAM stimulus would simulate the degraded ascending
acoustic code seen in the elderly, increasing the preference for predictable stimuli. Single units were
recorded from clusters of advanceable tetrodes implanted above the MGB of young-adult awake
rats. Less salient SAM significantly increased the preference for predictable stimuli, especially at
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higher modulation frequencies. Rather than adaptation, higher modulation frequencies elicited
increased numbers of spikes with each successive trial/repeat of the less salient SAM. These findings
are consistent with previous findings obtained in aged rats suggesting that less salient acoustic
signals engage the additional use of top-down resources, as reflected by an increased preference
for repeating stimuli that enhance the representation of complex environmental/communication
sounds.
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Introduction

Age-related hearing loss leads to a loss of speech under-
standing and affects 35–50% of the 43 million individuals
aged 65 years or older in the US population (Humes
et al. 2012; Ortman et al. 2014). A loss of speech under-
standing significantly impairs quality of life, frequently
leading to social withdrawal and depression (Humes et al.
2012; Bainbridge & Wallhagen, 2014). Peripheral changes
only partially account for speech understanding deficits
in elderly listeners with mild to moderate hearing loss in
complex listening environments. (Alain & Woods, 1999;
Dalton et al. 2003; Anderson et al. 2012; Humes et al.
2012; Presacco et al. 2016b). In response to peripheral
hair cell and/or acoustic nerve fibre losses associated
with ageing, the entire central auditory pathway shows
compensatory age-related maladaptive changes (Caspary
et al. 2008; Ouda et al. 2015; Caspary & Llano, 2018).
Human and animal studies repeatedly show age-related
declines in the temporal reliability when coding ascending
acoustic representations, partly as the result of a loss
of normal adult inhibitory neurotransmitter function
(Fitzgibbons & Gordon-Salant, 1994; Caspary et al. 2008;
Gordon-Salant, 2014; Godfrey et al. 2017; Caspary &
Llano, 2018). Previous human psychophysical and electro-
physiological studies have modelled ageing in auditory
system by temporally jittering stimuli (Pichora-Fuller
et al. 2007; Mamo et al. 2016). To compensate for
these deficits with ageing, the elderly are known to
use top-down resources to improve performance in
auditory tasks (Ostroff et al. 2003; Peelle et al. 2010;
Fakhri et al. 2012; Leung et al. 2013). In essence, when
speech signals are degraded, speech understanding can be
improved by engaging the cortical pathways projecting
to lower-order cortical and subcortical structures that
provide additional ‘meaning’/cognitive resources. These
resources may provide linguistic or semantic context
guiding the recognition of acoustically unclear speech
(Harris et al. 2012; Mattys & Scharenborg, 2014; Sohoglu
et al. 2014; Rogers & Wingfield, 2015; Peelle & Wingfield,
2016; Pichora-Fuller et al. 2016). Early psychophysical
studies on phenome restoration posited the role of
top-down resource usage that are now supported by

modern imaging techniques (Thurlow, 1957; Warren,
1970; Vaden et al. 2016). This function is supported by
the Bayesian properties of higher cortical areas in the
prediction of sensory events using concurrent cognitive
resources reflected in their top-down projections, which
in turn are corrected by bottom-up circuits leading to
enhancement or selective diminishment of the ascending
acoustic code or prediction error (Rao & Ballard,
1999; Friston, 2009; Stebbings et al. 2014; Parras et al.
2017; Kuchibhotla & Bathellier, 2018; Wang et al.
2019). Examples of top-down mediated processes include
repetition enhancement effect for degraded signals,
attended signals or speech in noise recognition (Luce &
Pisoni, 1998; Eisenberg et al. 2002; Maunsell & Treue, 2006;
Rivenez et al. 2006; Sheldon et al. 2008; Chandrasekaran
et al. 2009; Peelle et al. 2010; Muller et al. 2013; Peelle &
Wingfield, 2016; Helfer et al. 2018).

In the central auditory system, top-down descending
corticothalamic projections to the auditory thalamus or
medial geniculate body (MGB) are more extensive than
ascending reciprocal thalamocortical projections. MGB
can be parsed into ventral, dorsal and medial subdivisions
(Morest, 1964). The ventral division is lemniscal in nature,
projecting principally to layers 3/4, whereas the dorsal
and medial subdivisions receive inputs from dorsal and
external cortices of the inferior colliculus, tegmentum,
superior colliculus and spinal cord considered to be
extra-lemniscal and projecting to layers 1 and 6 of the
primary auditory cortex, as well as belt areas of the
auditory cortex and amygdala, amongst others (Winer
et al. 2005; de la Mothe et al. 2006; Bartlett, 2013).
The MGB also receives cholinergic projections that may
further engage top-down resources providing cognitive
and attentional resources that shape the ascending code
(Rouiller & Welker, 1991; Winer et al. 2001; Bartlett &
Smith, 2002; He, 2003; Bartlett, 2013; Malmierca et al.
2015; Guo et al. 2017; Lesicko & Llano, 2017; Sottile et al.
2017a; Sottile et al. 2017b; Schofield & Hurley, 2018).
The MGB also receives tectothalamic inputs that carry
ascending sensory inputs and shows stimulus-specific
adaptation (SSA) to repeating stimuli, facilitating the
detection of novel stimuli (Nelken, 2014; Malmierca
et al. 2015), comprising a property considered to be of
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bottom-up origin, independent of age and even enhanced
by anaesthesia (Ulanovsky et al. 2003; von der Behrens
et al. 2009; Richardson et al. 2013a; Malmierca et al.
2015; Nir et al. 2015). By contrast to afore-mentioned
studies, other studies have also shown changes in MGB
unit tuning properties and gain via manipulation of the
auditory cortex (Orman & Humphrey, 1981; Zhang et al.
1997; He, 2003; Malmierca et al. 2015). Increased detection
of acoustic signals was shown to involve corticothalamic
projections that increase neural representation in the MGB
(Guo et al. 2017). However, our current understanding of
how ageing affects top-down influences at the level of the
MGB is limited. A recent MGB single-unit study showed
an age-related increasing preference (neuronal responses)
for predictable/repeating stimuli relative to randomly pre-
sented sinusoidal amplitude modulated (SAM) stimuli.
Rather than showing stimulus adaptation to repeating
stimuli, MGB units from aged animals responded to
repeating stimuli by increasing their discharge rates
with each repeated trial, especially at higher modulation
frequencies (fm) (Cai et al. 2016). These changes were not
observed in MGB units from anaesthetized rats, possibly
reflecting the relative weakening of top-down circuits
by anaesthesia (Ferrarelli et al. 2010; Casali et al. 2013;
Mashour, 2014). Similar in concept to studies simulating
central auditory ageing using temporal jitter, the pre-
sent study hypothesized that less salient SAM stimuli
will lead to a less-precise ascending upstream code,
similar to that seen in the elderly, and also that this
change in salience would move the single-unit preference
toward predictable stimuli in young-adult MGB neurons
(Fig. 1) (Pichora-Fuller et al. 2007; Mamo et al. 2016).

To test this hypothesis, single unit recordings were made
from awake and anaesthetized young rats that were pre-
sented with standard, 100% depth of modulation SAM
and less salient SAM stimuli (decreasing modulation
depth and ‘noisy’ SAM stimuli). We posited that less clear
acoustic information will engender the use of top-down,
corticothalamic information in an effort to ‘better
understand’ the ascending acoustic message leading to
enhanced representation of predictable/repeating stimuli
(Fig. 1).

Methods

Male Fischer 344 × Brown Norway (FBN) rats, aged 4–6
months old, were obtained from the National Institiute of
Aging (NIA) Aging Rodent Resource Colony supplied by
Charles River (Wilmington, MA, USA) and were housed
individually under a reverse 12:12 h light/dark photocycle
with access to food and water available ad libitum. FBN rats
have a long life-span and lower tumour load than other
commonly used rat ageing models. They are available
through rodent resources at the National Institute of
Aging (nia.nih.gov/research/scientific-resources#rodent)
and age-related changes in auditory structure and function
have been studied extensively (Caspary et al. 2008; Cai
et al. 2018; Caspary & Llano, 2018). Procedures were
performed in accordance with guidelines and protocols
approved by the Southern Illinois University School of
Medicine Lab Animal Care and Use Committee, as well as
in accordance with National Institute of Health guideline
on minimizing animal usage and pain, and also conform
with the regulations described by Grundy (2015).

SAMΔ100%

Awake
SAMΔ25%

Awake

SAMΔ25%

Anesthetized

Top-down modulation

Bottom-up input

Noisy
SAM Awake 

Figure 1. Schematic representation of the study hypothesis
Less salient acoustic stimuli will produce a degraded ascending acoustic code, similar to the code seen in the ageing
auditory system. In the MGB, this can engage an increased use of top-down resources needed to maintain salience
by enhancing responses to repeating/predictable over random stimuli. Bottom-up (blue arrows) and top-down (red
arrows) MGB circuits work in concert to encode communication sounds and salient environmental information
needed for survival. We hypothesize that temporally rich SAM stimuli with 100% modulation depth (SAM�100%)
balance the use of bottom-up and top-down resources to best code sounds in the MGB of young awake rats.
We posit that decreasing the salience of SAM stimuli either by reducing the effective modulation depth (25%
modulation depths: SAM�25%) or by jittering the envelope of 100% modulation depth (Noisy SAM) leads to an
increase in top-down mediated processes in the awake but not in anaesthetized rat MGB.
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Acoustic brain stem response (ABR) recording

To ensure normal hearing thresholds, before implantation
surgery, ABR tests were completed on all rats as
described previously (Wang et al. 2009). Briefly, rats were
anaesthetized with an I.M. injection of a 3:1 mixture of
ketamine and xylazine at a dose of 1.4 mL kg–1. Pure
tones at 4, 8, 12, 16, 24, 28 and 32 kHz were presented
512 times at a rate of 20 s–1 with a duration of 3 ms
and rise/decay clicks of 1 ms. A recording electrode was
inserted into the skin over the vertex, a reference electrode
was inserted under the left mastoid and a ground wire was
attached to the hind leg. ABR signal gain totalled 200,000×
with filtering between 0.3 and 3 kHz. Absolute thresholds
were determined based on wave I at each frequency. ABRs
and single unit recording experiments were completed
in a double-wall soundproof booth (Industrial Acoustic,
Bronx, NY, USA).

Awake recordings

Rats recovered for 3 days after ABR testing before
beginning acclimatization to the recording chamber.
Starting at least 1 week prior to surgery, rats were
acclimated to a modified experimental conditioning
unit (Braintree Scientific, Braintree, MA, USA) with
free access to water and a food reward (1/4 to 1/2
Froot Loop; Kellogg’s; Battle Creek, MI, USA) until
they could remain quiet/still for up to 3 h. VersaDrive4
tetrode drives (Neuralynx, Bozeman, MT, USA) were
assembled and loaded with tetrodes as described pre-
viously (Richardson et al. 2013a; Kalappa et al. 2014).
Each tetrode wire was gold-electroplated to an impedance
between 0.5 and 2.0 M� and sampled at 1 kHz (nanoZ;
Neuralynx). Drives were sterilized with ethylene oxide
before implantation. Surgery details were similar to
those described in Richardson et al. (2013) and Kalappa
et al. (2014). One day prior to surgery, acetaminophen
(4.5 mg mL–1) was provided via drinking water and
continued until day 2 after surgery to alleviate pain.
Surgery was performed under anaesthesia and an I.M.
injection of a ketamine/xylazine 3:1 mixture at a dose
of 1.4 mL kg–1 was used for induction. Rats were given
sterile saline (3 mL) s.c., placed on a thermostatically
controlled heating pad (Harvard Apparatus, Holliston,
MA, USA) and set in a Kopf stereotaxic apparatus (Kopf
Instruments, Tujunga, CA, USA) with a nose cone and
chin bars. Oxygen blood saturation levels and heart rate
were monitored during the surgery using PulseSense Vet
(Nonin Medical, Minneapolis, MN, USA). Oxygen was
administered continuously to maintain 95–100% blood
saturation and isoflurane (1–2.5%) was administered
as needed until surgery is completed after induction
with a ketamine/xylazine mixture (VetEquip, Pleasanton,
CA, USA). The level of anaesthesia was adjusted

based on the presence of pedal withdrawal or elevated
heart rate.

Under sterile conditions, the skull surface was exposed
and anchor screws were set in place. A craniotomy
hole of 2.3 mm in diameter was drilled over the left
occipitoparietal cortex, dorsal to the MGB (5.5 mm
bregma and 3.5 mm of midline) and the dura was carefully
removed. A ground wire was attached to a reference screw
placed in the anterior right frontal bone that made contact
with the dura, and the tetrode drive was slowly advanced
(0.2 mm min–1) to a depth of 4.5–5 mm, placing the
four tetrode tips just dorsal to the MGB. Dental acrylate
cement was added around the anchor screws and the drive,
encapsulating the entire drive with the exception of the
advancing screws and pins. The total weight of tetrode
drive and dental cement was less than 10 g. Mounting
the tetrode drive did not appear to alter the behaviour or
demeanor of an animal, with postmortem examination
indicating little damage to the surface of the brain.
Following surgery, triple antibiotic ointment was applied
to the edge of the headcap and wound, and an additional
2–3 mL of sterile saline was administered S.C. The animal
was exposed to 100% oxygen and kept on a heating pad
throughout recovery until ambulatory. The tetrode drive
was coupled to an 18 pin (16 single wires, 2 ground)
VersaDrive4-to-Omnetics adaptor (Neuralynx) and
connected to a unity gain 18-channel headstage tethered
to a preamplifier (2 × gain; 0.15 kHz high pass, 8 kHz low
pass; Plexon Inc., Dallas, TX, USA). Sixteen channels of
raw data were digitized using a multichannel acquisition
processor (MAP) and visualized using Sort Client (Plexon
Inc.). Tetrodes were advanced by turning a drive screw
coupled to each tetrode and were advanced in increments
of 1/4 turn (62.5 μm) with the distance recorded to aid
in the localization of units (Richardson et al. 2013a). To
avoid unit resampling, after a unit on a given tetrode was
studied, the tetrode was advanced at least 125 μm. When
auditory responsive units/field potentials were no longer
present, tetrodes were left in position for marking.

Similar to Richardson et al. (2013a), spikes determined
to be from single units were sorted using standard
methods (amplitude threshold and principal component
analysis) and saved as timestamps. Timestamps were
relayed to a system running a custom program Auditory
Neurophysiology Experiment Control Software (ANECS,
Ken Hancock, Blue Hills Scientific, Boston, MA, USA)
for stimulus generation and real-time analysis of unit
responses. During the recording period, the experimenter
took precautions to ensure that the animal was not asleep.
Whenever there was an unexpected change in the firing
rates of a single unit under investigation, data collection
was paused and the booth door was opened to ensure that
the animal was awake and alert. As noted above, animals
were kept on a reverse day/night cycle so their active period
was during the recording sessions.
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When recordings were complete (1–4 weeks), rats were
anaesthetized with ketamine and xylazine as described
above and current pulses (5–10 μA for 5 s) were passed
through the tip of each tetrode wire, producing a small
lesion. Rats were cardiac perfused with PBS (0.1 M, pH
7.4) followed by 4% paraformaldehyde (Sigma-Aldrich,
St Louis, MO, USA). The brain was removed, post-fixed
for 24 h in 4% paraformaldehyde at room temperature and
tehn transferred to 20% sucrose and stored at 4°C until
sectioned. Frozen coronal sections (thickness 30–35 μm)
were taken and the electrode tracks and sites of lesion
were visible without the need for staining, and these were
then used to determine the position of each recording site
relative to the final location of the tetrode tip (Paxinos &
Watson, 1998).

Awake recordings and attention

As described in Richardson et al. (2013) and Kalappa
et al. (2014), animals were placed in a darkened acoustic
chamber under gentle orienting restraint (i.e. they could
turn around but were pre-trained not to do so) with only
SAM stimuli to listen to. There were no other known
distractors to divide their attention and so the sole activity
of a rat was to attend to environmental sounds, which
comprised the SAM stimuli presented from the speaker
located above their heads.

Anaesthetized preparations

Rats recovered for at least 3 days following ABR testing
prior to use in the anaesthesia study. Initial anaesthesia
for surgery was the same as described for the awake
preparation. Anaesthesia was then maintained with i.p.
injections of 100% urethane (initially 1.3 mL kg–1,
then booster doses at one-third of the initial dose;
Sigma-Aldrich) (Cai et al. 2014; Cai & Caspary, 2015).
Rats were placed in a modified (no ear bars) stereotaxic
frame in an IAC sound-attenuating booth (Industrial
Acoustic Co., Inc., New York, NY, USA) with the body
temperature maintained at 37 ± 0.5°C using a thermo-
statically controlled heating blanket. The skull surface
and left occipito-parietal cortex, dorsal to the MGB, were
exposed. A tungsten electrode was gradually advanced into
MGB by piezoelectric advancer (David Kopf Instruments,
Tujunga, CA, USA). The electrodes were coupled to
a headstage preamplifier, MAP system and a personal
computer running MAP software and Sort Client (Plexon
Inc.) for real-time spike sorting.

SAM stimuli paradigms and single-unit recording
procedures

Stimulus paradigms and single unit sorting/recording
procedures were the same for awake and anaesthetized

preparations. Acoustic signals were generated using a
16-bit D/A converter (TDT RX6 for System III; Tucker
Davis Technologies, Alachua, FL, USA) and transduced
by a Fostex tweeter (model FT17H; Fostex, Tokyo,
Japan) placed 30 cm above animal’s head. The Fostex
tweeter was calibrated off-line using a ¼ inch micro-
phone (model 4938; Brüel & Kjær, Naerum, Denmark)
placed at the approximate location of the rat’s head.
Calibration tables in dB sound pressure level (SPL) were
used to set programmable attenuators (PA5; Tucker Davis
Technologies) to achieve pure tone levels accurate within
2 dB SPL for frequencies up to 45 kHz. Response maps
were used to determine the characteristic frequency (CF)
of sorted single units (Cai & Caspary, 2015). Random
tone-burst stimuli (duration of 50 ms, 4 ms rise/fall
time, 2 Hz rate) were presented in 0.10 to 0.25 octave
frequency steps (1–32 KHz) in 10 dB SPL steps (0–80 dB)
to determine the response maps. Real-time single unit
activity was sampled at 100 kHz using ANECS and
archived for off-line analysis.

The modulation depth was decreased to 50% and
25% (SAM�50% and 25%) to create less salient versions of
100% modulated SAM. In addition, we produced a signal
termed ‘noisy SAM’, where 100% SAM signals were jittered
by adding low-pass filtered (1000 Hz) broadband noise
(BBN) to the envelope of the SAM signal regardless of
the carrier. The ratio of the carrier to noise rms was
constant at 0, equal strength. The addition of BBN jitters
the rising phase of the envelope and decreases the effective
modulation depth (Fig. 2). There were no differences
(<2 dB) in total energy levels for the standard and less
salient SAM stimuli. SAM carrier (fc) was set at the unit’s
CF or BBN. Rate modulation transfer functions (rMTFs)
and temporal modulation transfer functions (tMTFs) were
collected at 30–35 dB above CF or BBN threshold. SAM
unit data, 30–35 dB above threshold, were collected from
young-adult (aged 3–5 months) rats using either CF-tones
or BBN as the carrier and choosing the SAM carrier that
best drove the unit under study. The findings reported in
Cai et al. (2018) in an FBN rat model of auditory ageing
mean that age-related sensitivity changes at the apical end
of the cochlea would probably have had no impact upon
the previous results reported in Cai et al. (2016).

SAM stimuli were presented at 2 s–1, with a duration of
450 ms and a 4 ms raise–fall with fms stepped between 2 and
1024 Hz. We tested whether fms sequentially/predictably
stepped in descending steps/reverse order, from 1024 Hz
to 2 Hz, would have effect on the results. A descending
sequential fm presentation order did not differ from the
ascending sequential fm presentation order; hence, for all
reported data, stimuli were stepped from 2 Hz to 1024 Hz.
Spikes were collected over a period of 500 ms, following
stimulus onset with 10 or 20 stimulus repetitions at each
envelope frequency. SAM stimuli were presented as two
separate sets: random across trials modulation frequencies
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(fms) or sequential with fms repeating (10 or 20 times)
before being stepped to the next fm in an increasing pre-
dictable order (Fig. 2). Responses to less salient SAM
stimuli (SAM�50% and 25% and noisy SAM) were compared
with SAM�100%.

Statistical analysis

Responses were analysed offline. MTFs were determined
using spike rate (rMTF) and temporal synchronization
(tMTF) measurement at each fm tested.

Random preference ratio (RPR) (i.e. total spikes in pre-
dictable trials/total spikes in random trials) was calculated
across all fms, with a ratio of random preferring unit
smaller than 0.95 and predictable preferring unit larger
than 1.05. Ratios between the range of 0.95 and 1.05 were
considered non-selective units. A chi-squared test was used
to compare the sequence preference ratio.

A random preferring index (RPI) was calculated
using the equation: RPI = [(AUCRAN – AUCSEQ)/
(AUCRAN + AUCSEQ)], modified from the novelty
response index (Lumani & Zhang, 2010; Cai et al. 2016)
and the area under successive frequency segments of the
rMTF curve (AUC) values were based on rMTF curve
calculated using Prism (GraphPad Software Inc., San
Diego, CA, USA). The range of RPI values varied between
–1 and +1, with –1 representing a completely predictable

preferring response and with +1 representing a completely
random preferring response. Repeated-measures ANOVA
followed by post hoc Tukey correction for multiple
comparisons was used to compare RPI values.

Trial-to trial response analysis to predictable SAM pre-
sentation at 256 and 512 Hz was performed by comparing
the difference in trend line slopes using two-tailed analysis
of covariance (ANCOVA). Phase locking ability was
evaluated by standard vector strength (VS) equation:

VS = ( 1
n ) ×

√
(
∑

cos ϕi)2 + (
∑

sin ϕi)2, where n is the
total number of spikes and ϕi is the phase of observed spike
relative to modulation frequency (Goldberg & Brown,
1969; Yin et al. 2011). Statistical significance was assessed
using the Rayleigh statistic to account for differences in
the number of driven spikes, with Rayleigh statistic values
greater than 13.8 being considered statistically significant
(Mardia & Jupp, 2000) (Fig. 8). To compare number of
units showing phase locking ability and the quantitative
vector strength data, a Wilcoxon test and a paired Student’s
t test were used followed by a Bonferroni correction for
multiple comparisons.

Statistical analysis was performed using Prism, version
6 and SPSS, version 24 (IBM Corp., Armonk, NY, USA).
All values are expressed as the mean ± SEM. ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001 were considered statistically
significant.

SAMΔ50% SAMΔ25% Noisy SAM

SAMΔ100% Across Modulation Frequencies with Tone as Carrier   
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Figure 2. SAM stimuli waveforms and paradigms
A-J, SAM waveforms with tone as carrier at SAM�100% in 500 ms epochs from 2 Hz to 1024 Hz modulation
frequencies. K, each stimulus paradigm progressed from 2 Hz to 1024 Hz in a predictable repeated or random
manner. L, exemplar waveforms of less salient SAM with tone as carrier at 16 Hz (SAM�50%, SAM�25% and
noisy SAM). M and N, exemplar waveforms of salient and less salient SAM with BBN as carrier. Noisy SAM has
jittered rising phase and decreased effective modulation depth. There were no differences (<2 dB) in total energy
levels for the salient and less salient SAM stimuli regardless of carrier.
[Colour figure can be viewed at wileyonlinelibrary.com]
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Results

Ninety-four carefully isolated units were recorded from
the MGB of young-adult (aged 4–6 months) rats. Sixty-six
units were recorded from six awake rats and 28 units
from four anaesthetized rats. All units from awake and
anaesthetized preparations were localized to the dorsal or
ventral subdivisions of the MGB. Ninety-five percent of the
units recorded were determined to be clearly discriminated
single units. The remaining units were clusters of 2–3
inseparable units, with responses consistent with the
single-unit findings and were included in the analyses. The
number of recording sessions varied between 20 and 25 for
each rat in the awake group. Between 0 and 2 units were
recorded in each day’s session as the electrodes were moved
in small increments (62.5 microns) at the end of each day.

The tungsten electrodes used in the anaesthetized
preparation (impedance 1–3 M�) were similar to the
0.5–2.0 M� impedance of VersaDrive microwires. The
present study cannot rule out, with certainty, any
population differences between the units sampled using
different electrodes.

rMTFs and tMTFs were recorded in response to random
or predictable presentation of standard (SAM�100%) or
less salient (SAM�50%, SAM�25% or noisy SAM) stimuli
(Fig. 2). There were no differences in shapes of rMTFs

with 10 or 20 repetitions and so 10 repetitions were used
in most subsequent recordings.

To maximize unit responses for the analyses, either a
BBN or CF carrier was chosen based on which elicited the
highest number of total spikes to SAM�100%. Most units
in this data set responded best to SAM with a BBN carrier
(43 BBN and 23 CF). Units CFs and BFs ranged between
2 and 32 kHz. Similar to studies reported by Bartlett
and Wang (2007, 2011) and Cai et al. (2014, 2015), SAM
responses, based on rMTF shape across fm, conformed
to previously described band-pass, high-pass, low-pass,
mixed (most common) or atypical types. BMFs ranged
between 8 and 512 Hz, congruent with the rMTF profile
types described above.

Preference for random or predictable stimuli with
decreasing salience

We examined whether decreasing the salience of a SAM
stimulus alters the MGB unit responses as reflected
by an increase in the number of spikes when stimuli
are presented in a random or predictable manner. An
exemplar unit (Fig. 3) showed a slight preference for
random presentation with SAM�100%, although this same
unit showed a clear preference for predictable stimuli at
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Figure 3. A representative unit from an awake young-adult rat responded differently to various stimulus
paradigms
A and C, dot rasters, post-stimulus time histogram and rMTFs from this unit show similar responses to either a
random or a repeating predictable sequence of SAM�100%. B and D, the same MGB unit showed increased
responses to a predictable repeating SAM with less salient SAM�25%. Responses to predictable SAM�25%
increased at the highest fms.
[Colour figure can be viewed at wileyonlinelibrary.com]
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SAM�25%. Responses to random or predictable stimuli
were compared when SAM salience was decreased. A
difference criteria of greater than 10% change in total
response (Ghitza et al. 2006; Cai & Caspary, 2015; Cai
et al. 2016) was used as the qualifier to categorize
the unit based on previous studies (random preference
ratio = total spikes to predictable SAM/total spikes
to random SAM). A qualitative comparison was made
between standard SAM�100% and less salient SAM for
the units showing random, predictable and non-selective
responses. There was a significant increase in the number
of units showing preference for predictable stimuli as the
salience was decreased at SAM�50%, SAM�25% and noisy
SAM (P < 0.05, chi-squared test) (Fig. 4). The increase
in the percentage of neurons showing predictable pre-
ference compared to SAM�100% was SAM�50%, (32% vs.
9%, P < 0.01), SAM�25% (46% vs. 9%, P < 0.0001) and
noisy SAM (33% vs. 9%, P < 0.01) (Fig. 4). These pre-
ference changes were not seen in MGB units recorded in
anaesthetized rats (SAM�100% vs. SAM�50%, SAM�25%

and noisy SAM: 18% vs. 21%, 29% and 19%, respectively,
P > 0.05).

rMTF differences across fms with decreasing salience
(group data)

Similar to Cai et al.(2016), the AUC function and RPI
values derived from the AUC, as described above, were
used to compare responses between random and pre-
dictable stimuli across fms (Figs 5 and 6). Higher values
on RPI indicate a random preference, whereas lower or
negative values of RPI indicate a decreased random pre-
ference/increased predictable preference. RPI values for
SAM�100% were greater for randomly presented stimuli,
whereas stimuli with a decreasing SAM salience were
found to decrease the RPI values (i.e. increasing pre-
dictable preference for SAM�25% and for noisy SAM).
These significant salience-related changes in RPI values
between SAM�100% vs. SAM�25% and noisy SAM are
shown in Fig. 5 (P < 0.001 for SAM�100% vs. �25%

and P < 0.05 for SAM�100% vs. noisy 100% depth).
A similar analyses in anaesthetized rats showed no
significant differences in RPI values between SAM�100%

vs. SAM�50%, SAM�25% and noisy SAM (data not
shown).
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Figure 4. Response ratio comparison across all modulation frequencies between SAM stimuli sets
Percentage of MGB units showing response ratios (predictable/random) at SAM�100% (A) and less salient SAM
stimuli sets (B–D) in awake young-adult rats. The percentage of units showing a preference for predictable SAM
increased from 9% (6 of 66) at SAM�100% to 32% (21 of 66) SAM�50% and 33% percentage for noisy
SAM (20 of 60). At SAM�25%, MGB neurons from awake rats showed highest predictable-preference 46%
(30 of 66). Significant differences were seen between SAM�100% vs. SAM�50%, SAM�25% and noisy SAM
(chi-squared test, P < 0.05). In anaesthetized rats, only non-significant differences in preference for predictable
stimuli were seen between SAM�100% and less salient stimuli E–H, percentage of units showing preference for
predictable SAM increased from 18% (5 of 28) to 21% (6 of 28) for SAM�50%, 28% for SAM�25% (8 of 28)
and 18% for noisy SAM (5 of 26).
[Colour figure can be viewed at wileyonlinelibrary.com]
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To determine whether specific random vs. predictable
differences in firing existed across fms in awake rats,
RPI values for three consecutive fm combinations were
calculated as shown in Fig. 6. RPI values for units
responding to SAM�100% were all positive, indicating a
preference for random SAM�100% across all fm segments.
By contrast, the same units showed significantly decreased
RPI responses to less salient SAM, SAM�25% and noisy
SAM for fms above 128 and 256 Hz (Fig. 6). These data show
a salience-related preference shift from random toward
predictable SAM stimuli, with the greatest changes for
SAM�25% at the more challenging higher fms including
32–128 Hz, 64–256 Hz (P < 0.05), 128–512 Hz and
256–1024 Hz (P < 0.01). RPI values to noisy SAM were
also significantly decreased, suggesting an increased pre-
ference for predictable stimuli at 256–1024 Hz (P < 0.05).
Because there was an increase in firing to predictably
presented less salient SAM stimuli at higher fms, we
examined trial-by-trial differences between SAM�100%

and SAM�25% at 256 and 512 Hz fm. Figure 7 shows
trial-by-trial responses to SAM�100% and SAM�25% from
a single MGB exemplar unit (A and B). Switching between
repeating/predictable SAM�100% and SAM�25% (256 Hz
fm) altered the unit responses from weakly adapting to
increasing the discharge rate with each successive trial, as
shown by the linear trend lines on the vertical histograms.
Trial-by-trial responses for predicable SAM�100% and

SAM�25% were calculated and compared at 256 Hz fm

for all 66 MGB units (Fig. 7C).
Similar to the exemplar, the group data at 256 Hz fm

showed an increase in discharge rate across successive
repetitive SAM�25% stimuli as opposed to no change
or adaptation to successive repetitive SAM�100% stimuli.
Slopes comparing group data trend lines between
SAM�100% and SAM�25% were significantly different
(P < 0.05). MGB units recorded from anaesthetized rat at
256 Hz fm presented SAM�25% showed strong adaptation
in the group data (n = 28) with the trend line slope being
significantly different from SAM� 25% recorded from
MGB units in awake rats (data not shown, P < 0.05). No
significant changes between predictable SAM�100% and
SAM�25% were observed at 512 Hz fm for all 66 neurons
in awake rats. A subset of 13 single units, which showed
decreases in RPI (� RPI > 0.3) when switched from
SAM�100% to SAM�25%, showed a significant difference
in group trend line slope (P < 0.05) (Fig. 7D).

tMTF differences across fms with decreasing SAM
salience (group data)

The percentage of units showing temporal/envelope-
locking responses across fms (2–128) during random
or predictable presentation of SAM�100% stimuli were
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findings shown in Fig. 3, the RPI recorded from awake rat MGB neurons showed a significant decrease in RPIs
as SAM salience was decreased by reducing modulation depth (SAM�50% and SAM�25%) B, similar to (A),
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[Colour figure can be viewed at wileyonlinelibrary.com]
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compared with random or predictable presentation of
SAM�50%, SAM�25% and noisy SAM (Fig. 8). A Rayleigh
statistic minimum of 13.8 was used as a qualifier for the
envelope-locking ability of each unit. The highest levels
of locking to SAM�100% were observed for single-unit
responses near modulation frequencies centred between
8 and 16 Hz (Fig. 8). Compared to SAM�100%, there
was a significant decrease in temporal-locking ability at
shallower modulation depths for both random and pre-
dictable stimuli: SAM�50% random (at fm 16 and 32 Hz,
P < 0.05) and predictable stimuli presentation (at fm

4 Hz, P < 0.05). SAM�25% presented either in a random
or predictable manner showed significant decreases at
all fms tested (P < 0.05). Temporal responses to noisy
SAM showed significant decreases in the percentage of
units showing envelope-locking responses compared to
SAM�100% for random (at fm 2, 4, 8, 16 and 32 Hz,
P < 0.05) and predictable stimuli (at fm 2, 4 and 8 Hz,
P < 0.05). Differences between predictable and random
presentation of SAM�100%, SAM�50%, SAM�25% and
noisy SAM stimuli were not significant. There were no
significant differences in vector strength between pre-
dictable and random presentation of stimuli at different
levels of salience and fms between 2 and 128 Hz (data not
shown).

Discussion

In the present study, the hypothesis that age-related
increases in preference coding for repeated/predictable
acoustic stimuli are at least partially the result of a degraded
temporal code seen in older rats and humans was tested
using a degraded stimulus to simulate ageing in young
animals (Tremblay et al. 2002; Caspary et al. 2008; Caspary
& Llano, 2018). Consistent with our hypothesis, the pre-
sentation of less salient SAM stimuli led to a decrease in the
number of neurons showing temporal/envelope locking,
which mimics aged human/animal models (Caspary &
Llano, 2018; Ng & Recanzone, 2018). A comparison
of rate responses in single units from awake rat MGB
showed a significant increase in preference for pre-
dictable stimuli and the number of spikes with each
trial at a higher fms (>128 Hz) when less salient SAM
stimuli were presented but not with standard SAM�

100%. This change in preference coding was not seen in
units recorded from anaesthetized rat MGB. The observed
relative switch from adaptive to enhanced coding for
repeating/predictable, less-salient stimuli is considered to
involve higher cognitive resources, which are brought into
play to disambiguate the less salient acoustic message. This
notion is supported by a lack of similar changes in units
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Figure 6. Comparison of RPIs across specific fms for awake rat MGB neurons in response to SAM�100%,
SAM�50%, SAM�25% and noisy SAM
A, RPI for MGB neurons responding to SAM�25% showed significant decreases across higher fms of 32–128,
64–256, 128–512 and 256–1024 Hz compared to responses at SAM�100% at the same fms. There were no
significant differences between SAM�100% and SAM�50% at any fms. B, RPI for MGB neurons responding to
noisy SAM were significantly different from SAM�100% across fms. The significant decrease in random-preference
with decreased temporal salience, when presented with SAM�25% and noisy SAM, at higher fms is suggestive
of an increase in preference for predictable stimuli at higher fms similar to previous findings in aged rats. Data
are presented as the mean ± SEM; statistical analyses were repeated-measures ANOVA with post hoc Tukey’s
correction using Graphpad. ∗P < 0.05; ∗∗P < 0.01.
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from anaesthetized animals in the present study, as well
as by prior studies on top-down effects over bottom-up
circuits and behaviour (Maunsell & Treue, 2006; Fritz
et al. 2007; Chandrasekaran et al. 2009; Peelle & Wingfield,
2016; Homma et al. 2017; Helfer et al. 2018).

Effects of ageing on central auditory system and
top-down processes

The present findings, obtained using temporally degraded
modulated sounds in young-adult MGB units, support
our hypothesis that modelled ageing using temporally
degraded stimuli in young rats. These findings are
consistent with studies showing an age-related increase
in predictable preference or an increase in firing with
repetition (de Villers-Sidani et al. 2010; Cai et al. 2016;

Cisneros-Franco et al. 2018). We postulated this to be the
result of a temporally jittered/less salient code in aged MGB
that frequently led to increases in firing with repetition.
We interpret this as a mechanism for strengthening the
internal representations of temporally degraded signals by
engaging top-down cognitive resources. Congruent with
these interpretations, previous human and animal studies
also describe age-related losses in auditory temporal
processing and an inability to accurately localize sound in
cluttered environments (Pichora-Fuller et al. 2007; Dubno
et al. 2008; Eddins & Hall, 2010; King et al. 2014; Harris &
Dubno, 2017). Speech in noise conditions degrades speech
understanding even in older individuals with healthy
hearing (Pichora-Fuller et al. 1995). This decline in speech
understanding in older individuals correlates well with
a decline in temporal processing with age (Fitzgibbons
& Gordon-Salant, 1994, 2011; Harris et al. 2012).
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Figure 7. Trial-by-trial response analysis to predictable presentation of SAM�100% and SAM�25% at
fm 256 and 512 Hz
A, trial-by-trial measure of responses of an exemplar single-unit from the MGB of an awake rat to 10 repeating
presentations of a SAM�100% at fm of 256 Hz presented in predictable manner. B, responses from the same unit
to 10 repeating presentations of SAM�25% at fm of 256 Hz presented in a predictable manner. C, comparison
of group trial-by-trial data (mean ± SEM) of responses to predictable SAM at fm = 256 Hz. The trend line slopes
are significantly different for SAM�100% and SAM�25% groups when plotting average spikes to predictable
presentation of 256 Hz fm (ANCOVA, two-tailed, P < 0.05). D, a subset of 13 neurons (these neurons show a
decrease in RPI by >0.3 when switched from SAM�100% to SAM�25%) in response to a predictable presentation
of fm at 512 Hz showed adaption with SAM�100% and an increase in responses with each trial of SAM�25%
(ANCOVA, two-tailed, P < 0.05).
[Colour figure can be viewed at wileyonlinelibrary.com]
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Mechanistic insights into these deficits suggest a negative
impact of ageing on the cochlea, where several studies have
described some combination of sensory, neural, strial and
conductive elements resulting in a decrease in the quality
and intensity of sound signals reaching the central auditory
system (Schuknecht & Gacek, 1993; Sergeyenko et al. 2013;
Libreman & Kujawa, 2017; Cai et al. 2018). However,
research conducted with normal hearing elderly humans
has reported deficits in speech understanding, especially
in complex acoustic environments, implicating central
deficits in addition to peripheral deficits in presbycusis
(Harris et al. 2012; Humes et al. 2012; Pichora-Fuller
et al. 2017). These findings are backed by evidence
obtained from human psychoacoustic studies and animal
studies demonstrating disruptive age-related effects on the
veracity of the ascending acoustic code in conjunction with
age-related peripheral losses at the cochlea and auditory
nerve fibres (Willott et al. 1991; Gratton et al. 1997;
Spongr et al. 1997; Tang et al. 2014; Cai et al. 2018). Pre-
vious studies have also shown de novo age-related changes
vs. deafferentation plasticity (Caspary & Llano, 2018;
Occelli et al. 2019). Furthermore, neurochemical studies
supporting the loss of speech understanding with ageing
found an age-related compensatory, net down-regulation
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Figure 8. Percentage of neurons showing temporal-locking
responses to random or predictable presentation of standard
(SAM�100%) and less salient (SAM�50%, SAM�25% and
noisy SAM) stimuli at lower modulation frequencies (fm)
Each row in the heat map represents the presentation of salient or
less salient stimuli either in a random or predictable manner,
whereas each column represents the fm from 2 Hz to 128 Hz. The
scale below the heat map shows the colour code for the percentage
of neurons (out of 66 in total) showing temporal-locking to the
stimulus; hot colours (red) indicate a higher percentage of
temporal-locking, whereas cool colours (blue) indicate a lower
percentage of temporal-locking. Changes in the percentage of
neurons showing temporal-locking when switched from standard to
less salient stimuli in either random or predictable presentations are
compared. There was a significant decrease in the percentage of
single-units showing temporal-locking with a decrease in salience
predominantly at SAM�25% and noisy SAM across both random
and predictable presentations compared to SAM�100% (Wilcoxon
test followed by Bonferroni correction, P < 0.05).

of GABAergic and glycinergic inhibition in the cochlear
nucleus, inferior colliculus, MGB and auditory cortex
(Stebbings et al. 2014; Gao et al. 2015; Ouda et al.
2015; Godfrey et al. 2017; Caspary & Llano, 2018).
Rodent and primate neurophysiological ageing studies
highlighted an increase in discharge rates and less precise
temporal-locking in central auditory structures, which
are probably partly responsible for the loss of temporal
processing in older humans (Pichora-Fuller & Schneider,
1992; Palombi & Caspary, 1996; Frisina, 2001; Harris
et al. 2012; Mattys & Scharenborg, 2014; Parthasarathy
et al. 2016; Ng & Recanzone, 2018). Modelling these
less precise temporal-locked responses, as seen in aged
populations, by jittering the temporal fine structure of
the stimulus in young people led to decreased speech
in noise recognition (Pichora-Fuller et al. 2007; Mamo
et al. 2016). Similar to jitter, decreasing the depth of
SAM stimuli decreases the salience of the SAM, leading
to decreased perceptual ability and phase locking (Pollack
& Pickett, 1963; Joris & Yin, 1992; Wingfield et al. 1994;
Shannon et al. 1995; Krishna & Semple, 2000; Jorgensen
& Dau, 2011; Christiansen et al. 2013; Srinivasan &
Zahorik, 2014). Despite such temporal deficits, many
older individuals can maintain speech understanding,
suggesting that compensatory mechanisms are in play
(Dubno et al. 1984; Humes et al. 2012; Peelle &
Wingfield, 2016). This points to cognitive based resources,
including attention and context-mediated enhancement
of neural representations, with respect to identifying and
extracting salient or difficult to identify signals in complex
acoustic environments. By contrast to this compensatory
strategy for enhancement, in young animals, neural
representations of repeating stimuli are reduced and
adapted with respect to the detection of novel stimuli (i.e.
SSA) (Strange, 1989; Ohl et al. 1999; Ono et al. 2006; Davis
& Johnsrude, 2007; Fritz et al. 2007; Shinn-Cunningham
& Wang, 2008; Tremblay et al. 2010; Duque et al.
2013; Obleser, 2014; Skoe et al. 2014; Malmierca et al.
2015; Cisneros-Franco et al. 2018). Collectively, these
studies suggest that adaptation may originate from lower
structures (i.e. a bottom-up process), whereas predictions
are formed by higher-order cortical structures (i.e. a
top-down process) (Rao & Ballard, 1999; Anderson &
Malmierca, 2013; Peelle & Wingfield, 2016; Yun Rui et al.
2018). However cognitive deficits are also seen with ageing
(Gazzaley & Nobre, 2012). Consistent with the study
by Cai et al. (2016), responses to SAM�100% showed a
balance between bottom-up adaptation and descending
top-down influences, reflecting a mix of random and
predictable preferring neurons. In response to relatively
less salient SAM�25%, these same single units showed
a clear preference for predictable signals, especially at
higher fms (Figs 6 and 7). An absence of similar changes in
anaesthetized rats is consistent with anaesthesia-related
partial blockade of top-down influences, as previously
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suggested by an absence of perceptual learning and
cortical disconnectivity with anaesthesia (Aberg et al.
2009; Jordan et al. 2013; Mashour, 2014). These findings
are in agreement with recent work showing context and
experience-based predictions in humans and animals
(Ostroff et al. 2003; Fakhri et al. 2012; Leung et al.
2013; Skoe et al. 2014; Sohoglu & Chait, 2016; Parras
et al. 2017; Schwartz & David, 2018). Furthermore,
repetition-induced increases in speech understanding, as
well as improvements in the visual recognition of degraded
objects with repetition, provide evidence in support of
our interpretation of an increased response to degraded
predictable stimuli (Rivenez et al. 2006; Muller et al.
2013; Helfer et al. 2018). Collectively, these results lend
support to the hypothesis that less salient stimuli/degraded
ascending acoustic code can be compensated for by an
increased use of cortical cognitive (experience/contextual)
and attentional resources (Bertoli et al. 2001; Alain et al.
2014; Bidelman et al. 2014; Presacco et al. 2016a; Lesicko
& Llano, 2017).

Effects of ageing and top-down processes in the
medial geniculate body

In the present study, less salient stimuli not only altered
the preference for predictable stimuli, but also showed a
decrease in envelope-locking. These results support our
stimulus choice aimed at simulating temporal processing
deficits observed with ageing, which are partly mediated
by neurotransmitter-deficits with ageing. Age-related
changes in neurotransmission impact upon the function of
descending and ascending projections to the MGB, which
include decreased tonic GABA currents, as well as pre-
and post-synaptic changes in cholinergic receptors, and
are considered to be involved in gating/modulating MGB
representations (Banay-Schwartz et al. 1989; Richardson
et al. 2013b; Godfrey et al. 2017; Sottile et al. 2017a;
Sottile et al. 2017b). However, Richardson et al. (2013a)
failed to find evidence of age-related physiological changes
in MGB function using short duration pure tone SSA
paradigm (Richardson et al. 2013a). A second ageing
MGB study by Cai et al. (2016) used complex longer
duration SAM stimuli stepped between 2 and 1024
fm and found significant age-related changes in the
response properties of MGB neurons when a random
presentation was compared with a predictable/repeating
presentation of stimuli. These findings are consistent
with studies performed in aged rat auditory cortex
showing a decrease in SSA (de Villers-Sidani et al. 2010;
Cisneros-Franco et al. 2018). The use of a relatively long
SAM stimulus is more complex than the short pure
tones used in most SSA studies and may more closely
represent animal vocalizations and human speech. These
results are consistent with previous studies using more
complex (frequency modulated and harmonic complex

tones) stimuli instead of pure tones, which also found
an increased use of top-down resources, possibly via
corticothalamic projections for sound detection. Previous
MGB studies on corticothalamic stimulation have shown
simulated top-down modulatory effects on responses in
learning and discrimination studies in many species,
including ferret, mouse, cat, gerbil, rat, guinea pig, bat
and monkey (Orman & Humphrey, 1981; Zhang et al.
1997; Ohl et al. 1999; He, 2003; Ono et al. 2006; Rybalko
et al. 2006; Wetzel et al. 2008; Guo et al. 2017; Homma
et al. 2017; Barczak et al. 2018). Recently, Guo et al. (2017)
examined the impact of corticothalamic stimulation on
MGB discharge properties and a sound detection task.
They found a gain in MGB activity that lasted for 150 ms
post-stimulation, which was associated with enhanced
sound detection (Guo et al. 2017). Few studies have
investigated the effect of corticothalamic stimulation with
ageing on MGB physiology (Sottile et al. 2017a; Sottile
et al. 2017b). Apart from modulating MGB response
properties, corticothalamic projections are implicated
in the switching from temporal to rate code, possibly
involving some combination of short-term NMDA/AMPA
and long-term mGluR-dependent mechanisms (Lu et al.
2001; Bartlett & Smith, 2002; Bartlett & Wang, 2007; Wang
et al. 2008; Rabang & Bartlett, 2011; Cai & Caspary, 2015).
Although, in the present study, we found no differences
in envelope-locking between random and predictable pre-
sentation of less salient stimuli, we observed increases in
the rate responses with repeated presentation. Differences
between dorsal vs. ventral units should be carefully
addressed in the future as a result of differences in afferent
projections and the physiology between MGB subdivisions
(Bartlett 2013). Future studies should aim to further
examine our understanding of the top-down effects on
predictive coding using a direct activation/deactivation of
cortiothalamic neurons that addresses the role of ageing
in corticothalamic modulation at the MGB.

In conclusion, the present study found that the
temporal degradation of a modulated stimulus appears
to simulate the temporally degraded ascending acoustic
code seen in the elderly, leading to an increased pre-
ference for repeating/predictable stimuli in young animals.
Furthermore, temporally degraded stimuli increase firing
responses to successive repetitions of the same stimulus, as
observed in previous studies, suggesting that repetition as
a top-down strategy to better internalize representations
(Muller et al. 2013; Helfer et al. 2018).
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