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Abstract

Lymphocytes and myeloid cells (monocyte/macrophages) have important roles in multiple types of 

diseases characterized by unresolved inflammation. The relatively recent appreciation of obesity, 

insulin resistance and type 2 diabetes (T2D) as chronic inflammatory diseases has stimulated 

interest in understanding the role of immune cells in metabolic imbalance. Myeloid cells regulate 

inflammation through cytokine production and the adipose tissue remodeling that accompanies 

hyper-nutrition, thus are critical players in metabolic homeostasis. More recently, multiple studies 

have indicated a role for T cells in obesity-associated inflammation and insulin resistance in model 

organisms, with parallel work indicating that pro-inflammatory changes in T cells also associate 

with human T2D. Furthermore, the expansion of T cells with similar antigen-binding sites in 

obesity and T2D indicates these diseases share characteristics previously attributed to 

inflammatory autoimmune disorders. Parallel pro-inflammatory changes in the B-cell 

compartment of T2D patients have also been identified. Taken together, these studies indicate that 

in addition to accepted pro-inflammatory roles of myeloid cells in T2D, pro-inflammatory skewing 

of both major lymphocyte subsets has an important role in T2D disease pathogenesis. Basic 

immunological principles suggest that alterations in lymphocyte function in obesity and T2D 

patients are an integral part of a feed-forward pro-inflammatory loop involving additional cell 

types. Importantly, the pro-inflammatory loop almost inevitably includes adipocytes, known to 

respond to pro-inflammatory, pro-diabetogenic cytokines originating from the myeloid and 

lymphoid compartments. We propose a model for inflammation in T2D that functionally links 

lymphocyte, myeloid and adipocyte contributions, and importantly proposes that tools for B-cell 

ablation or regulation of T-cell subset balance may have a place in the endocrinologist’s limited 

arsenal.
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Introduction: an overview of type 2 diabetes (T2D) as a chronic 

inflammatory disease

Chronic inflammation in T2D is thought to initiate as an inflammatory response to altered 

lipolysis and remodeling/necrosis of expanding adipose tissue compartments.1,2 Altered 

lipolysis in response to over nutrition and rapidly expanding adipose tissue results in 

elevation of generally pro-inflammatory saturated fatty acids, which serve as ligands for cell 

surface Toll-like receptors (TLRs).3,4 TLRs and other surface receptors activate the signaling 

cascades that culminate in, among other events, nuclear factor-κB mobilization, thus 

inflammation (reviewed in ref. 5). Changes in lipid metabolism and the abundance of TLR 

ligands in the expanding adipose tissue likely trigger a temporal cascade of adipose 

infiltration first by neutrophils, followed in order by B cells, T cells, then finally monocyte/

macrophages.1,6–8 This temporal cascade indicates that adipose inflammation fundamentally 

differs from classical inflammation, in which the initial neutrophil wave is followed first by 

macrophage then lymphocyte infiltration. Blocking the monocyte recruitment factor 

monocyte chemoattractant protein 1 either pharmacologically or genetically prevents 

macrophage adipose infiltration and protects against insulin resistance,9,10 presumably 

relatively late in the time course of immune cell infiltration after neutrophil and lymphocte 

numbers have peaked. However, the presence and source of chemokines that induce the 

earliest immunological event (neutrophil infiltration6) and set the stage for initiating adipose 

inflammation has not been reported. Regardless, a physiologically critical outcome of these 

biochemical processes is elevated pro-inflammatory cytokine production by cells of both the 

innate and adaptive immune systems.

The role of cytokines in T2D

Cytokines secreted by multiple immune and nonimmune cell types are dominant regulators 

of the pathological inflammation that characterizes and promotes T2D. Cytokines 

originating from the adipose compartment, designated adipokines, have both pro- and anti-

inflammatory roles in obesity and T2D. The two adipokines linked most strongly to insulin 

resistance and T2D are adiponectin and leptin.11 Adiponectin is generally anti-inflammatory, 

as exemplified by its ability to decrease macrophage growth and function, and nuclear 

factor-κB activation12,13 In contrast, leptin has proinflammatory activities, including the 

promotion of pro-inflammatory T-cell subsets.14 Adipocytes, and to a greater extent, 

immune system cells are also potent sources of strongly diabetogenic cytokines such as 

interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Clinical studies have demonstrated 

that pharmacological agents that block IL-1β or TNF-α activity decrease inflammation and 

perhaps insulin resistance in T2D patients, at least under some protocols.15–19

The role of non-adipocyte-specific cytokines in T2D etiology is most definitively 

demonstrated by murine studies showing, for example, that TNF-α-null mice are protected 
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against obesity-associated insulin resistance.20 Similarly, treatment with a competitive 

inhibitor of IL-1β or an IL-1β-blocking antibody strongly protected mice from diet-induced 

insulin resistance,21,22 akin to the more modestly decreased inflammation and 

proinsulin:insulin ratio in T2D patients treated with the competitive inhibitor.15,17 However, 

the role of the generally proinflammatory cytokine IL-6, which lies downstream of the 

IL-1β-triggered inflammatory cascade23 is counterintuitive. Despite many studies that 

predict IL-6 would promote inflammation in T2D, IL-6-null mice spontaneously develop 

insulin resistance.24 Overall, only some anti-cytokine treatments trigger expected responses 

in rodent diet-induced obesity (DIO), raising questions as to how best design and test new 

anti-cytokine therapies for efficacy in promoting metabolic health.

To advance practical application of DIO mouse results in continued tests with anti-cytokine 

therapies for insulin resistance, it is important to consider the multiple clinical differences 

between human and murine responses to therapies for insulin resistance/T2D. We have 

recapitulated studies from innumerable investigators showing that for male C57BL/6 mice, 

the standard for DIO experiments, higher body weight appears to correlate quite closely with 

degree of insulin resistance as measured by glucose or insulin tolerance tests (D. Markham, 

unpublished). The association between body mass index and insulin resistance in humans is 

more variable. There are several possible clinical considerations to take into account when 

interpreting this seemingly mundane difference between human and mouse, which may also 

apply to expectations for murine vs human response to anti-cytokine drugs as therapies for 

insulin resistance. First, genetic variation among human subjects could explain the 

discrepancy between the efficacies of anti-cytokine therapy in the various human clinical 

trials, compared with the more consistent results in animal model studies. Importantly, 

averaged data from the outbred/variable human populations19 may not reflect significant 

effects documented in studies on highly selected cohorts. The genetic issue is absent in 

standard DIO models. Second, murine models for T2D recapitulate short-term diet-induced 

obesity, whereas most obesity in humans is a result of many years or even decades of over 

nutrition. Based on the impressive results from anti-cytokine intervention relatively early 

during the disease course in rodent DIO,22,25 early intervention with anti-cytokine therapies 

in obese patients could increase treatment efficacy (as measured by insulin sensitivity) over 

results obtained in long-term T2D patients. Third, dramatic results from mouse DIO studies 

indicate that the quantitatively modest metabolic results of anti-cytokine trials in humans 

may be improved by additional insights into, for example, pharmacokinetics of cytokine-

blocking reagents. Finally, an unpopular notion in the field is the possibility that processes 

involved in the development of rodent insulin resistance could fundamentally differ from 

human T2D. Although strong evidence supports the appropriateness of murine diet studies 

as a valid model for the development of multiple characteristics of a T2D-like disease, the 

inevitable differences between species support the critical need for long-term longitudinal 

projects (and funding) to follow overweight individuals as many develop obesity and insulin 

resistance/loss of islet function over time.

The role of monocytes/macrophages in T2D

Many cell types produce inflammatory cytokines,26–28 but multiple lines of evidence show 

hematopoietic cells are major determinants of the inflammation that links obesity with 
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insulin resistance and T2D. Cytokine-producing hematopoietic cells are necessary and 

sufficient for obese mice to become insulin resistant, at least under some conditions.29 

Additional studies have specifically implicated myeloid cell cytokines in insulin resistance 

in mice,30 which is further supported by demonstrations that monocytes from T2D patients 

secrete elevated levels of key pro-inflammatory cytokines such as IL-1β and TNF-α.31 

Peripheral blood monocytes from T2D patients are also constitutively activated,32 most 

likely due (at least in part) to the elevated levels of TLR ligands circulating in these patients.
32–36 Monocytes from T2D patients have been shown to hyper-produce multiple pro-

inflammatory cytokines in response to TLR ligand, most commonly TLR4.31,37–40 

According to conventional logic, hyper-responsiveness to TLR ligands in the TLR ligand-

rich milieu of T2D is unexpected. Instead, continuous TLR engagement by endogenous 

TLR4 ligands would be expected to result in an ameliorated response to a second ligand 

dose, via a well-understood phenomenon termed TLR/endotoxin tolerance.41,42 Regardless 

of the expected results, overwhelming evidence in mice demonstrated that TLR4 function 

and downstream cytokine production is required for the development of insulin resistance.
43,44

Recent work implicating TLR4 and TLR4-triggered pathways in the development of insulin 

resistance has reached diverse conclusions: either TLR4 does or does not have a critical role 

in DIO-induced metabolic imbalance, despite evidence of TLR4 as a generally pro-

inflammatory innate immune receptor.44–48 The unexpected discrepancy in results is likely 

explained by differences in the model systems used to test the role of TLR4 in insulin 

resistance. The studies that indicated a critical role for TLR4 in insulin resistance used the 

C3H/HeJ mouse, which has a natural TLR4 mutation that inactivates TLR4 on all cells.44,45 

In this model, the vast majority of the TLR4 protein is intact, leaving the potential that non-

traditional functions of the protein remain (at least hypothetically). In contrast, the studies 

that concluded TLR4 has no pivotal role in insulin resistance used bone marrow 

transplantation to create a ‘macrophage-specific’ TLR4 knockout in a lethally irradiated 

agouti mouse.48 In reality, this mouse is more accurately described as an ‘immune cell’ 

rather than ‘macrophage-specific’ TLR4 knockout. Furthermore, interpretation is 

confounded by the agouti background. Agouti mice have naturally occurring mutation that 

inactivates the neurotransmitter alpha melanocyte-stimulating hormone and are obese. 

Overall, the field generally believes, based on the whole animal mutant TLR4 studies and 

the role of TLR4 as a pro-inflammatory receptor, that TLR4 probably has a critical role in 

the development of insulin resistance, although the specific cell type involved requires 

additional investigation.

Despite the molecular inconsistencies in describing exactly how myeloid lineage cells 

contribute to insulin resistance and T2D, the fact remains that macrophages aggressively 

infiltrate the expanding adipose tissue in response to over nutrition in both models of insulin 

resistance and in obesity patients.1,2 Timing of macrophage infiltration/cytokine production 

relative to lymphocyte infiltration/cytokine production in the expanding adipose tissue is 

controversial, probably due to slight variations in protocols used for the various analyses.
7,49–53 Regardless, both scenarios emphasize the likely importance of monocyte/lymphocyte 

cross talk through cytokine production alone or perhaps in combination with cell-cell 

interactions in organisms responding to high-fat diet (HFD). In vitro studies have also 
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identified the likely presence of a paracrine pro-inflammatory loop between monocyte/

macrophage and adipocytes, the cell type most traditionally associated with metabolic 

balance. This loop involves elevated release of inflammatory cytokines from monocytes that 

activate adipocytes, plus elevated levels of saturated fatty acids from obese adipose tissue 

that further activate macrophages.54

Despite the lingering ‘chicken or egg’ issue of macrophage/lymphocyte infiltration into 

expanding adipose tissue, and initiation of disease by adipocytes or immune system cells, 

the literature consistently supports the conclusion that over nutrition results in fundamental 

changes in monocyte and macrophage function, especially in the balance of cytokine 

production. In addition to elevated cytokine responses by circulating monocytes,31,55 tissue 

macrophages in obese and T2D patients take on a classically activated or ‘M1’ macrophage 

phenotype, and become a major source of pro-inflammatory cytokines.56 The increase of Ml 

macrophages in adipose tissue during diet-induced expansion and concomitantly-increased 

adipocyte diameter is followed by a remodeling event, characterized by further immune cell 

infiltration/expansion, an overall decrease in adipocyte size and shift in macrophage 

phenotype to the ‘M2’ (alternatively activated) subset.1 Careful time course analyses show 

expression of both pro-inflammatory (TNF-α, IL-6 and monocyte chemoattractant protein 1) 

and anti-inflammatory (lL-10) cytokines peak coincident with the maximum expression of 

activated macrophage-associated genes such as F4/80. Interestingly, these peaks occur 

slightly after adipocytes reach maximum size and expression of the pan-macrophage gene 

CD11c is highest (12 weeks post-HFD).1 These data suggest that macrophage phenotype 

changes from M1 to M2 following macrophage infiltration into the expanding adipose 

tissue. This change presumably aids in remodeling and adipocyte downsizing. Although 

initial observations suggested that alternatively activated M2 macrophages, which promote 

tissue remodeling and control inflammation via IL-10 production, resolve adipose 

inflammation following diet-mediated expansion, more comprehensive analyses suggest that 

both M1 and M2 macrophages influence adipose physiology throughout time course of 

disease.57 Taken together, these findings strongly support the conclusion that cytokine 

balance, instead of a simple M1/M2 paradigm, determines the adipose response to over 

nutrition. The ‘cytokine balance hypothesis’ raises the possibility that other potent sources 

of cytokines, such as T cells and B cells, significantly contribute to disease pathogenesis in 

obesity and T2D. The contribution of altered IL-10 production by immune cells from T2D 

patients is discussed further below.

The role of neutrophils in T2D

Neutrophils infiltrate the expanding adipose tissue in early responses to HFD, suggesting 

that neutrophils have a role in adipose tissue inflammation and/or insulin resistance. 

Neutrophil infiltration may be expedited due to the ability of neutrophils to adhere to 

adipocytes, and by demonstrations that this adherence is increased if neutrophils are 

activated.6 T2D furthermore associates with changes in neutrophil function including 

impaired bacterial phagocytosis and killing.58 These defects may be related to reduced 

neutrophil degranulation as measured with plasma elastase levels.59 A few studies also 

identified elevated respiratory burst function in neutrophils from T2D patients. Although 

none of these studies directly test the role of neutrophils in metabolic imbalance, increased 
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oxidative stress from diabetic patient neutrophils likely contributes to oral complications of 

diabetes.60 The effects of T2D on innate immune responses are probably due to diabetes-

associated metabolic syndrome rather than hyperglycemia itself, given that acute elevation 

of blood glucose in human subjects using glucose-clamp techniques did not result in altered 

neutrophil migration, phagocytosis or oxidative burst capacity.61 Overall, a strong link 

between neutrophil function and T2D etiology or pathogenesis remains to be demonstrated.
62–65

Lymphocytes promote inflammation in T2D through multiple mechanisms

Lymphocytes can contribute to local (adipose tissue) and systemic inflammation in T2D 

patients by multiple mechanisms. Inflammation is thought to initiate in the visceral adipose 

tissue when neutrophils, followed closely by B cells, then T cells, infiltrate the expanding 

adipose tissue in response to HFD in mice. In these experiments, B cell numbers peaked at 3 

weeks following initiation of HFD, then fell as T cells infiltrated.7 These data are consistent 

with the possibility that lymphocytes are activated by products of altered lipolysis in 

expanding adipose tissue, then exit adipose tissue to recirculate throughout the body. 

Alternatively, lymphocytes could be activated by early adipose-infiltrating neutrophils,6 then 

leave the adipose tissue and recirculate. The second mechanism by which lymphocytes 

contribute to systemic inflammation in T2D is direct secretion of cytokines into circulation, 

irrespective of the site of lymphocyte activation. B cells, in particular, may respond to 

elevated endotoxemia characteristic of T2D patients33,66 as indicated by demonstration of 

unexpected functions of TLRs on B cells from T2D donors.67 The ability of lymphocytes to 

distribute cytokines locally and systemically, along with their ability to recirculate, strongly 

implicates lymphocytes alongside myeloid cells in the net outcome of obesity-mediated 

inflammation.

Pro-inflammatory T cells in T2D

A role for T cells in T2D was perhaps predictable, given that T cells are implicated in the 

pathogenesis of multiple inflammatory diseases, and specific T-cell subsets have 

demonstrated roles in such diseases.68–72 For example, CD4+ cells are a major T-cell subset 

implicated in the pathogenesis of multiple sclerosis, rheumatoid arthritis and psoriasis, 

which are characterized by elevated numbers of pro-inflammatory cytokine-positive CD4+ T 

cells in blood and diseased tissues.73 Many recent studies have specifically implicated 

IL-17-producing CD4+ T cells, Th17 cells, in pathogenic inflammation.74,75 IL-17 activates 

inflammation through the widely expressed IL-17 receptor. Upon engagement with IL-17, 

the IL-17 receptor triggers nuclear factor-κB thus cytokine production by monocytes, 

fibroblast, stromal, epithelial and endothelial cells.76–78 IL-17 also induces mobilization, 

recruitment and activation of granulocytes via induction of granulocyte colony-stimulating 

factor.79 A second subset of CD4+ T cells, Th1 cells, are the dominant source of interferon-γ 
(IFN-γ), a second pro-inflammatory cytokine implicated in inflammatory disease.49,74 

IFNγ-producing cells have been specifically implicated in inflammatory bowel disease, 

lupus nephritis, multiple sclerosis and a collagen-induced arthritis model of rheumatoid 

arthritis. In each of these diseases IFNγ-activated macrophages are present at the sites of 

inflammation.80 Overall, these diseases indicate an important role for T cells in the induction 
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and exacerbation of multiple chronic inflammatory diseases, at least in part through their 

ability to trigger nuclear factor-κB target genes.

Several recent studies utilizing a mouse model of DIO demonstrate important roles for 

multiple T-cell subsets in adipose-associated inflammation. Subcutaneous and visceral 

adipose tissue in DIO mice have increased numbers of CD4+ and CD8+ T cells.52,81 CD4+ 

and CD8+ T cells are also elevated in obese human omental and abdominal adipose tissue, 

which indicates parallel changes in T-cell infiltration and inflammation in human adipose 

tissue.82 Although these reports suggest a role for T cells in adipose inflammation, there is 

controversy among studies as to which T-cell subset (CD4+, CD8+) has dominant roles, or 

whether T cells in general necessarily have an important role in inducing inflammation in 

obesity and T2D. Studies focused on pro-inflammatory functions of CD8+ T cells in DIO 

show these cells infiltrate adipose tissue and produce chemotactic cytokines such as 

monocyte chemotactic proteins 1 and 3. Such chemokines induce macrophage activation and 

recruitment into the adipose tissue.52 Thus CD8T cells function, in part, by directing 

myeloid cell trafficking. Furthermore, genetic depletion of CD8+ cells can decrease 

inflammation and improve insulin resistance to further demonstrate the importance of CD8+ 

T cells in adipose-associated inflammation.52 Overall, these studies support the concept that 

T cells promote T2D through pro-inflammatory activities, some of which involve other 

immune system members.

Multiple in depth studies on pro-inflammatory CD4+ T cells showed that these cells likely 

bolster CD8+ T cell-mediated inflammation in obesity and insulin resistance. CD4+ T cells 

from DIO mice produced elevated levels of IFN-γ and IL-17 (although CD4+ IL-17+ cells 

were only significantly elevated in subcutaneous adipose tissue).81 A companion study also 

showed the T2D-linked cytokine IL-6 increased the number of IL-17-producing cells in the 

spleen of obese mice, supporting the possibility that Th17s contribute to T2D-associated 

inflammation and insulin resistance.83 These data are consistent with our demonstration that 

the percentage of Th17 cells is elevated in blood of T2D patients.74 Interestingly, Th17 

percentages correlated with human body mass index, a measure of adiposity, in T2D patients 

but not in metabolically healthy obese subjects.74 These findings suggest a unique 

relationship between Th17 cells and metabolic imbalance that is not absent in metabolically 

healthy individuals. Importantly, T cell IL-17 production correlates with T2D severity (as 

measured by HbA1c), further highlighting a likely relationship between the Th17 T cell 

population and metabolic imbalance.

Th17 cells may also have unappreciated indirect roles in the transition from euglycemic 

obesity to insulin resistance due to the plieotropic functions of IL-17. IL-17 can induce 

production of IL-8, a strong neutrophil chemoattractant,84 thus regulates immune cell 

infiltration into the expanding adipose tissue in response to HFD. However, the importance 

of Th17-mediated neutrophil recruitment, presumably following the initial (3–7 days post-

HFD) neutrophil recruitment to adipose tissue before T-cell infiltration,6 is unknown.

The processes perpetuating the loss of metabolic regulation in only a subset of obese 

individuals are not understood, but focus on human inflammatory T cells has yielded some 

insight into this clinically critical question. Our detailed analysis of IL-17 showed that 
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although stimulated T cells from both obese/non-diabetic (ND) and obese/T2D patients 

activate the IL-17 gene to similar levels, T cells from obese T2D donors have significantly 

elevated IL-17 protein production compared with T cells from obese/ND donors. These data 

indicate that T cells from ND donors have an additional layer of regulation that prevents 

excessive IL-17 protein production. Elevated IL-17 production despite structurally similar 

Th17 promoter structures, combined with a correlation between Th17 cells and body mass 

index in obese/T2D but not in obese/insulin-sensitive subjects, bring up the intriguing 

possibility that loss of specific layers of mRNA regulation in the immune system promotes 

the transition from insulin sensitive to insulin resistant. For example, temporal regulation of 

activating transcription factors, as we published for IL-1β,85 could shorten a normally 

sustained signal, or could alter the recruitment of repressive factors. It is also possible that 

the post-transcriptional mechanisms common to many cytokine mRNAs may yield more 

moderate levels of T-cell IL-17 in insulin sensitive vs. T2D individuals. Although our data 

only address the role of Th17 cells, similar mechanisms may apply to other cell types, 

leading to a global dysregulation in pro-inflammatory cytokine production. In addition, the 

contribution of coding or non-coding polymorphisms in many immunologically-active 

genes86 is likely important in human studies. We propose that further studies investigating 

potential roles of inflammatory T cells (and other immune cells), will assist clinicians in 

preventing the transition from obese/insulin sensitive to obese/T2D.

The role of regulatory T cells in T2D

Several studies expanded the demonstration that T-cell subset imbalance promotes 

inflammation thus insulin resistance in DIO mice. As outlined above, pro-inflammatory Th1 

and Th17 cells increase in blood and adipose tissue of obese/insulin-resistant mice and 

humans. Importantly, elevated pro-inflammatory T-cell subsets are reinforced by the natural 

depletion of CD4+ Foxp3+ regulatory T cells (Tregs) in adipose tissue from insulin-resistant 

mice52,87 and in blood from T2D patients.74 Importantly, ex vivo or in vivo expanded Tregs 

protect against inflammation and insulin resistance87,88 at least in mice. These data indicate 

Tregs overall inhibit T2D and promote metabolic health. Further evidence supporting this 

conclusion is that Tregs can reverse the Th1-mediated pathology,81 again indicating the 

importance of T-cell compartment balance in the regulation of adipose tissue homeostasis. 

Although mouse studies indicated that Th2 cells can also counter insulin resistance in DIO,
81 our studies on human T cells from T2D patients identified similar IL-4 levels in 

supernatants of T cells from patients and ND donors,74 questioning the relevance of Th2 

function to disease. Overall, studies in both mice and humans identify T-cell subset 

imbalances that either promote or associate, respectively, with insulin resistance.

The overall role of T cells in obesity and T2D remains controversial

Not all studies have supported the expected conclusion that Th1 and Th17 cells would 

promote insulin resistance and macrophage infiltration, while Th2 and Tregs cells would 

counter inflammation, hence disease. Contrary to the studies mentioned above, some DIO 

mouse model studies have shown increased proportions of CD3+ T cells in adipose tissue 

but in the absence of a significant increase in CD4+ or CD8+ T cells.49 This work, however, 

showed IFNγ, RANTES and IL-12p40 secretion were elevated after 20 weeks of HFD. In 

these studies, IL-4 levels were also decreased starting at 4 weeks and the decrease continued 
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throughout the remaining time frame of the study (20 weeks). Due to the presence of 

dramatically increased numbers of CD11c+ cells before CD3+ cell infiltration in the adipose 

tissue, the authors concluded that CD11c+ adipose-tissue macrophage recruitment is T-cell-

enrichment independent.49 This conclusion directly contradicts work demonstrating CD8+ T-

cells-induced macrophage recruitment to adipose tissue52 and that lymphocytes infiltrate 

expanding adipose tissue before macrophage infiltration.7 Additional contradictions on the 

role of T cells in HFD also emerge in a comparison between work demonstrating no change 

in the percentage of CD4+ cells in adipose tissue from DIO mice,52 and several reports 

demonstrating an increase in CD4+ T-cell subsets in expanded adipose tissue.81,82 Although 

these studies use a similar model of DIO, differences in feeding protocols, length of HFD, or 

calculation methods used for flow cytometric results could induce variability between these 

studies.

Roles for B cells in T2D inflammation

Antibodies have roles in many autoimmune inflammatory diseases, including lupus and type 

1 diabetes. However, the lack of definitive evidence for an autoimmune component of T2D 

has limited interest in defining a role for antibodies in T2D, despite identification of, for 

example, anti-IL-6 or anti-GAD antibodies in patients with a pre-disposition or diagnosis of 

T2D.89,90 Recent findings support the idea that autoantibodies to important cellular 

components, such as G-coupled receptors and Rho GTPases, may associate with vascular 

complications common in T2D.91–93 However, the interest in classifying T2D as an auto-

immune disease with a B-cell/auto-antibody component has been recently ignited by work 

demonstrating signatures of antigen-driven T-cell expansion in mouse models of obesity and 

T2D,81,82,87,94 presumably due to an elevated/inappropriate immune response to some 

internal antigen that activates T cells during initiation of disease and/or in response to 

disease. The putative antigen may be produced by apoptosing adipocytes in obese adipose 

tissue.95 Alternatively, antigen-dependent T-cell expansion could be a response to an 

unidentified infectious agent that has a role in T2D etiology or ongoing pathogenesis. Recent 

work has shown islets of T2D patients contain viral capsid protein,96 thus fueling the 

possibility that an infectious agent has a role in insulin resistance and concomitant 

oligoclonal T-cell expansion.

Although antigen-driven T-cell expansion does not definitely indicate that T2D has an auto-

immune component, a selectively expanded T cell repertoire does support the existence of a 

T-cell target antigen that is either endogenous, such as antigens identified by anti-DNA 

antibody tests, or exogenous, such as bacterial antigens from the gut flora or invading 

viruses. Regardless, the hint of antigen-specific T-cell expansions begs the question of the 

existence of an auto-reactive B-cell expansion in T2D. This analysis has not been reported, 

but our preliminary work indicates that B-cell immunoglobulin production is indeed altered 

by hyperglycemia, one common outcome of uncontrolled T2D. Hyperglycemia, even in the 

absence of other components of the metabolic syndrome, can temporally alter B-cell 

responses. Stimulation of total spleen cells from Akita mice, a model of hyperglycemia due 

to insulin misfolding,97 results in delayed Igμ production (Figure 1). This difference was 

especially obvious under more modest stimulation conditions (top panel). Taken together 

with the likely antigen-dependent expansion of T cells in DIO mice,81,87 our work suggests 
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that re-visiting the idea of T2D as an auto-immune disease with alterations in antibody 

production/function might reveal new paradigms in understanding disease pathogenesis.

In contrast to the strong association between altered myeloid or T-cell function and T2D, 

antibody-dependent or -independent roles for B cells in T2D have been addressed in very 

few studies. Recent studies in DIO mice demonstrated that B cells infiltrate the adipose 

tissue in an early response to DIO, followed by T cells, then macrophages,7 although as 

discussed above, this order is controversial.49 RAG-null mice (lacking both B and T 

lymphocytes) have an elevated number of macrophages in the adipose tissue late in DIO 

compared with the numbers in lymphocyte-sufficient controls, indicating cellular infiltration 

into adipose tissue is a highly regulated process perhaps orchestrated by early B-cell 

infiltration.7 Furthermore, RAG-null mice responded to DIO by increased weight gain, 

accumulation of more epididymal fat (a leading measure of altered lipid metabolism) and 

larger diameter adipocytes (a second measure of changes in lipid metabolism) compared 

with RAG-sufficient mice.81 As discussed above, follow-up analyses in these reports showed 

T cells have non-redundant roles in insulin resistance.52,81,87 However, the function of B 

cells and regulatory B cells (Bregs; refs.98–103) in these mice was not reported.

B cells are demonstrated sources of cytokines both in healthy individuals and those with 

chronic inflammatory disease, with IL-10 identified as the B-cell cytokine most commonly 

implicated in unresolved inflammation. IL-10 is usually considered anti-inflammatory, 

although it has pro-inflammatory functions in some circumstances (that is, upregulation of 

surface TLR2; ref.104). IL-10-producing human B cells arise upon stimulation through 

surface Ig alone or in combination with CD40,105 or upon TLR-mediated stimulation.106 

Studies in mice have identified IL-10-producing B cells as a separate B-cell subpopulation, 

designated as B10 cells, or as a more inclusive subset designated as regulatory B cells/Bregs.
98,100,101,107–109 Evidence for a human equivalent of Bregs was first uncovered in a 

population of transitional B cells that might protect against inflammatory disease in humans.
110 Additional studies have confirmed the existence of anti-inflammatory human B-cell 

populations, although the markers associated with this subset remain controversial.102,103 

Breg cells may be identical to the CD27—IL-10-producing B cells that repopulate multiple 

sclerosis patients following B-cell depletion,111 or the B cells that repopulate B-cell-

depleted lupus and rheumatoid arthritis patients.110,112–114

Our recently published work suggested that lack of B-cell IL-10 in T2D patients may 

compound elevated pro-inflammatory cytokine production by cells in the myeloid and T-cell 

compartments of the same individuals. B cells from T2D patients, in contrast to B cells from 

ND donors, fail to secrete IL-10 in response to stimulation through TLR2, TLR4 or TLR9.67 

Thus the altered IL-10 levels highlighted by genetic studies in T2D patients,115 may 

originate, at least in part, from lack of B-cell IL-10, making B-cell deficiencies 

physiologically dominant in inflammation as demonstrated for other chronic diseases. 

Interestingly, monocytes from T2D and ND donors produce similar levels of IL-10, at least 

in initial response to activating stimuli (Jagannathan-Bogdan et al., unpublished 

observations). These data indicate that monocytes fail to compensate for loss of B-cell IL-10 

in T2D. Although neither IL-10 nor B-cell IL-10 has been definitively linked to T2D 

etiology or pathogenesis, the role of B-cell IL-10 in other inflammatory diseases, such as 
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experimental autoimmune encephalomyelitis (EAE)/multiple sclerosis and arthritis, suggests 

that lack of IL-10 is a strong candidate mechanism for elevated inflammation in T2D.
111,116,117 A likely regulatory role for IL-10 in T2D is further supported by the 

demonstration that low IL-10 production by human peripheral blood mononuclear cells 

positively associates with the incidence of metabolic syndrome and T2D, at least in geriatric 

individuals.115 Because IL-10-producing Bregs can moderate inflammatory disease by 

blocking pro-inflammatory Th1 differentiation (in arthritis and EAE, the latter a model for 

multiple sclerosis116,117), our identification of elevated Th1 function in T2D patients raises 

the possibility that the Bregs similarly hold Th1 cells at bay to maintain metabolic 

homeostasis.

B cells as sources of pro-inflammatory cytokines in T2D

In addition to anti-inflammatory IL-10, B cells are important sources of additional cytokines 

that exhibit generally pro-inflammatory biological functions.105,111,118–120 IL-6 is a second 

prototypic B-cell cytokine implicated in inflammatory diseases, although it may have an 

unexpected protective role in T2D, as outlined above. IL-6 is a multi-functional cytokine, 

and polymorphisms in IL-6 have been implicated in the transition from glucose intolerance 

to T2D.86 In addition to its inflammatory actions, elevated serum IL-6 probably has roles in 

glucose metabolism through skeletal muscle stimulation.121,122 Our data indicate that B cells 

from T2D patients produce ND amounts of IL-6,67 suggesting that B-cell IL-6 may have an 

insignificant role in T2D, leaving the possibility of changes in other sources of IL-6 

uninvestigated.

We have also identified IL-8 as an unexpected pro-inflammatory chemokine produced by B 

cells from T2D patients, although the role of IL-8 in T2D has not been rigorously addressed. 

The general increase in IL-8 secretion in B cells from multiple classes of inflammatory 

disease patients in response to TLR ligands (reviewed in ref.123), demonstrates that TLR-

mediated B-cell IL-8 secretion is a shared feature of B cells from inflammatory disease 

patients regardless of the downstream effects of IL-8.

A comprehensive model for the role of immune system cells in T2D

Multiple pieces of evidence indicate a potential pro-inflammatory feed-forward loop 

between adipocytes and immune system cells in obesity and T2D. One potential working 

model describing these interactions is shown in Figure 2. In ND individuals, cytokines 

produced by monocytes, T cells and B cells affect adipose tissue and vise versa in a non-

pathogenic homeostasis (Figure 2a). These cells and cytokines are further regulated by B-

cell IL-10, as indicated by the blue lines. With increasing obesity, circulating free fatty acids 

increase.34 These free fatty acids can activate monocytes and B cells through TLR4, 

inducing inflammatory cytokine production.35 (Figure 2b, red downward pointing arrows). 

Increasing obesity also induces necrosis of adipocytes leading to recruitment of monocytes 

into the adipose tissue (Figure 2b dotted line), where they become resident macrophages and 

secrete inflammatory cytokines.7,124 This pro-inflammatory status is reinforced systemically 

via FFA-mediated activation of immune cells, thus propagating chronic inflammation and 

insulin resistance, both of which are hallmarks of T2D.
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Over nutrition and obesity can also induce adipose tissue to secrete pro-inflammatory 

cytokines such as IL-6 and IL-1β125,126 (Figure 2b, red upwards pointing arrows). These 

two cytokines are known to induce pro-inflammatory Th17 differentiation.126–129 Increased 

secretion of IL-6, along with IL-1β and (perhaps surprisingly) TGFβ theoretically leads to 

systemic inflammation and a pro-Th17 skewing milieu, which in turn results in elevated 

levels of IL-17. T2D patients also have elevated levels of serum IL-12,130,131 a cytokine that 

promotes Th1 differentiation and elevated IFNγ production.132–138 Importantly, adipocytes 

are also sensitive targets of pro-inflammatory T-cell cytokines (Figure 2b, red downward 

pointing arrow). Adipocytes express significant levels of the IL-17 receptors IL-17RA and 

IL-17RC, and respond to IL-17 by secreting IL-6, which may reinforce the IL-6 produced 

under hyper-caloric conditions.139 Similarly, adipocytes respond to IFNγ by attenuating 

JAK/STAT activation hence insulin signaling,140 which leads to insulin resistance. Overall, 

these data indicate a pro-inflammatory feed-forward loop between adipose tissue and T cells 

potentially inducing a ‘snowball effect’ consequently transitioning an obese insulin-sensitive 

individual to an obese insulin-resistant T2D patient.

Elevated pro-inflammatory cytokine production is primarily thought to be produced by 

activated macrophages in T2D patients.34 Recent studies also indicate cross-talk between 

monocytes and T cells, in which monocyte-T cell interactions induce elevated levels of 

IL-17 (Figure 2b, horizontal arrows74). Whether these T cells have a low activation threshold 

due to the pro-inflammatory milieu found in T2D patients, or if hyper-activated 

macrophages alone can induce elevated IL-17 production from these T cells is still unknown. 

Preliminary data from our group suggest B cells inhibit elevated IL-17 production, perhaps 

via IL-10 (Figure 2a, horizontal blue line). Taken together, these data indicate two levels of 

immune deregulation in T2D patients that may influence the pro-inflammatory feed-forward 

loop: (1) hyper-activation of monocytes/macrophages and T cells; and (2) loss of anti-

inflammatory action of B-cell IL-10, which likely lead to an exacerbated pro-inflammatory 

milieu and in turn, insulin resistance. Additional work on the specific roles of immune cells 

in exacerbating chronic inflammation (perhaps via adipocytes) is essential towards 

furthering our understanding of the complex interplay between these two seemingly 

unrelated systems in T2D.

The promise of lymphocyte depletion as a therapy for T2D

Due to the well-established role for T cells in inflammatory diseases, the development of 

anti-CD3 therapies has proceeded in earnest, and the results have been noteworthy. In the 

NOD mouse (a model of type 1 diabetes/T1D), anti-CD3 antibody administration delayed 

the onset of T1D. As treatment was retracted, the disease re-emerged.141 The initial delay of 

disease onset depended on monoclonal ‘induced’ Treg expansion into niches that are 

normally Treg-low.141 Furthermore Treg expansion depended on IL-2 and IL-7Ra, but TGFβ 
was dispensable.141 Another study showed that human peripheral blood mononuclear cells 

stimulated with humanized anti-CD3 antibodies produced lower amounts of IFNγ and 

increased amounts of IL-10, compared with results from stimulation with the murine anti-

CD3 antibody.142 These humanized antibodies also induced expression of Foxp3, indicating 

development of ‘natural’ Tregs or expansion of induced Tregs, although the function of these 

cells was not tested.142 Apart from the mouse studies, human clinical trials using 
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monoclonal anti-CD3 antibodies have also yielded promise in treating T1D. Anti-CD3 

antibody therapy in T1D patients for 12–18 months maintained or improved insulin 

production, and improved glycosylated hemoglobin levels while decreasing insulin dosage 

needs. However, the mechanism of action was not clear.142,143 Thus far, anti-CD3 therapies 

have been most rigorously tested in autoimmune T1D, but the emerging appreciation of the 

autoimmune component of T2D and our data indicating changes in the Treg compartment in 

T2D patients demand the field to consider appropriateness of anti-CD3 as a treatment. Proof 

of concept studies showed anti-CD3 therapy in DIO mice improved fasting glucose and 

insulin levels, and greatly improved glucose tolerance and insulin sensitivity.81 Further 

testing of these anti-CD3 antibodies would indicate probable efficacy for increasing the 

Treg:Th1/17 ratio in vivo to control the chronic inflammatory component (thus insulin 

resistance) in T2D. A similar argument for considering B-cell ablation as a treatment for 

T2D has been previously described.123

Although the very idea of lymphocyte ablation raises fears of life-threatening consequences 

of immunosuppressive therapy, demonstrated success and high safety profiles of CD20-

mediated B cell depletion in rheumatic disease and multiple sclerosis treatment144–146 raise 

the possibility that lymphocyte depletion does not lead to wide-spread devastation of 

immune protection. By its nature, anti-CD20 therapy removes only a subset of B lineage 

cells, leaving the plasma cell compartment largely intact to supply a broad antibody 

repertoire in adults. Perhaps the development of anti-lymphocyte therapies, with selective 

action on pathogenic subsets or with the ability to promote protective Treg function, will 

increase the number of available options for T2D treatment.

Future directions

Immune cell-mediated inflammation has been implicated in both the etiology and ongoing 

pathogenesis of insulin resistance and T2D. Although macrophages are important sources of 

diabetogenic cytokines and adipose remodeling activity, recent work from multiple 

laboratories has demonstrated definitive roles for lymphocytes in T2D. Multiple T-cell 

subsets and T-cell cytokines have critical roles in the regulation of insulin resistance. The 

importance of T cells in animal models of T2D is echoed by changes in the T-cell 

compartment in T2D patients. In contrast, strong evidence supporting a pro-inflammatory 

role for B cells in obesity and insulin resistance has not been reported, although 

characterization of differences in B-cell function between T2D and ND donors strongly 

suggests they too may contribute to the overall inflammatory environment through decreased 

production of IL-10. Immunological studies have also raised the possibility of a previously 

unappreciated auto-immune component of T2D. Although the treatment arsenal available to 

clinicians to avoid long-term devastating consequences of obesity and T2D remain limited, 

developments to potentially counter these effects with immunomodulatory drugs are being 

reported at an ever-accelerating pace. More rigorous demonstrations of roles for immune 

cells, and specifically lymphocytes, in human T2D would allow endocrinologists to take 

advantage of FDA-approved immunomodulatory drugs (for example, rituxan) in the short 

term, and to be first in line to test efficacy of new immune system-targeted drugs currently in 

non-metabolic disease trials. Such a fundamental shift in treatment options may offer new 
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hope toward curbing the T2D epidemic before doomsday predictions of incidence and cost 

become a reality.
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Figure 1. 
Hyperglycemia alters B-cell immunoglobulin secretion. Splenic B cells from the Akita 

mouse, a model of hyperglycemia, were purified by magnetic-bead-mediated negative 

selection, then incubated with E. coli LPS as a stimulus in moderate (top panel) or high 

(bottom panel) concentrations. IgM secretion was measured by ELISA and plotted as a 

function of maximal IgM concentration measured in the assay. Unstimulated cell 

supernatants are shown as a control (leftmost bars in both panels). IgM secretion 48–72 h 

post-LPS are shown from four independent determinations from C57BL/6 (wild-type; white 

bars) or Akita (on a C57BL/6 background; black bars). Note that IgM production/secretion 

is delayed in hyperglycemic vs wild-type samples.
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Figure 2. 
Loss of immunological homeostasis in T2D. (a) Monocytes, T cells and B cells produce 

cytokines (downward-pointing black arrows), which are actively regulated by B-cell IL-10 

(blue line). Adipose tissue also produces inflammatory mediators (upward-pointing black 

arrows) that are subject to B-cell IL-10 regulation. Homeostasis between adipose tissue and 

the immune system is maintained by balance among functionally opposed cytokines and 

results in the maintenance of insulin sensitivity, indicated by small blue adipocytes. (b) 

Immune system cells are activated (indicated in red) by diet-induced changes in ligands such 

as free fatty acids (FFAs), which stimulate monocytes and B cells via Toll-like receptors. 

Activated monocytes and B cells produce pro-inflammatory cytokines (red downward-

pointing arrows) that influence adipose tissue function, resulting in increased inflammatory 

adipokine secretion (red upward-pointing arrows). Increasing necrosis in the expanding 

adipose tissue can also promote monocyte migration and subsequent macrophage 

differentiation in adipose tissue (red dotted arrow). Increasing obesity also directly affects 

adipose tissue by inducing adipocytes to produce inflammatory mediators (red upward-

pointing arrows), which feed forward on inflammatory immune system cells. Moderation of 

inflammation by IL-10 is decreased owing to loss of B-cell IL-10 production (red ‘X’ over 

IL-10) in T2D patients.
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