
A generic Transcriptomics Reporting Framework (TRF) for 
‘Omics Data Processing and Analysis

Timothy W. Gant1,*, Ursula G. Sauer2, Shu-Dong Zhang3, Brian N. Chorley4, Jörg 
Hackermüller5, Stefania Perdichizzi6, Knut E. Tollefsen7, Ben van Ravenzwaay8, Carole 
Yauk9, Weida Tong10, Alan Poole11

1Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England 
(PHE), Harwell Campus, Oxfordshire, UK

2Scientific Consultancy – Animal Welfare, Germany

3Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, 
University of Ulster, UK

4U.S. Environmental Protection Agency, USA

5Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, 
Germany

6Center for Environmental Toxicology, Agency for Prevention, Environment and Energy (Arpae), 
Emilia-Romagna, Italy

7Norwegian Institute for Water Research (NIVA), Norway

8BASF SE, Germany

9Environmental Health Science and Research Bureau, Health Canada, Canada

10National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 
USA

11European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Belgium

Abstract

A generic Transcriptomics Reporting Framework (TRF) is presented that lists parameters that 

should be reported in ‘omics studies used in a regulatory context. The TRF encompasses the 

processes from transcriptome profiling from data generation to a processed list of differentially 
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expressed genes (DEGs) ready for interpretation. Included within the TRF is a reference baseline 

analysis (RBA) that encompasses raw data selection; data normalisation; recognition of outliers; 

and statistical analysis. The TRF itself does not dictate the methodology for data processing, but 

deals with what should be reported. Its principles are also applicable to sequencing data and other 

‘omics. In contrast, the RBA specifies a simple data processing and analysis methodology that is 

designed to provide a comparison point for other approaches and is exemplified here by a case 

study. By providing transparency on the steps applied during ‘omics data processing and analysis, 

the TRF will increase confidence processing of ‘omics data, and regulatory use. Applicability of 

the TRF is ensured by its simplicity and generality. The TRF can be applied to all types of 

regulatory ‘omics studies, and it can be executed using different commonly available software 

tools.

Keywords

Regulatory toxicology; normalisation of ‘omics data; statistical analysis; differentially expressed 
genes; reproducibility; bioinformatics; gene expression

1 Introduction

The evolution of ‘omics (e.g., transcriptomics, proteomics, metabolomics) occurred in 

parallel with developments in computational technology that allowed the storing, processing 

and analysis of large data sets (Peng, 2011). Analysis of these large sets of ‘omics data was 

made possible by advances in bioinformatics that incorporate the established principles of 

statistical data interpretation specifically for application to ‘omics studies.

‘Omics studies encompass the derivation of a measurement (the generation, curation and 

storage of raw data) using, e.g., a tissue or blood sample from an animal toxicity study; data 

processing and statistical analysis; and data interpretation to conclude on the outcome of the 

study (Figure 1). For each of the steps of an ‘omics study, multiple methodologies and 

approaches are available, many of which are incorporated into commercially or freely 

available software tools. However, the different data processing methodologies are 

inconsistently applied by different users and data analysts. Some inconsistencies arise from 

the uninformed application of the available software tools, but more often the 

inconsistencies are caused by differences in the study designs and bioinformatic approaches. 

Often the selection of the given methodology is justifiable, but the use of different analytical 

approaches makes it difficult to compare data from different studies, or to compare different 

evaluations of the same set of raw data. Due to differences in approaches to the processing, 

analysis and interpretation of ‘omics data, different results and conclusions can be derived 

from identical starting data sets (OECD, 2005; CATTPTRA – NRC, 2007).

The lack of standardisation and validation of ‘omics studies is a major obstacle preventing 

their wider regulatory adoption and use. In regulatory settings, ‘omics data can potentially 

contribute to the classification and labelling of substances; mode-of-action (MoA) analysis; 

the substantiation of chemical similarity for read-across; the determination of points-of-

departure during hazard assessment; and the demonstration of species-specific effects and 

human health relevance (or absence thereof) (cf. Sauer et al. (2017) in this journal 
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Supplement). However, the lack of standardisation is hindering delivery of these desirable 

outcomes.

This overview highlights that the standardisation of ‘omics studies is urgently required to 

foster the regulatory acceptance of ‘omics data. Against this background, the establishment 

of a framework describing steps that are relevant for the processing and analysis of ‘omics 

data was one of the key objectives of the European Centre for Ecotoxicology and Toxicology 

of Chemicals (ECETOC) workshop Applying ‘omics technologies in chemical risk 
assessment, that took place on 10-12 October 2016 in Madrid, Spain (Figure 1). The report 

of this workshop is provided in Buesen et al. (2017) in this journal Supplement. Ahead of 

the ECETOC workshop, a first draft framework on the processing and analysis of 

transcriptomics data was compiled, that was presented and further discussed during work 

stream 2 of the workshop (Figure 1). Based upon the recommendations from the ECETOC 

workshop, the drafted framework was updated, yielding this article that presents a generic 

Transcriptomics Reporting Framework (TRF). The TRF lists study elements and parameters 

that should be taken into consideration in designing ‘omics studies for regulatory use and in 

reporting such studies, e.g., in unpublished study reports or peer review publications. The 

TRF was drawn up with a focus on microarray studies for transcriptome profiling. 

Notwithstanding, it can easily be adapted to cover other sources of ‘omics data.

As a result of the difficulties presented above of comparing even the same data when subject 

to differing bioinformatics procedures, the TRF includes a Reference Baseline Analysis 
(RBA) method that indicates specific steps for data processing and statistical analysis from 

raw data to differentially expressed genes (DEGs). While the TRF, as such, merely provides 

a list of study elements and parameters that should be reported without being prescriptive, 

the embedded RBA stipulates one specific approach to convert the experimental measures 

(the raw data) to the processed data ready for interpretation (e.g., a list of differentially 

expressed genes (DEGs) for transcriptomics). Thereby, the TRF RBA serves to provide a 

benchmark reference list (common denominator) of DEGs for the comparative assessment 

of different studies. However, the TRF RBA can also be taken forward for interpretation of 

‘omics data in its own right.

The TRF does not currently include parameters associated with the production of tissue, 

blood or cell samples (e.g., the animal or in vitro experimental design) or the generation, 

curation and storage of ‘omics data from these samples. The quality control (QC) of the 

generation of gene expression data has been dealt with previously by the U.S. Food and 

Drug Administration (FDA)-led MicroArray Quality Control (MAQC) consortium (MAQC 

Consortium et al., 2006; Shi et al., 2005, 2008, 2010; Xu et al., 2016). Therefore, the TRF 

does not make specific recommendations relating to the generation of ‘omics data, but it 

begins with data handling (i.e. the first manipulation of the raw data produced from the 

microarray platform). Data variance resulting from data generation is taken into account in 

the TRF as part of the analytical process, but the underlying experimental reasons for the 

variance are not addressed further.

Finally, the TRF does not cover the interpretation of ‘omics data. There is a greater level of 

latitude that can be applied in the interpretation of ‘omics data than in their generation and 
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processing. With respect to data interpretation, the important issue for the TRF is to ensure 

that the interpretation is not based upon ‘omics data that are misleading due to the 

bioinformatic processing and statistical analysis. Aspects related to meta data (e.g., animal 

species, gender, animal numbers, diet, etc.) also do not form part of the TRF. In this respect, 

the Minimum Information About Microarray Experiments (MIAME) guidelines are to be 

followed (Brazma et al., 2011). Details on the work of the MAQC consortium and on the 

contents of the MIAME guidelines are summarised in Sauer et al. (2017) in this journal 

Supplement.

Since the TRF only covers two bioinformatic aspects of ‘omics studies, i.e. data processing 

and statistical analysis (Figure 1), it considers the use of ‘omics data from an overarching, 

methodological perspective for application in regulatory science and stipulates what should 

be reported. The RBA part of the TRF exemplarily uses standard methodologies that can be 

executed using commonly available software tools. The TRF RBA is not designed to be 

exclusive, and it does not preclude the use of any specific data processing or data analysis 

methodology; it simply allows simple within-study and between-study reproducibility and 

comparability of ‘omics data sets leaving room for the application of individual expertise.

Section 2 below presents the five steps of the TRF, i.e. (1) description of the raw data; (2) 

data normalisation; (3) data filtering; (4) identification and removal of bad or outlying data 

sets; and (5) statistical analysis of data.

Section 3 presents a case study in which the TRF RBA was submitted to an initial 

evaluation. The raw data for this case study were generated during a rat oral pre- and 

postnatal toxicity study using three endocrine-active compounds (flutamide, vinclozalin and 

prochloraz) that was conducted within the European Chemical Industry Council (CEFIC) 

Long-range Research Initiative (LRI) project EMSG56 Combined low-dose exposures to 
anti-androgenic substances (http://cefic-lri.org/projects/emsg56-basf-combined-low-dose-

exposures-to-anti-androgenic-substances/).

Section 4 provides a discussion of and an outlook on the applicability of the TRF and the 

embedded TRF RBA method.

2 The Transcriptomics Reporting Framework (TRF) and the embedded 

Reference Baseline Analysis (RBA) method

Step 1 – Description of the raw data (including initial pre-processing)

Minimum core study elements and parameters to describe the raw data 
(including initial pre-processing)—- The experimental design (sample quality 

assessment metrics; sample labelling; assignment of samples to slides, flow cells, etc.)

- The type and version of the platform used and the (manufacturer’s) name

- Specification of the raw data (cf. Table 1 and Supplementary Information)

- The signal used from raw data output, including a specification whether background 

correction to the signal was performed, or not
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-Technical and experimental replicates

- Spot quality assurance / quality control metrics reviewed on raw data; if bad quality and/or 

low and high/saturated intensity spots are pre-filtered prior to statistical analysis, such spots 

should be clearly defined and a justification for performing the pre-filtering should be 

provided (cf. also Step 4 of the TRF: Removal of bad or outlying data sets)

- The handling of replicate probes

- The handling of technical replicates (preferably, technical replicates should be combined 

into one data set by calculating the average of the measures for each probe or sequence; 

including an indication if this includes a filtering step). Multiple probes for the same target 

provide a particular issue that needs to be considered and reported by the bioinformatician. 

These probes are technical replicates and therefore cannot contribute to the degrees of 

freedom in the statistical analysis. If they are identical, they should be averaged into one 

result, but if targeting different regions of the gene sequence there is a case for keeping them 

separate. The choice made should be decided by the bioinformatician and reported as part of 

the TRF.

Quality of the source material

- For RNA, this can include a report of the RNA Integrity Number (RIN) reported for the 

RNA used (a low RIN indicates a loss of RNA integrity); if the RIN number is not available, 

e.g., visual inspection can be applied to assess RNA integrity; also, A230/280 and A260/280 

ratio values and yield (ng/µL) are helpful to assess RNA quality and potential contamination.

- An indication whether any sample pooling has occurred (samples being combined into one 

hybridisation or sequencing analysis; Zhang and Gant, 2005).

When applying the TRF RBA, data collection should proceed according to the 

manufacturers’ guidelines. The median signal data should be used for further processing. 

The raw data should not be background-corrected or pre-filtered, except for the removal of 

spiked-in standards. All data sets generated during the experiment should be examined to 

ensure consistency of quality.

Explanatory notes—Raw data represent the magnitude of the expression of the genes 

under investigation in the selected biological samples (e.g. cells, tissue, blood). An 

unambiguous description of the raw data following the study elements and parameters listed 

above is indispensable for ensuring transparency on the design of any given ‘omics study. 

Generally, the software tools available for different microarray platforms provide the option 

of deriving different types of raw data (e.g., median or mean signal intensities) and of 

conducting (or not conducting) an initial processing of signal intensities. Further, 

manufacturers may alter data types when they develop a new platform. Thus, differences in 

the types of raw data can arise either from the manner in which pixel data are condensed into 

one number (e.g. mean or median) and/or from the initial processing of the data.
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The specific type of raw data used as a starting point for the subsequent analysis may affect 

the outcome of the study (i.e. the composition of DEG lists). This issue is further explored 

taking the example of two commonly used, commercially available microarray platforms, 

i.e. the Agilent and the Affymetrix® microarray platforms. The Agilent microarray platform 

and the accompanying Agilent software tools were applied during the CEFIC LRI EMSG56 

project whose data were used for the case study presented in Section 3 Of note, the Agilent 

and the Affymetrix microarray platforms were selected exemplarily, and this selection does 

not imply a preference over the microarray test kits or software tools that are available from 

other manufacturers (cf. Supplementary Information for further information on the data 

processing modules of the corresponding software tools as presented in the respective user 

manuals (Affymetrix, 2013, 2014; Agilent, 2014)).

The Agilent software tools generally provide two numbers to quantify gene expression, i.e. 

the gMedianSignal and the gProcessedSignal (with the letter g referring to the green 

fluorescence labelling). The gProcessedSignal is specific for Agilent Technologies (Box 1) 

and thus not available to other technologies. Therefore, use of the gProcessedSignal could 

cause difficulties in the cross-comparison of data, because the gMedianSignal and the 

gProcessedSignal can produce different lists of DEGs even when analysed by the same 

statistical procedure. This effect of the processing on the distribution of signal intensities is 

visible in the boxplots in Figure 2 by the intense signals at the upper end of the distributions. 

This example highlights that the type of measure that is used as a starting point for the 

subsequent analysis should be specified, ideally together with a justification.

If the given study aims to derive ‘omics data that can be cross-compared between different 

data sets, it may be advisable to use a signal that is available on all major platforms. This is 

the median signal, i.e. the gMedianSignal in case of the Agilent technology. For this reason, 

the TRF RBA uses the median signal as type of raw data for further data processing and 

analysis. There is no reason why the gProcessedSignal should not be used to mine data if the 

responsible bioinformatician considers this most relevant (e.g., because background 

corrections better reflect the actual biological targets). Processing of the gProcessedSignal 

alongside use of the TRF RBA enables a cross comparison between the DEG lists obtained 

following either procedure. It is important though that the options used in the derivation of 

the gProcessedSignal are reported as part of the TRF.

Further work is advisable to determine how DEG lists acquired using the Agilent 

gMedianSignal compare to DEG lists acquired using the median signals generated using 

other microarray platforms and software tools. Nevertheless, in spite of possible inherent 

differences in the technology used (e.g., location of probes, signal capture, etc.), cross-

comparisons between datasets obtained using the platforms from different manufacturers 

may be enhanced by using median signals as raw data, as compared to the use of pre-

processed signals.

Step 2 – Data normalisation

Minimum core study elements and parameters to report data normalisation—- 

Data transformation: ln, log10, log2, etc.; variance stabilisation normalisation (VSN)
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- The method of normalisation, including a reference, if applicable, and justifying its 

relevance for the type of data; generally, data normalisation should be restricted to the 

minimum necessary (cf. Table 1)

- Selection of probes (all, invariant subset, house-keeping genes, spike-in controls)

- Quality assurance of normalisation assessment

When applying the TRF RBA, data should be logged to the base 2 to ensure an equal 

distribution about 0 for the expression of each of the genes in the set prior to statistical 

analysis. This can be done before or after the normalisation. Median centring normalisation 

is performed. Normalisation should be performed within-sample only, and not across the 

entire experiment (i.e. as between-sample normalisation).

Explanatory notes—Data normalisation is generally considered a minimum prerequisite 

to correct for experimental and technical variables (cf. Sauer et al. (2017) in this journal 

Supplement). Generally, the normalisation methods should be chosen depending on data and 

sample properties and the goal of the analysis (Fundel et al., 2008). In all ‘omics studies, the 

applied normalisation method should be properly reported taking into account data 

supporting the choice of normalisation methods (e.g. analysing variance pre- and post-

normalisation).

The TRF RBA includes a within-data set median centring normalisation to ensure that 

distributions are organised to lie about the same axis (Zhang and Gant, 2004). This one of 

the simplest non-proprietary normalisation methods that can be applied to all data types. It is 

used for this reason. Single data set normalisation methods prevent data sets from affecting 

each other (by altering existing (normalised) expression values from the addition of new 

sample sets (Welsh et al., 2013).

Step 3 – Data filtering

Minimum core study elements and parameters for data filtering—Recognition 

and removal of data below the detection limit, including specification (1) how poorly 

expressed and measured genes contribute to the uncertainty; and (2) how poorly expressed 

and measured genes were removed (in a consistent manner)

- Recognition and removal of low abundance genes (including specification of threshold)

- Recognition and removal of absent probes (i.e. empty spots; including definition how 

identified)

- Any non-specific filtering

- Process used to identify and remove poor quality probes (e.g., poor areas of hybridisation 

or high noise)

The TRF RBA does not include any specific filtering of data below detection limits or non-

specific filtering of data and relies on statistical analysis to remove high variance data.
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Explanatory notes—‘Omics data that are below the detection limits of the respective 

analysis methods contribute to the variance in the data sets and ultimately to the occurrence 

of false positives and negatives in the data. However, removal of data below the detection 

limit can interfere with the calculation of fold changes in gene expression. For example, 

when substance treatment induces an increase in the expression of a gene starting from a 

very low level, then removal of the very low level of expression can result in a division by 

zero error when calculating the ratio of fold change. The same applies when the expression 

of a gene is reduced from a high level to a very low one. For any genes with expression 

levels close to the detection limit, there will likely be a high level of variance. Thus, with the 

exception of genes that exhibit large fold change in expression (e.g., one group having low 

expression at the detection limit and another group having detectable expression), genes with 

high variance should be removed by the statistical limits. Thus, it is necessary to record how 

such data points are identified and handled in an experiment.

Step 4 – Identification and removal of bad or outlying data sets

Minimum core study elements and parameters for the identification and 
removal of bad or outlying data sets—Bad signal detection; describe how samples 

yielding poor signal were identified for removal; this may be based on:

- Low or biased dye incorporation

- Failure of the manufacturer’s QC

- Low signal to noise ratio

- Failure of spiked-in controls, if present, to pass the manufacturer’s QC

- Data set does not conform to statistically assessed normality

- Failure of biological or technical replicates to cluster together, e.g., on a principal 

component analysis (PCA) plot

- Other sample coherence quality assurance metrics

Note: Biological replicates should only be removed if the presence of the outlier can be 

explained both statistically and biologically.

Identification and removal of outliers

- Removal of outliers before normalisation? (if so: provide justification and describe applied 

algorithm)

- Removal of additional outliers after normalisation? (if so: provide justification and describe 

applied algorithm)

When applying the TRF RBA, outliers are identified via PCA distribution and clustering; 

any obvious outlying data sets are removed, describing how outliers were identified and 

justifying the removal.

Gant et al. Page 8

Regul Toxicol Pharmacol. Author manuscript; available in PMC 2019 November 04.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Explanatory notes—The identification and removal of outlying data can decrease the 

variance in the data, but it needs to be borne in mind that each removed data set takes out a 

degree of freedom for the subsequent statistical analysis. Outlying data can be identified, 

e.g., by reviewing (1) boxplots for each filtered data set; (2) principal component analysis 

(PCA), plots; (3) clustering analysis, in which biological replicates should cluster together 

and, (4) failure of the internal spiked in standards. On the basis of these plots, a justification 

should be written for both the retention and removal of data sets from the further evaluation.

When applying the TRF RBA, outlying data are only removed if they are a result of a 

traceable technical problem (e.g., failed microarray QC, low counts, spiked standards, etc.), 

or fail to cluster with replicates. Outliers are not removed based on PCA, hierarchal 

clustering, etc. alone. Unless technical problems can be identified there is a danger that a 

sample is in fact reflecting real biological variation.

Step 5 - Statistical analysis of data

Minimum core study elements and parameters regarding the statistical 
analysis of data—- Statistical software applied to identify DEGs (including name and 

version of the software tool, algorithms, etc.)

-Number of technical and experimental replicates and treatment of these in the statistical 

analysis.

- Application of fold change and/or p-value filters?

- Application of additional filters (e.g., false discovery rate (FDR))?

- Relation of statistical significance (e.g., to the control samples or to a specific data set or 

global mean)

For application of the TRF RBA, the Welch’s t-test should be used for the calculation of 

statistical significance (i.e. the p-value) of the data (i.e. as pre-processed in Steps 1-4 of the 

TRF RBA). A fold change of 1.5 and a p-value < 0.05 should be used as cut-off values to 

identify DEGs (cf. explanatory note). Additional filters, such as FDR, are not used in the 

TRF RBA. In all 'omics studies, the raw data should be provided alongside the analysed 

data. Depending on the scope of the study, Analysis of Variance (ANOVA) and Linear 

Models for Microarray And RNA-Seq Data (LIMMA) may be equally well suited for the 

analysis and can be used, but should always be compared back to the TRF RBA analysis to 

provide the common denominator between experiments and analysis methods.

Explanatory notes—For the data remaining in the experiment upon completion of the 

first four steps of the TRF, all of the steps used in identifying DEGs should be transparently 

documented. Within the TRF RBA, significant changes in gene expression as compared to 

the control samples are calculated using Welch’s t-test and the statistical cut-offs indicated 

below. This test is more robust to unequal variance and sample size than the Student’s t-test 

and is included in the TRF RBA for this reason. The TRF RBA uses an empirically set fold 

change threshold of 1.5 and a p-value < 0.05 as cut-off values to identify DEGs.
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This approach may not be optimal for all uses, e.g., when the ‘omics study uses 

(invertebrate) species whose tissues are not well differentiated, or that are so small that 

sampling of the entire animal is inevitable. In such cases, the most appropriate approach to 

determine the statistical (and biological) relevance of the data may have to be established on 

a case-by-case basis, and the TRF RBA should be used as the benchmark reference.

Following the statistical analysis, DEGs can then be calculated as the ratio of the gene 

expression of the treated and the control samples (subtracting the log data). The standard 

deviation (SD) for significant changes from the control can be calculated by analysis of the 

log ratio of gene expression for each of the replicate experiments against the mean of the 

control values. This approach was selected for the TRF RBA since it is universally 

applicable, non-propriety, and can be undertaken using various computer packages. 

Technical replicates should not contribute to the degrees of freedom used and should be 

averaged together into one data set for the sample they represent. It may not be appropriate 

to average together probes targeting the same gene but in different regions, though these are 

still technical replicates and should not contribute to the degrees of freedom. The 

bioinformatician should report the method used for these as part of the TRF. For two colour 

microarrays (now not very common) the use of reverse hybridisation is strongly encouraged 

and should be reported (Zhang and Gant, 2004).

Depending on the objective of the study, other statistical tests and formats for identifying the 

DEGs than those specified for the TRF RBA may be selected (and conducted in parallel with 

the TRF RBA, if applicable). In all ‘omics studies, the data analysis protocols should be 

provided together with the study results. Care should be taken that the use of specific fold 

change or p-value thresholds does not impose statistical restrictions that preclude the 

subsequent biological interpretation of ‘omics data (that is not addressed in this article), 

especially when also considering false discovery rate (FDR) corrections. For this reason, the 

embedded TRF RBA has specific a requirement for the p and fold change cut off values thus 

forming a benchmark reference analysis that is fairly permissive against which the results of 

other statistical filtering limits can be compared.

Of note, statistical tests that employ permutation or bootstrap analysis (Fang and Ma, 2017) 

are generally considered less reproducible than methods with parametric assumptions.

3 Application of the TRF RBA to a sample data set

Exemplarily, the TRF RBA was applied to a data set that was generated during the CEFIC 

LRI EMSG56 project Combined low-dose exposures to anti-androgenic substances. ‘Omics 

data were generated using blood samples from rats submitted to an extended one generation-

like toxicity study investigating the pre- and postnatal effects of three endocrine-active 

compounds, i.e. flutamide, vinclozalin and prochloraz (Fussell et al., 2012). For each test 

compound, the ‘omics data were generated at three dose levels that were selected to mimic 

the respective compound’s (i) acceptable daily intake level; (ii) no observed adverse effect 

level; and (iii) lowest observed adverse effect level. Three time points were analysed for 

each test compound and dose level (postnatal days 21, 30-40, and 83), and 4 replicates were 

tested at each time point and dose level. The control groups encompassed 4 animals per time 
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point. Agilent microarray platforms were used to quantify gene expression levels. The study 

design yielded a total of 120 sets of microarray data. Further details on the study design are 

presented in Fussell et al. (2012).

Data processing and statistical analysis were carried out using the R Statistical Environment 

(R Core Team, 2013). This environment provides a relatively simple envelope in which to 

make complex calculations with large data sets. It has the advantage that the scripts used can 

be saved as a record of the bioinformatics process undertaken and reported. Thereby, the 

records can be reviewed by anyone with a basic knowledge of the package. Furthermore, the 

R package is non-proprietary and publicly available, and it can be used without costly 

computer equipment.

The main steps of the TRF RBA are summarised in Figure 3.

3.1 Definition of the type of raw data

As discussed in Step 1 of the TRF (cf. Section 2), the Agilent software tools provide two 

types of output data, the gProcessedSignal and the gMedianSignal. As specified in the TRF 

RBA and to facilitate future use of ‘omics data sets (including, possibly, cross-platform 

comparability), the gMedianSignal data were used as raw data. Microarray markers and 

internal standards were removed by analysis of the accession numbers. It was noted that all 

such markers and spiked in standards did not have associated accession numbers. Therefore, 

this provided the easiest means to remove the corresponding data by taking out all those 

expression values that did not have an associated accession number. The means of achieving 

this will be different for different platforms and should be reported as part of the TRF.

3.2 Log2 conversion and median centring normalisation

Step 2 of the TRF (and the TRF RBA) specifies data transformation and normalisation. All 

data were converted to log2 values. As compared to the non-logged data, the log2-converted 

data followed a bimodal distribution with a tight distribution of the low intensity data and a 

much wider distribution of the more highly expressed genes (Figure 4). Background 

subtraction was not performed. Background is usually measured in the area surrounding the 

probe and is not always reflective of the actual background in the area of the probe that 

cannot be measured directly. This can result in values that are less than zero if the 

background is removed. For these reasons, the TRF RBA does not include background 

subtractions. Median centring normalisation was conducted on the gMedianSignal data 

(Figure 5). By comparison with Figure 2, the boxplot presented in Figure 5 reveals that the 

normalisation served to centre the medians, but that it did not alter the distribution on the 

data (as expected).

3.3 Data filtering

Step 3 of the TRF includes testing for bad data and removal thereof. The TRF RBA does not 

specify any data filtering, but instead relies on the statistical analysis in Step 5. Thereby, data 

are not removed that might be required for cross-comparison with other data processing 

methods.
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3.4 Identification and removal of bad and outlying data sets

Step 4 of the TRF calls for an assessment of bad and outlying data sets. PCA analysis did 

not show any data sets that required removing from the analysis (data not shown) and 

therefore a justification for the removal of datasets was not required.

3.5 Statistical analysis

Step 5 of the TRF encompasses the statistical analysis of the data. Variance in the data is 

dependent on signal strength (Figure 6), and the statistical test needs to be sufficiently 

discriminatory to remove high variance data and sufficiently permissive to ensure there is no 

data loss that would prevent the comparisons for which the TRF RBA has been designed. 

Applying TRF RBA in the case study, the statistical analysis was conducted using the 

Welch’s t-test comparing the experimental average expression of each gene expression value 

at each dose and time point with the relevant control and applying the cut-off value of p-

value < 0.05 alone (Figure 7A) and together with the 1.5-fold change cut-off value (Figure 

7B). Application of the p-value < 0.05 cut-off alone is permissive. Nevertheless, as stated 

above, the purpose of the TRF RBA is to provide a common denominator data set against 

with other analyses of the same data set or TRF RBA analyses from other ‘omics studies can 

be compared. While application of the p-value < 0.05 cut-off alone proved sufficiently 

discriminatory for high variance data, this results in some DEGs being recognised that are 

very small but have small variance between experiments. For this reason, TRF RBA includes 

the p-value < 0.05 cut-off and the fold change cut off of 1.5-fold (Figure 7).

4 Discussion and outlook

The TRF presented in this article has been developed as a generic framework to enhance 

transparency on two key steps of ‘omics studies, i.e. the processing of raw data and the 

statistical analysis of the processed data. It builds on previous work published Zhang and 

Gant (2004) and Gant and Zhang (2005). The TRF has been conceived generally to 

accommodate the different purposes of regulatory use of ‘omics data (e.g., hazard 

identification or MoA analysis) as well as the complexity and diversity of

’omics technologies.

Differences in the processing and analysis of ‘omics data can result in the derivation of 

different results and conclusions from identical starting data sets (OECD, 2005; CATTPTRA 

– NRC, 2007). Therefore, the RBA has been embedded within the TRF to allow easy 

comparison of different bioinformatics approaches and to serve as a benchmark reference 

analysis, or common denominator, against which to compare other approaches. Use of the 

TRF RBA fosters the within-study and between-study comparability of the outcomes of 

‘omics studies. Such comparability is essential to obtain a profound biological 

understanding of the implications of gene expression changes.

In the long term, the transparency and comparability that the TRF and the embedded RBA 

yield can also foster the establishment of best practices in the processing and statistical 

analysis of ‘omics data when performing ‘omics studies for different regulatory applications 

thereby facilitating the standardisation and regulatory applicability of ‘omics studies. The 
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transparency and reproducibility of ‘omics studies are further enhanced when data analysis 

scripts (including the entire source code) and standards are made available with the ‘omics 

study reports. Preferentially, such data analysis scripts should follow reproducible research 

paradigms, e.g. by using literate programming for statistical analysis and methods that are 

open to scrutiny (Peng, 2011). In the TRF RBA, this is achieved by the use of publicly 

available software tools, such as the R Statistical Environment.

While currently focusing on the processing of data from transcriptomics microarray studies, 

the TRF may eventually provide the basis for the development of further technology-specific 

data processing and analysis frameworks (e.g., RNA-Seq, etc.) and/or for the development of 

such frameworks for further ‘omics (e.g., proteomics, metabolomics, etc.). The 

manufacturers and vendors of the technologies should be involved in developing data 

processing and analysis frameworks to ensure that the selected study elements and 

parameters to cover their product readouts. The likely future development of further data 

processing and analysis methods provides justification for the generic TRF RBA that allows 

for cross-comparison between different ‘omics studies. This is exemplified by the ongoing 

developments to collect high-throughput functional genomics data such as the Gene 

Expression Omnibus (GEO) database repository of the U.S. National Center for 

Biotechnology Information (available at: https://www.ncbi.nlm.nih.gov/geo/).

The case study presented in this article confirms the general usefulness of the TRF RBA. 

Further case studies are recommended to enhance the regulatory applicability and use of the 

TRF and the embedded RBA (and possibly to provide a starting point for validation studies). 

Such work should address if and how the TRF and the embedded RBA should be adapted to 

comply with the structure of different commercially available (manufacturer-specific) or 

publicly available software tools. Such evidence will also be useful for the standardisation of 

approaches to process and statistically analyse ‘omics data. The current TRF RBA is 

restricted to one specific study design, and it will need to be adapted or expanded to take 

account of other study designs. In this respect, further work is also merited to investigate the 

most appropriate design for ‘omics studies (e.g., with respect to the time points for cell, 

tissue or blood sampling), and the outcome of such investigations should be used to expand 

the TRF to include parameters that are relevant for the experimental design of ‘omics 

studies. Similarly, the TRF should eventually be expanded to also accommodate the 

bioinformatics applied for data interpretation, an issue beyond the scope of this work.

The flexible organisation of the TRF allows for the inclusion of new evidence as it becomes 

available. Its focus is not prescriptive, but performance-based. Transparency on the steps 

applied in processing ‘omics data allows the identification of sources of error and variance in 

these studies. The RBA embedded within the TRF also allows this evolution while 

facilitating within-study and between-study comparison as new evidence becomes available. 

To enable wide-spread and straight-forward application of (technology-specific) TRFs, it is 

advisable to make them publicly available as common resources, possibly combined with 

web-based reporting forms that include export functions to allow adding documentary files 

to study reports (similar to the web-based reporting and evaluation resource Science in Risk 
Assessment and Policy (SciRAP; available at: http://www.scirap.org/).
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Finally, apart from the goals to standardise approaches for the processing and statistical 

analysis of ‘omics data and to ensure transparency and reproducibility of such data, the 

formal establishment of a set of performance standards and their widespread use in ‘omics 

studies conducted for regulatory purposes (as well as their inclusion in the TRF as essential 

study element) can form an important pillar for the quality control of ‘omics studies and 

enhance the reproducibility and comparability of ‘omics data. When ‘omics studies are 

performed for regulatory purposes, such reference samples could also be used for 

benchmark dose modelling. An example for such performance standards are the MAQC 

reference standards (Wen et al., 2010; Zheng et al., 2015). Finally, during ‘omics data 

interpretation (outside the scope of the present article), the biological relevance of ‘omics 

data needs to be assessed by comparison with the other outcome measures of the given 

study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ADI: Acceptable daily intake level

ANOVA Analysis of variance

CEFIC European Chemical Industry Council

DEG Differentially expressed gene

ECETOC European Centre for Ecotoxicology and Toxicology of Chemicals

FDA Food and Drug Administration

FDR False discovery rate

GEO Gene Expression Omnibus (database)

LIMMA Linear models for microarray and RNA-Seq data

LOWESS locally weighted scatterplot smoothing

LRI Long-Range Research Initiative

LOAEL Lowest observed adverse effect level

MAQC MicroArray Quality Control

MIAME Minimum Information About Microarray Experiments
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MoA Mode-of-action

NOAEL No observed adverse effect level

PCA Principal component analysis

PND Postnatal day

QC Quality control

RBA Reference Baseline Analysis (method)

Replic Replicate

RIN RNA Integrity Number

RMA Robust multi-array (multi-chip) average

SciRAP Science in Risk Assessment and Policy

SD Standard deviation

TRF Transcriptomics Reporting Framework

VSN Variance stabilisation normalisation
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Box 1:

The gProcessedSignal (Agilent Technologies)

The gProcessedSignal is generated by first subtracting an average background signal 

(yielding the BSubSignal) and then dividing this BSubSignal by the 

MultiplicativeDetrendingSignal (a factor derived by using the replicate probes on the 

array and correcting for their variation). Accordingly, the gProcessedSignal can include 

inherent background correction and multiple probe information. However, there are 

several options for the derivation of the gProcessedSignal, and it can also be presented 

without background subtraction. Therefore, the options used in deriving this signal 

measure need to be reported in the TRF.
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Figure 1: Overview of the work streams considered at the ECETOC workshop Applying ‘omics 
technologies in chemical risk assessment (Buesen et al., 2017)
Footnote to Figure 1: The present article ‘A generic Transcriptomics Reporting Framework 
(TRF) for ‘Omics Data Processing and Analysis’ considers discussions from the ECETOC 

workshop work stream 2 (highlighted in grey). This box briefly lists bioinformatic processes 

involved in the use of transcriptomics data. The TRF incorporates a reference baseline 

analysis (RBA) method for the identification of differential gene expression against which 

other approaches can be benchmarked. While designed around microarray data analysis, the 

TRF and the embedded RBA are compatible with high throughput sequencing gene counting 

data.
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Figure 2: Boxplots of the non-normalised log2 data from the EMSG56 study comparing data that 
are based upon the Agilent Technologies gProcessedSignal (left) with those that are based upon 
the gMedianSignal (right)
Footnote to Figure 2: The data are derived from 120 microarrays across three time points 

(postnatal days (PND) 21, 30-40, 83). At each time point, a total of 10 samples were 

measured, i.e. the control and three concentrations each for the three substances flutamide 

(FLUT), prochloraz (PROC) and vincolzalin (VINC). The three concentrations were set to 

represent each substance’s acceptable daily intake level (ADI; the low dose), no observed 

adverse effect level (NOAEL; the mid-dose) and lowest observed adverse effect level 

(LOAEL; the high dose). Each dose/time combination is indicated by a colour, and there are 

four experimental sets of data at each combination. The data are either the gProcessedSignal 

data or the gMedianSignal data and have been transformed to the log2. For each 

measurement, the coloured boxes represent the first to third quartile, the dotted lines the 

minimum to maximum values, and the black circles (for the gMedianData) outliers that have 

exceeded the intensity threshold for the scanner.
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Figure 3: Overview of the Transcriptomics Reporting Framework (TRF) Reference Baseline 
Analysis (RBA) method
Footnote to Figure 3: Abbreviations: DEG: Differentially expressed gene, PCA: Principal 

component analysis; Replic.: Replicates; SD: Standard deviation.

Gant et al. Page 21

Regul Toxicol Pharmacol. Author manuscript; available in PMC 2019 November 04.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 4: Transforming the data by log2 results in a bimodal distribution of data
Footnote to Figure 4: Rat data for all gene expressions at one experimental point (A) are log 

transformed (B) spreading the data. The bimodal distribution results from the majority of 

genes being expressed at a similar level with a small set having a distribution over a much 

greater expression level. Individual genes show a normal distribution across the experiment 

(C).
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Figure 5: Effect of median centring normalization on the total data set
Footnote to Figure 5: The log transformed gMedianSignal data is transformed by centring to 

the median. This ensures that the data distributions in each experiment lie over each other 

allowing calculation of the ratios of differential gene expression for each experiment. For 

each measurement, the coloured boxes represent the first to third quartile, the dotted lines 

the minimum to maximum values, and the black circles outliers that have exceeded the 

intensity threshold for the scanner.
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Figure 6: Log signal plotted against the SD of that signal showing that more variance occurs at 
the lower expression levels
Footnote to Figure 6: Greater intensity of fluorescence is easier and more reproducible to 

measure leading to a decrease in variance at the higher levels of expression. Circled region: 

The most pronounced variance occurs in the measurement of lower expressed genes that 

produce lower signals on the microarray.
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Figure 7: Statistical analysis applying both the 1.5-fold change and p <0.05 cut-off values
Footnote to Figure 7: p <0.05 cut-off applied to the data. This removes most of the more 

variable data though some still remain as indicated by the circle (A). These data could result 

though from a high level of gene expression variance between the control and test groups 

with one measure being of low intensity and the other high. This would result in some 

variance from the low expression sample but would still be significant due to the high level 

of differential gene expression. Panel B indicates that the 1.5-fold change cut off value 

removes those genes of low variance in the measure of expression but also low differential 

expression that could still be significant (B).

Gant et al. Page 25

Regul Toxicol Pharmacol. Author manuscript; available in PMC 2019 November 04.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Gant et al. Page 26

Table 1:

Specification of the raw data and the normalisation method taking the examples of Agilent and Affymetrix 

microarray platforms

Agilent microarray platforms Affymetrix microarray platforms

Specification of the raw data

Images of signal intensities If applicable Yes

Raw data Specification if median, mean or processed signal intensity was 
used as the raw data

Quantification Specification of feature extraction tool Generally: Affymetrix software

Data files TXT CEL

Background subtraction If applicable; and including background measured

Specification of the normalisation method

Two colour (locally weighted scatterplot smoothing 
(LOWESS) normalisation; options include span, degree, etc.) 
or one colour (quantile, cyclic LOWESS, variance stabilisation 
normalisation (VSN), etc.)

e.g., robust multi-array average (RMA), 
MicroArray Suite (MAS), version 5.0, etc.
Specification if data were adjusted for 
confounders before or after normalisation
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