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Abstract

Epidemiologic studies link organophosphorus pesticides (OPs) to
increased incidence of asthma. In guinea pigs, OP-induced airway
hyperreactivity requires macrophages and TNF-a. Here, we
determined whether OPs interact directly with macrophages to
alter cytokine expression or release. Human THP1 cells were
differentiated into macrophages and then exposed to parathion,
chlorpyrifos, or diazinon, or their oxon, phosphate, or
phosphorothioatemetabolites for 24 hours in the absence or presence
of reagents that block cholinergic receptors. TNF-a, IL-1b, platelet-
derived growth factor, and transforming growth factor-bmRNAand
protein were quantified by qPCR and ELISA, respectively. The effects
of OPs on NF-kB, acetylcholinesterase, and intracellular calcium
were also measured. Parent OPs and their oxon metabolites
upregulated cytokinemRNAand stimulated cytokine release. TNF-a
release, which was themost robust response, was triggered by parent,

but not oxon, compounds. Cytokine expression was also increased
by diethyl dithiophosphate but not diethyl thiophosphate or
diethyl phosphate metabolites. Parent OPs, but not oxon
metabolites, activated NF-kB. Parent and oxon metabolites
decreased acetylcholinesterase activity, but comparable
acetylcholinesterase inhibition by eserine did not mimic OP
effects on cytokines. Consistent with the noncholinergic
mechanisms of OP effects on macrophages, pharmacologic
antagonism of muscarinic or nicotinic receptors did not prevent
OP-induced cytokine expression or release. These data indicate
that phosphorothioate OP compounds directly stimulate
macrophages to release TNF-a, potentially via activation ofNF-kB,
and suggest that therapies that target NF-kB may prevent
OP-induced airway hyperreactivity.
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Organophosphorus pesticides (OPs) are
extensively used to control insects in not
only agricultural but also suburban
and urban settings, and thus human
exposure is widespread (1). Acute OP
toxicity is mediated by inhibition of
acetylcholinesterase (AChE), resulting in an
overstimulation of nicotinic and muscarinic

receptors that triggers a cholinergic crisis
associated with peripheral and central
respiratory paralysis. However, most
human exposures involve considerably
lower OP concentrations that do not cause
a cholinergic crisis. Exposure occurs via
inhalation, absorption through the skin and
eyes, or ingestion (1). For example, in

agricultural areas, OPs are tracked into
homes, and concentrations in house dust
have been shown to correlate with OP
metabolites in the urine of children in those
homes (2). Ingestion of OP-contaminated
foods is another important source of
exposure, as indicated by a study in Seattle
in which OP metabolites were detected in
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the urine of 99% of the children examined in
the study, but were no longer detectable when
the children’s diets were switched to organic
foods (3). In young children, urinary
concentrations of OP metabolites were found
to correlate with a significant decrease in
pulmonary function and increase in other
symptoms consistent with asthma (4). In
adults, occupational exposure to OPs is
associated with wheeze, respiratory
dysfunction, and asthma (5), which can
persist even after the exposure. Thus, there is
widespread human exposure to OPs, and
multiple studies have identified an association
between OP exposure and chronic respiratory
symptoms, including asthma.

In the lung, parasympathetic
postganglionic nerves release acetylcholine
to activate M3 muscarinic receptors
on airway smooth muscle to cause
bronchoconstriction. Acetylcholine also
activates M2 muscarinic receptors on
prejunctional parasympathetic nerves to
inhibit further release of acetylcholine, thus
limiting bronchoconstriction (6). Loss of
neuronal M2 receptor function increases
acetylcholine release, potentiating vagally
induced bronchoconstriction, and this is
associated with asthma (7). We have shown
that chlorpyrifos, diazinon, and parathion
each potentiate bronchoconstriction by
inhibiting neuronal M2 receptor function
(8–10) independently of AChE inhibition
(8, 9). These observations suggest that
environmental concentrations of OPs that
do not cause significant AChE inhibition
may, nonetheless, be sufficient to trigger
airway hyperreactivity.

OP-induced loss of M2 function and
potentiation of bronchoconstriction occur
independently of direct effects of OPs on
muscarinic receptors in airway nerves (11),
suggesting that OPs alter neuronal M2
function downstream of direct effects on
nonneuronal cells in the airways. There is
increasing recognition that OPs are
immunomodulators (5). For example,
subacute doses of chlorpyrifos and diazinon
increase TNF-a and IL-6 production in
macrophages derived from multiple
sources, including lungs (12). Macrophages
release cytokines and growth factors that
are known to modulate M2 muscarinic
receptor function and/or expression
(13–15). In a previous study, we
demonstrated that inhibition of
macrophages with clodronate or
inhibition of TNF-a with etanercept
each independently protected

neuronal M2 receptors and prevented airway
hyperreactivity in guinea pigs after exposure
to parathion (10). In the same study, we
showed that when guinea pig alveolar
macrophages were isolated from parathion-
treated animals, TNF-a and IL-1b mRNA
expression was significantly increased, and
when alveolar macrophages were isolated
from naive guinea pigs and treated with
parathion, IL-1b mRNA expression and
TNF-a protein release were increased. These
previously published data suggest a model in
which OPs stimulate macrophages to increase
cytokine expression, which consequently
inhibits neuronal M2 receptor activity to cause
airway hyperreactivity. Here, we further tested
this hypothesis by determining whether these
OPs and their metabolites directly stimulate
macrophages to release cytokines and growth
factors known to modulate M2 muscarinic
receptor expression and/or function. We
also investigated the mechanism(s) by which
this may occur. Some of these results have
been previously reported in the form of
abstracts (16–19).

Methods

Materials
Parathion, chlorpyrifos, diazinon, paraoxon,
chlorpyrifos oxon, and diazoxon were
purchased from Chem Service. Diethyl
phosphate (DEP) was obtained from Acros
Organics. O,O-diethyl thiophosphate
potassium salt (DETP), O,O-diethyl
dithiophosphate (DEDTP), atropine,
mecamylamine, eserine, and DMSO were
obtained from Sigma-Aldrich.

THP1 Cells
THP1 cells (ATCC) were cultured in RPMI-
1640 (Gibco) containing 100 I.U. penicillin
and 100 mg/ml streptomycin, 10% FBS

(Hyclone; GE Healthcare Life Sciences),
and 0.05 mM 2-mercaptoethanol (Sigma-
Aldrich). THP1 cells were differentiated
into macrophage-like cells using 25 ng/ml
PMA (Sigma-Aldrich) for 48 hours (20).

qPCR
THP1 RNA was reverse transcribed with
SuperScript III (Invitrogen). cDNA was
amplified using QuantiTect SYBR Green
(Qiagen) on a Veriti 96-well Thermal
Cycler (Applied Biosystems). Specific
primers were synthesized (Integrated
DNA Technologies; Table 1), and PCR
products were quantified on a 7500 Fast
Real-Time PCR System (Applied
Biosystems). The relative concentration
of mRNA was calculated using a serially
diluted sample (21) and normalized to
18S ribosomal RNA (rRNA).

ELISA
TNF-a and IL-1b protein were measured
in conditioned media on a VersaMax
plate reader (450 nm; Molecular
Devices). The detection limits were
15.6 pg/ml for TNF-a and 3.9 pg/ml for
IL-1b (R&D Systems). The protein
concentration was calculated from the
slope of a standard curve.

NF-kB Activation
THP1-XBlue cells (InvivoGen) were
maintained in THP1 media supplemented
with 100 mg/ml normocin and 200 mg/ml
zeocin (InvivoGen). Differentiated THP1-
XBlue cells (25 ng/ml PMA for 48 h)
were exposed to OPs for 24 hours, and
secreted embryonic alkaline phosphatase
activity was quantified using Quanti-Blue
reagent (InvivoGen) on a SpectraMax
spectrophotometer (630 nm; Molecular
Devices) as a measure of NF-kB
activation.

Table 1. Primers

18S rRNA 59 GTAACCCGTTGAACCCCATT
39 CCATCCAATCGGTAGTAGCG

Human TNF-a 59 TCAGCCTCTTCTCCTTCCTG
39 TCAGCTTGAGGGTTTGCTAC

Human IL-1b 59 AAGCTGATGGCCCTAAACAG
39 CAGGTCATTCTCCTGGAAGG

Human PDGF 59 CAGTCAGATCCACAGCATCC
39 TCTCGTAAATGACCGTCCTG

Human TGF-b 59 CAACAATTCCTGGCGATACC
39 GTAGTGAACCCGTTGATGTCC

Definition of abbreviations: PDGF = platelet-derived growth factor; rRNA = ribosomal RNA; TGF-b =
transforming growth factor-b.
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AChE Assay
AChE activity was determined using
the standard Ellman assay (22) with
5,59-dithio-bis(2-nitrobenzoic acid) and
acetylthiocholine iodide as substrate, and
100 mM tetraisopropyl pyrophosphoramide
to inhibit pseudocholinesterase. AChE
activity was normalized to protein
concentration (BCA assay; Pierce).

Data Analysis
All data were analyzed by Shapiro-Wilk
and D’Agostino and Pearson normality
tests. mRNA expression and protein
concentration in exposed cultures were
graphed as the fold change over controls
in each experiment to demonstrate the
magnitude of the effect and to account
for changes in baseline expression. The
data were then analyzed by Kruskal-
Wallis (nonparametric one-way ANOVA)
and corrected by Dunn’s multiple
comparison test (Prism 7; GraphPad).
NF-kB activity was analyzed by one-way
ANOVA on log-transformed data for
parathion, chlorpyrifos, chlorpyrifos
oxon, and diazinon using Tukey’s
multiple comparison test, and for paraoxon
and diazoxon using the Kruskal-Wallis
and post hoc Dunn’s multiple comparison
test. AChE activity was analyzed by one-
way ANOVA with post hoc Tukey’s
multiple comparison test. A statistical
probability of P< 0.05 was considered
significant. Data are represented as
mean6 SEM.

Results

Parent OPs Increase TNF-a, IL-1b,
Platelet-derived Growth Factor, and
Transforming Growth Factor-b mRNA
Expression
The parent OPs parathion (Figures 1A,
1D, 1G, and 1J; black bars), chlorpyrifos
(Figures 1B, 1E, 1H, and 1K; black bars),
and diazinon (Figures 1C, 1F, 1I, and 1L;
black bars) concentration-dependently
and significantly increased TNF-a (Figures
1A–1C), IL-1b (Figures 1D–1F), PDGF
(platelet derived growth factor) (Figures
1G–1I), and TGF-b (transforming growth
factor-b) (Figures 1J–1L) mRNA
expression in differentiated THP1 cells after
24 hours of exposure. Diazinon induced the
largest increase in cytokine and growth
factor mRNA expression (for example,
parathion induced a 17-fold increase in

IL-1b, whereas diazinon caused a 143-fold
increase in IL-1b).

In contrast, although some
concentrations of the oxon metabolites
increased cytokine and growth factor mRNA
expression (see gray bars for paraoxon in
Figures 1A, 1D, 1G, and 1J; chlorpyrifos
oxon in Figures 1B, 1E, 1H, and 1K; and
diazoxon in Figures 1C, 1F, 1I, and 1L), with
the exception of paraoxon’s effects on
TNF-a mRNA expression (Figure 1A), the
effects did not exhibit classic monotonic
concentration–effect relationships.
Moreover, the magnitude of the increase in
mRNA levels observed in THP1 cells
exposed to the oxon metabolites was less
than that observed in THP1 cells exposed to
the corresponding parent compound.

Parent OPs Increase TNF-a Protein
Expression in Conditioned Media
Conditionedmedia was collected fromTHP1
cells 24 hours after exposure to parathion,
chlorpyrifos, or diazinon, or their oxon
metabolites. Among the proteins examined,
only TNF-a protein was significantly
increased in conditioned media by all three
OPs (Figures 1M–1O and Figure E1 in the
data supplement). Parathion, chlorpyrifos,
and diazinon increased TNF-a protein at
concentrations >30 mM (Figures 1M–1O,
respectively, black bars). Similar to
observations of OP effects on mRNA levels,
the largest increase in TNF-a protein was
seen in diazinon-exposed cells (42-fold
increase; Figure 1O). None of the oxon
metabolites significantly increased TNF-a
protein in conditioned media (Figures
1M–1O, respectively, gray bars).

IL-1b protein was significantly increased
in conditioned media only by diazinon at
100 mM (Figure E1C in the data supplement).
PDGF protein was significantly decreased by
paraoxon at 0.001 mM and 0.1 mM and
chlorpyrifos oxon at 100 mM (Figures E1D
and E1E). TGF-b protein was undetectable in
media from control or OP-exposed THP1
cells (data not shown).

Parent OPs Influence Cytokine
Expression and Release at
Concentrations that Do Not Cause
Cellular Toxicity
A 24 hour exposure to parathion,
chlorpyrifos, or diazinon (Figure E2,
black bars), or their respective oxon
metabolites (paraoxon, chlorpyrifos oxon,
and diazoxon; Figure E2, gray bars) over
the same concentration range used to

assess OP effects on cytokine expression
and release, had no effect on THP1
mitochondrial function as measured by
an MTT assay (Figures E2A–E2C) or
membrane integrity as measured by a
lactate dehydrogenase cytotoxicity assay
(Figures E2D–E2F). A live/dead cell assay
indicated that some concentrations of the
OPs and their oxons had a small but
significant effect on THP1 cell viability
(Figures E2G–E2J). The percentage of
living cells observed after exposure to
30 mM parathion (99.2%6 1.2%), 100 mM
parathion (96.2%6 2.2%), 1 mM paraoxon
(96.9%6 1.3%), 100 mM paraoxon
(90.6%6 2.8%), and 100 mM diazoxon
(95.0%6 1.0%) was significantly decreased
compared with that observed in vehicle-
treated cells (Figures E2G and E2I). None
of the concentrations of chlorpyrifos,
chlorpyrifos oxon, and diazinon decreased
cellular viability (Figures E2H and E2I).

A Phosphorothioate OP Metabolite
Similarly Increases Cytokine
Expression in THP1 Cells
Parathion, chlorpyrifos, and diazinon are all
classified as phosphorothioate OPs. The
parent compounds have negligible AChE-
inhibiting activity, and instead must be
oxidized by exchanging a sulfur for an
oxygen to form the oxon, which potently
inhibits AChE (23). Oxidation can occur in
the environment (24) or via cytochrome
P450–mediated metabolism in biological
organisms (25). OPs can also be hydrolyzed
to form metabolites with no AChE activity,
including DEP, DETP, and DEDTP
(Figure 2A). These metabolites, which are
not specific to any one OP, are often
measured in urine as biomarkers of general
OP exposure (26).

A significant difference between the
molecular structure of the parent OPs,
which were observed to increase TNF-a
release, and that of their oxon metabolites,
which had no effect on TNF-a release, was
a phosphorothioate linkage (P = S) in the
parent compounds versus a phosphate
group (P =O) in the oxon metabolites.
Therefore, we tested the effect on cytokine
expression and TNF-a release of
phosphorothioate versus phosphate OP
metabolites (Figure 2A). Neither DEP, a
nonphosphorothioate, nor DETP, a
phosphorothioate, increased TNF-a or
IL-1b mRNA expression or protein release
(Figures 2B–2E). These compounds also
did not increase PDGF or TGF-b mRNA
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Figure 1. Organophosphorus pesticides (OPs) upregulate cytokine and growth factor mRNA expression and TNF-a release in THP1 cells. Differentiated
THP1 cells were treated with (A, D, G, J, and M) parathion or paraoxon, (B, E, H, K, and N) chlorpyrifos or chlorpyrifos oxon, or (C, F, I, L, and O) diazinon
or diazoxon for 24 hours. Cellular levels of mRNA specific for (A–C) TNF-a, (D–F) IL-1b, (G–I) PDGF (platelet-derived growth factor), and (J–L) TGF-b
(transforming growth factor-b) were quantified by real-time PCR and normalized to 18S ribosomal RNA. Conditioned media was collected from THP1 cells
and quantified by ELISA to quantify the amount of (M–O) TNF-a protein released by the cells into the media. The effect of OPs on mRNA expression and
protein release was expressed as a fold change over mRNA expression or protein release, respectively, in vehicle-treated cells (0.1% DMSO) within each
experiment. Data are presented as the mean6SEM (each exposure was performed in triplicate wells; n=4–10 separate experiments for each exposure).
*Significantly different from vehicle control at P<0.05.
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expression (Figures E3A and E3B). In
contrast, DEDTP, a phosphorothioate with
two sulfurs, induced a large, significant
increase in TNF-a and IL-1b mRNA
(Figures 2B and 2C) and a small but still
significant increase in PDGF mRNA
expression (Figure E3A). DEDTP did
not increase TGF-b mRNA expression
(Figure E3B). DEDTP increased TNF-a
(Figure 2D) and IL-1b (Figure 2E) protein
release, although not significantly.

Parent OPs Increase NF-kB Activity
We next tested whether OPs activate
NF-kB, using the NF-kB–reporter cell line
THP1-XBlue. After a 24-hour exposure,
the parent OPs parathion, chlorpyrifos,
and diazinon each significantly increased
NF-kB activation (Figures 3A–3C,
respectively; black bars), whereas their
oxon metabolites did not (Figures 3A–3C,
respectively; gray bars). Parathion showed
the largest increase, with peak activation of
NF-kB observed at 10 mM (Figure 3A),

and the effect of diazinon was minimal
(Figure 3C).

OP Effects on Cytokine Expression
and Release Are Not Mediated by
Cholinesterase Inhibition
Many of the neurotoxic effects of OPs are
mediated by AChE inhibition; therefore,
AChE activity was measured at the highest
concentrations of the OP parent
compounds and oxon metabolites tested in
the cytokine expression and release studies.
At 100 mM, parathion, paraoxon,
chlorpyrifos, chlorpyrifos oxon, diazinon,
and diazoxon each significantly inhibited
AChE activity by z75% compared with
AChE activity in vehicle control THP1
cells (Figure 4A). To determine whether
AChE inhibition mediated the effects of
OPs on cytokine expression, we tested
eserine at 100 mM, a concentration that
inhibited AChE to a level comparable to
that observed in the OP-exposed THP1
cells (Figure 4A). In contrast to diazinon at

100 mM, eserine at 100 mM did not
increase cellular levels of TNF-a or IL-1b
mRNA (Figures 4B and 4D), or media
levels of TNF-a or IL-1b protein (Figures
4C and 4E).

Pharmacologically Antagonizing
Muscarinic or Nicotinic Receptors
Did Not Prevent Effects of Diazinon
on Cytokine Expression and Release
To determine whether muscarinic or
nicotinic cholinergic receptors mediate OP-
induced cytokine expression, we pretreated
THP1 cells with either 100 mM atropine or
100 mM mecamylamine for 1 hour before
adding 100 mM diazinon for 24 hours to
block muscarinic or nicotinic receptors,
respectively. The half-maximal inhibitory
concentration for atropine is in the
nanomolar range (27), whereas that for
mecamylamine is in the low-micromolar
range (28). Thus, at 100 mM, atropine and
mecamylamine sufficiently blocks
muscarinic and nicotinic receptors,
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protein levels in THP1 cells and conditioned media, respectively. The effect on cytokine expression was expressed as a fold change over expression in
vehicle controls (0.1% DMSO) in each experiment. Data are presented as the mean6SEM (each exposure was performed in triplicate wells; n=4
separate experiments). *Significantly different from vehicle control at P<0.05.
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respectively, on macrophages (29, 30).
Neither atropine nor mecamylamine
blocked upregulation of TNF-a or IL-1b
mRNA, or increased the release of TNF-a
or IL-1b protein into conditioned medium
in THP1 cells exposed to diazinon
(Figure 5). In the absence of diazinon,
neither atropine nor mecamylamine had
any effect on cytokine mRNA or protein
levels.

OPs and Their Oxon Metabolites Do
Not Increase Intracellular Calcium in
THP1 Cells
To investigate whether Ca21 mediates
OP-induced cytokine expression in
macrophages, we measured intracellular
calcium levels in THP1 cells loaded with
the Fluo4 Ca21 indicator dye immediately
before acute exposure to OPs (3–100 mM)
or their oxon metabolites (0.1–100 mM).
None of the three parent OPs or their oxon
metabolites increased intracellular Ca21

significantly above baseline levels within 10
minutes after administration (Figure E4). In
contrast, ionomycin, added as a positive
control after the 10-minute exposure to
OPs, significantly increased intracellular
calcium levels.

Discussion

Exposure to OPs is linked to an increased
incidence of asthma and asthma
exacerbations, as well as respiratory
dysfunction (5). However, the mechanisms
that mediate OP-induced asthma and
airway hyperreactivity are not well

understood. In guinea pigs, we have shown
that OPs cause airway hyperreactivity
(8–10) via neuronal M2 muscarinic
receptor dysfunction. M2 receptors
normally limit ACh release (8–10), and loss
of their function leads to increased ACh
release and increased bronchoconstriction.
Loss of M2 receptor function in some
asthma patients has been reported (7). We
previously showed that OP-induced M2
dysfunction is mediated by macrophages
and TNF-a, and that OPs increase TNF-a
and IL-1b expression in guinea pig alveolar
macrophages (10). Here, we extend those
findings with the striking observation that
the parent forms of parathion, chlorpyrifos,
diazinon, and the diethyl dithiophosphate
metabolite, but not the oxon metabolites,
directly stimulate macrophages, potentially
via NF-kB, to increase the release of TNF-a.
This is significant because TNF-a has
been reported to downregulate neuronal
M2 receptors and increase airway reactivity
(10). These data suggest that OPs cause
airway hyperreactivity via noncholinergic
mechanisms of immunomodulation,
identifying a potential pathway to target for
therapeutic interventions to prevent
OP-induced airway dysfunction.

TNF-a, IL-1b, PDGF, and TGF-b
have all been shown to modulate M2
muscarinic receptor expression and/or
function (13–15), and therefore we focused
on these cytokines and growth factors in
this study. Here, we show that although
mRNA was increased for all of these
inflammatory cytokines by OPs, only TNF-a
protein release into conditioned medium
was increased in differentiated THP1 cells

by all three OPs. These data confirm a prior
study that showed enhanced TNF-a
protein release from isolated guinea pig
alveolar macrophages treated ex vivo
with parathion (10). The link between
macrophages and TNF-a is important
because blocking TNF-a in vivo prevented
OP-induced airway hyperreactivity and
protected neuronal M2 muscarinic receptor
function in guinea pigs 24 hours after OP
exposure, whereas blocking IL-1b had no
effect on acute OP-induced hyperreactivity
(10). We previously demonstrated that
OP-induced airway hyperreactivity and
M2 dysfunction can persist for up to at
least 7 days (9), so it may be possible
that IL-1b, PDGF, and TGF-b have a
role in the chronic effects of OP exposure;
however, this possibility has not been
tested. OPs may stimulate macrophages
to release other cytokines and factors
that were not investigated here, and
future experiments using multiplex
analysis may provide insights as to other
factors released by OP-stimulated
macrophages that may influence lung
function.

OP-induced cytokine expression is not
the result of macrophage cytotoxicity. THP1
mitochondrial function and plasma
membrane integrity were unaffected by
exposure to parent OPs or their oxon
metabolites. High concentrations of
parathion, paraoxon, and diazoxon caused a
small but significant decrease in THP1
viability as determined by a live/dead cell
assay. Similarly, 100 mM chlorpyrifos was
reported to cause minimal cell death in the
human monocyte cell line U937 (31), and
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neither 100 mM chlorpyrifos nor 100 mM
diazinon caused significant cell death in
human peripheral blood monocytes (32).
Collectively, these data show that OPs at
concentrations of ,100 mM are not overtly
cytotoxic to monocytic cells. Importantly,

the small decrease in THP1 cell viability
observed with high doses of parathion,
paraoxon, and diazoxon in this study did
not correlate with the increased cytokine
expression observed in THP1 cells exposed
to the parent OPs.

Little is known about the deposition of
OPs in human lungs. We could find no
published studies that measured OPs or
their metabolites in induced sputum, BAL,
or lung biopsies. Many OPs are lipophilic
and can be stored in adipose tissue for days
to weeks (33). For example, after oral
administration of the OP malathion to rats,
the initial highest concentrations were
found in blood and muscle, but malathion
was stored in adipose tissue (33). The OP
fenthion is initially taken up by adipose
tissue and does not cause cholinergic
symptoms until 24–48 hours after exposure
(34). Lung surfactant is 90% lipids and may
be a reservoir for OPs in the lung. When
parathion or paraoxon were infused directly
into guinea pig lungs, both chemicals were
nearly all retained (35). Although OPs are
predominantly metabolized by liver
cytochrome P450s, guinea pig lungs express
some of the same hepatic cytochrome
P450s (36) and can locally metabolize
OPs (35). Thus, OPs can be retained
and metabolized by the lung, where they
would come into contact with lung
macrophages.

The ability of parent OPs to stimulate
differentiated THP1 cells is independent of
their ability to inhibit AChE, adding to a
growing list of research showing that OPs
target molecules other than AChE to cause
toxicity. Inhibition of AChE is a property
shared by both parent compounds and oxon
metabolites; however, the oxon forms can be
100-fold more potent (23). Despite this, the
oxon metabolites did not stimulate an
increase in cytokine expression or release.
Additionally, eserine, at a concentration
that caused AChE inhibition comparable to
that observed in THP1 cells exposed to
OPs, did not mimic the effects of OP parent
compounds on cytokine expression and
release in differentiated THP1 cells.
Macrophages express functional nicotinic
and muscarinic receptors (37, 38), and OPs
are capable of modulating both (39, 40).
However, the ability of parent OPs to
stimulate differentiated THP1 cells was
unaffected by pharmacologic antagonism of
nicotinic or muscarinic receptors. Using a
calcium indicator dye, we additionally
excluded increased calcium influx as a
messenger contributing to OP-induced
cytokine transcription and release. This is
consistent with data obtained from guinea
pig alveolar macrophages, which showed
that parathion did not induce a calcium
influx or potentiate a calcium influx in
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response to N-formylmethionine-leucyl-
phenylalanine (B.J.P., unpublished results),
a potent activator of macrophages.
Collectively, these data show that the
mechanism(s) underlying OP-induced
increases in cytokine expression and TNF-a
release in macrophages does not involve
canonical mechanisms of OP toxicity
involving AChE inhibition, modulation of
cholinergic receptor activity, or changes in
intracellular calcium levels.

A striking finding of this study is that
the parent OPs, but not their oxon
metabolites, stimulated differentiated THP1
cells to release TNF-a (Table 2). This
confirms previous observations that
parathion modestly increased IL-1b mRNA
and significantly increased TNF-a protein
release from cultured guinea pig alveolar
macrophages, whereas paraoxon had no
effect (10). Parent OPs are phosphorothioates
and their oxon metabolites are phosphodiesters

(see the chemical structures in Figure 2).
We tested whether the presence of a sulfur
group, which distinguishes the former from the
latter, is critical for activation of THP1 cells.
Neither DEP (a phosphodiester without a sulfur
group) nor DETP (a phosphorothioate with
one sulfur group) increased cytokine mRNA
expression or protein release from THP1 cells.
However, DEDTP (a phosphorothioate with
two sulfur groups) significantly increased
TNF-a, IL-1b, and PDGF mRNA, and
increased TNF-a and IL-1b protein by 75-and
36-fold, respectively, although the differences
were not significant. Thus, having a
phosphorothioate bond and additional sulfur
groups appears to increase the potential to
stimulate macrophages, and may explain
why parent OPs stimulate macrophages
while oxon forms do not. DEDTP in urine
is widely used as a biomarker of OP
exposure but is believed to have little
biological activity. Our data suggest that

DEDTP directly affects macrophage
function. In support of this possibility,
Medina-Buelvas and colleagues reported an
increase in alternatively activated (M2)
macrophages in lymph nodes of mice treated
with intraperitoneal DEDTP for 8 days (41).
These data are important because many OP
studies have focused on oxon metabolites in
the context of neurotoxicity. Our data
demonstrate that parent OPs and DEDTP
may also have important biological effects
that are unique from those associated with
the neurotoxic oxon metabolites.

The mechanism by which the
parent OPs and DEDTP alter cytokine
synthesis and release in macrophages
remains to be determined. Mac-1
(CD11b/CD18) is a heparin-binding
integrin receptor that is expressed by
macrophages and binds phosphorothioate
oligonucleotides (42). A study by Hosoi
and colleagues demonstrated that
phosphorothioate oligonucleotides were
200 times more potent than phosphodiester
oligonucleotides (of the same size) in
inhibiting Mac-1–mediated DNA-
dependent kinase activity in a fibroblast cell
line (43). This may be one mechanism by
which phosphorothioates, such as the
parent OPs and DEDTP, interact with
macrophages. In support of this possibility,
only the parent OPs triggered NF-kB
activation in a THP1 NF-kB reporter cell
line. We did not determine whether parent
OPs activated AP-1 to increase TGF-b and
PDGF mRNA expression, or whether this
increase in growth factors was the result
of downstream signaling after NF-kB
activation and/or TNF-a release. Further
studies are needed to address these questions,
as well as to identify the NF-ĸB and AP-1
binding sites in the promoter regions of
cytokine genes upregulated by OPs. An
extensive body of literature supports a critical
role for NF-kB in transducing diverse
environmental stimuli to upregulate cytokine
expression in inflammatory cells (44).
Although it remains to be determined
whether blocking NF-kB activation prevents
the effects of OPs on cytokine expression
and release in macrophages, our data are
consistent with that hypothesis.

A limitation to this research is that we
did not confirm whether OPs increase
cytokine expression in human primary
alveolar macrophages. We have previously
shown that OPs increased TNF-a and
IL-1b expression in guinea pig alveolar
macrophages isolated from BAL (10).
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Although useful information might be
obtained with the use of alveolar
macrophages collected from healthy
humans, BAL is not routinely performed on
healthy individuals. Human alveolar
macrophages obtained from individuals with
pulmonary disease would likely be more
activated and heterogeneous than THP1
cells. In a previous study, we showed that
when guinea pigs were sensitized to
ovalbumin, parathion-induced airway
hyperreactivity was significantly enhanced
compared with what was observed in
nonsensitized animals (45). Although we did
not investigate macrophages in that study,
we would infer that human alveolar
macrophages isolated from individuals with
asthma or atopic individuals may have an
enhanced response to OP exposure, which
may potentiate airway reactivity.
Macrophages differentiated from human
peripheral blood monocytes could also be
used to investigate OP-induced increases in
cytokine expression. THP1 cells are
spontaneously immortalized monocytes
derived from the blood of a child with acute
monocytic leukemia. THP1 cells,

differentiated THP1 cells, human
monocytes, and human macrophages
derived from peripheral monocytes have
some differences and some similarities in
gene expression profiles in response to
stimulants (46, 47).

In conclusion, our data suggest a novel
mechanism by which OPs induce airway
hyperreactivity through stimulation of
alveolar macrophages by parent OPs to
increase NF-kB activation, resulting in
TNF-a protein release. Although the oxon
forms of these pesticides have been long
considered to be mediators of OP toxicity,
our data convincingly demonstrate that
parent OP compounds more potently and
consistently stimulate macrophages.
We further postulate that the
phosphorothioate linkage in parent OPs
may be important in determining how
parent OPs interact with macrophages and
perhaps other cells.

Specialized macrophages are located
throughout the body and may be similarly
affected by OPs. Parent OPs increase IL-6
and TNF-a mRNA in cultured microglia
(48), a macrophage-like glia cell in the

brain, and exposure to OPs has been linked
to an increased incidence of Parkinson’s
disease (49) and autism (50). Collectively,
these data add to a growing body of
research indicating that parent OPs
have biological effects, especially on cells in
the macrophage family, and that these
effects are independent of AChE
inhibition. Future experiments to
determine the mechanism by which parent
OPs and other phosphorothioates
interact with macrophages to induce
cytokine expression will provide
promising targets for the development of
therapeutics to prevent the deleterious
effects of OP exposure on airway
function. n
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