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Abstract

Background: Transcriptomic data is often used to build statistical models which are predictive of a given
phenotype, such as disease status. Genes work together in pathways and it is widely thought that pathway
representations will be more robust to noise in the gene expression levels. We aimed to test this hypothesis by
constructing models based on either genes alone, or based on sample specific scores for each pathway, thus
transforming the data to a ‘pathway space’. We progressively degraded the raw data by addition of noise and
examined the ability of the models to maintain predictivity.

Results: Models in the pathway space indeed had higher predictive robustness than models in the gene space.
This result was independent of the workflow, parameters, classifier and data set used. Surprisingly, randomised
pathway mappings produced models of similar accuracy and robustness to true mappings, suggesting that the
success of pathway space models is not conferred by the specific definitions of the pathway. Instead, predictive
models built on the true pathway mappings led to prediction rules with fewer influential pathways than those built
on randomised pathways. The extent of this effect was used to differentiate pathway collections coming from a
variety of widely used pathway databases.

Conclusions: Prediction models based on pathway scores are more robust to degradation of gene expression
information than the equivalent models based on ungrouped genes. While models based on true pathway scores
are not more robust or accurate than those based on randomised pathways, true pathways produced simpler
prediction rules, emphasizing a smaller number of pathways.
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Background
A common objective in modern biological investigations
is to use transcriptomic or other ‘omics’ data to develop
statistical models predictive of a given phenotype, such
as disease status or prognosis. The main goal of such
studies is often to identify groups of genes, or signatures,
which are associated with the desired outcome. How-
ever, data from all omics technologies are subject to a
wide variety of technical noise and biological variation,
which will degrade the performance of these models and
limit the fidelity with which predictive signatures can be
identified.

In nature, genes and other biomolecules function to-
gether in pathways and it was proposed early in post-
genomic science that grouping genes into pathways could
circumvent the difficulties with noise suffered by gene
focused analysis [1, 2]. While it is widely thought that such
pathway analyses are robust to noise in the data, the exist-
ing approaches have attempted to demonstrate robustness
only indirectly, through effects on maximal attainable pre-
dictive accuracy [3, 4], the consistency of selected features
across data sets and methods [3–9], or through biological
justification in case studies [10–13]. In contrast, here we
focus exclusively on ‘predictive robustness’ understood as
the model’s capacity to maintain predictive accuracy in
the face of uncontrolled variation, and not referring to
other biological or statistical notions of robustness. Note
that a high robustness by our definition does not
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necessarily imply an extremely accurate predictive model;
it merely requires the accuracy to be maintained above
chance levels, as the level of irrelevant variation or noise
in the data increases. Also note that the uncontrolled vari-
ation may result from a variety of sources, including both
technical noise and biological (inter-subject) variation.
The latter often dominates the total variance in typical
datasets, but it may not be useful for predicting the
phenotype of interest. Thus it can be seen as a kind of bio-
logical ‘noise’ against which the model must remain ro-
bust. This is the scenario which we address in the current
work.
Predictive models are usually built using gene expres-

sion levels as variables, hence such models are built in
the ‘gene space’. However, the idea of predictive model-
ling can be combined with pathway analysis, so that pre-
dictive models are built instead in a ‘pathway space’ [14]
where each variable relates separately to the ‘activity’ of
a pathway for each sample. The main hypothesis of this
paper is that pathway based predictive models would
show higher predictive robustness to noise in the raw
data than those based on the individual gene expression
levels. Our main aim is to test this hypothesis, by build-
ing predictive multivariate models in both gene and
pathway space and examining their robustness to in-
creasing degradation of the input data. We investigated
the influence of different methods of introducing noise,
and obtaining pathway scores, and whether the effects
are replicated in two data sets.
Although we employ a type of pathway scoring, it is

not our aim to introduce a new method for that pur-
pose. The most common type of pathway analysis out-
puts a single score for each pathway (irrespective of the
number of samples), which can be tested to determine
pathways significantly associated with the outcome of
interest [15]. Our pathway space modelling requires a
score for each biological sample for each pathway, allow-
ing the full data set to be modelled in the new pathway
space. We employed a simple method based on principal
components analysis (PCA) to do this, but many other
approaches could be used e.g. [9, 16].
The coordinated action of genes in pathways naturally

leads to the idea that pathways are ‘special’ collections of
genes and thus models based on true pathways should
be more predictive than those based on groups of unre-
lated genes. We therefore conjectured that performance
of predictive models could be used to differentiate col-
lections of real pathways from random collections of
genes, thus addressing pathway significance. Surpris-
ingly, we find that the predictive accuracy and robust-
ness of models based on random gene sets can be
similar to that of models based on pathways from data-
bases. This counterintuitive result motivated us to exam-
ine other aspects of our models that could differentiate

real and random pathway sets. We found that models
based on true pathways are significantly simpler, in that
they assign strong weights to fewer pathways, as com-
pared to randomised versions of the same pathways.
This yields an intrinsic “signature” to characterise differ-
ent pathway collections such as those in existing
databases.

Results
Pathway space representation
In order to assess the contribution of pathway informa-
tion to the robustness of predictive models we defined
pathway scores that combined the expression of genes in
each pathway using PCA. We calculated a one compo-
nent PCA model for each pathway and compiled the
scores into a new matrix that represents the samples in
a “pathway space” (Fig. 1). Separate predictive models in
both gene and pathway space were trained and cross val-
idated using partial least squares – discriminant analysis
(PLS-DA). The predictive ability of these models was
calculated as the accuracy to assign a battery of com-
pounds to one of three carcinogenic classes [17].

Models in pathway space are more robust to noise than
models in gene space
We examined the robustness of predictive models to
degradation of the raw data. As more noise is added to
the data, models whose accuracy declines slowly are
deemed to be more robust than those whose accuracy
declines quickly. Having predictive models both in path-
way space and in the original gene space allowed us to
study the contribution of pathway information to this
type of robustness.
The degradation profile of Fig. 2 shows that, while

both gene space and pathway space models have similar
predictive accuracy on non-degraded data, the accuracy
of the gene level models decreases more quickly than
those built in the pathway space as more noise is added
to the data. For a more objective assessment of the pre-
dictive robustness, we calculated a “predictive robust-
ness” statistic corresponding to the area under the
degradation profile described by the medians and nor-
malised to the accuracy of the model with unperturbed
data (see Methods). The predictive robustness of path-
way space models was significantly higher than that of
gene space models (0.90 [0.89, 0.91] and 0.82 [0.81, 0.83]
respectively, square brackets denote 90% confidence
intervals.).

Higher robustness of pathway models is independent of
the workflow
To investigate the influence of different components of
the workflow on the predictive robustness, we replaced
steps of the default workflow by alternative methods,
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one at a time. Firstly, we replaced the default degrad-
ation method by random permutation of the sample
order for the degraded genes (Fig. 3a), or by a “global
noise” strategy to degrade in parallel the information
from all genes (Additional file 1: Figure S1.1). The

classification method was also replaced by k-nearest
neighbours (kNN) (Fig. 3b) and an SVM (Additional file
1: Figure S1.3). The observation of higher robustness of
the pathway space models as compared to the gene
space models was unaffected by these modifications and

Fig. 2 Degradation profiles from predictive models in gene (red) and pathway space (green) using the CG data set and the default workflow.
Boxes represent inter-quartile ranges of accuracy for 20 realisations of the noise

Fig. 1 Workflow designed to produce a pathway space representation of a gene expression data set. The expression values for all qi genes in the
i’th pathway (green columns) are extracted from the original (nxm) expression matrix to form a new (nxqi) matrix. PCA is performed on this matrix
and the score on the first component retained as the pathway score. This is repeated for each of the k pathways and the pathway scores
assembled into a new ‘pathway space’ matrix of dimension (nxk) (orange)
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similar results were obtained when three principal compo-
nents were used to represent the pathway scores instead
of one (Additional file 1: Figure S1.2A). For pathway
scores based on mean expression, the local robustness of
gene space models appeared higher at moderate levels of
degradation, while pathway space models appeared more
robust at high levels of degradation (Additional file 1: Fig-
ure S1.2B). The variability of accuracies of pathway space
models was also increased. Use of single sample gene set
enrichment analysis (ssGSEA) to generate pathway scores
also had little influence (Additional file 1: Figure S.1.2C).
Finally, we also explored the use of gene selection to build

the gene space models, but again found similar results
(Additional file 1: Figure S1.4).
Aside from changes in the workflow, we also explored

the robustness hypothesis on a second, unrelated, data
set on leukaemia [18]. The degradation profiles in this
dataset displayed similar predictive robustness as ob-
served with the carcinoGENOMICS (CG) dataset (Fig. 4).
This is notable considering that the two data sets have
very different characteristics and were generated with
different microarray platforms. The predictive robust-
ness statistic confirmed the predictive robustness of
pathway space models over gene space models over a

Fig. 3 Degradation profiles for alternative workflows. a degradation by random permutation of samples. b kNN classification. Boxes represent
inter-quartile ranges of accuracy from 20 realisations of the noise
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broad range of changes to the data and workflow
(Additional file 1: Table S1).

Influence of specific pathway definition
Having established the advantage of predictive models
based on pathway scores, our next goal was to identify any
underlying explanatory factors. Pathway databases reflect
a corpus of existing biological knowledge and thus we
hypothesised that the pathway composition, i.e. which
genes are annotated to which pathway, has an impact on
accuracy and robustness. We tested this hypothesis by
creating databases of fake pathways which exactly repli-
cated the size of the true pathways, as well as their overlap
of shared genes. This approach is analogous to classical
hypothesis testing in statistics, where a null distribution
(here estimated by randomising pathway definitions) is
used to assess the significance of an observed statistic
(here accuracy and robustness). Surprisingly, the degrad-
ation profiles showed little or no difference between the
true pathway set and the randomised versions (Fig. 5). We
also used a second randomisation scheme that preserved
only the sizes of the original pathways, which produced no
qualitative changes (Additional file 1: Figure S2). This con-
firmed the observation that accuracy and predictive ro-
bustness are not properties of the gene composition of
real pathways, suggesting that real pathway definitions are
not “significant” according to accuracy and robustness.

Models based on true pathways are simpler than those
based on fake pathways
To explore the unexpected similarity of predictive ro-
bustness for true and fake pathway sets, we investigated
the contribution of pathways across all predictive models
in more detail. We hypothesized that for true pathway
sets typically only a small number of pathways would be
clearly influential for prediction, and conversely with
randomised pathways, a larger number of pathways
would be required, each one with a smaller contribution
to the prediction. Note that in the remainder of this
study, we only examine models based on the full, non-
degraded data.
In PLS-DA models, the regression coefficients indicate

the contribution of pathways to the model and therefore
we compared the distribution of PLS-DA coefficients
from true and fake pathway sets (Fig. 6). For both true
and fake pathway sets, the majority of the coefficients
were low with a peak value close to zero (Fig. 6a). How-
ever, an excess of near-zero coefficients was observed for
the true pathway set. Similarly, there was a lack of
medium and high level coefficients in the models built
from true pathways. We sought to capture these differ-
ences through measures of entropy (Fig. 6b) and area
between the curves (Fig. 6c). Both parameters confirmed
that pathway contributions to prediction rules are dis-
tributed differently for true and fake pathway sets. This
supports our hypothesis that models based on true

Fig. 4 Degradation profile for the leukaemia data set. Boxes represent inter-quartile ranges of accuracy from twenty realisations
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pathway sets are statistically significant: they are sim-
pler, in that they highlight fewer important pathways.
Similar results were found for the leukaemia dataset
(Additional file 1: Figure S4).

An application to investigation of 12 pathway databases
The large set of pathways used in this work is a compil-
ation of many individual pathway databases. To investi-
gate the nature of these collections, we applied the
analysis of the previous section to each of the contribut-
ing databases. The results comparing real and fake path-
ways for each source database were summarised using

the area between curves (Fig. 7). A number of databases
exhibited little difference in their coefficient distributions
compared to randomised collections, thus lacking sig-
nificance. These included SMPDB, PharmaGKB, EMHN
and Signalink. The equivalent analysis using the entropy
statistic is shown in Additional file 1: Figure S6.1. At
first glance, Fig. 7 appears to show a relationship be-
tween the departure from randomness and the size of
databases. To investigate this, we took a large database
(Reactome) and randomly subsampled it to produce
smaller databases of different sizes. We found no clear
relationship between database size and the departure

Fig. 5 Predictive robustness in randomised pathway sets. Box plots of robustness in the true pathway set (black) and in ten fake pathway sets
(grey) from the CG (a) and the leukaemia (b) data sets. All models were fit using the default workflow corresponding to Fig. 2
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from randomness (Additional file 1: Figure S6.2). Thus
we conclude that the trends seen in Fig. 7 are not purely
due to database size.

Discussion
Evidence for the advantage of prediction based on path-
ways over individual genes has remained conflicting,

with comparable evidence for the advantage [3] and in-
difference of pathway based prediction [14, 19–21]. Pre-
vious studies evaluated consistency of active pathways
across data sets (e.g [5], [7], [8]) or the achievement of
superior predictive accuracy (e.g. [20]), but with the ex-
ception of Holec et al., [20], all these approaches use
pathway analysis as a posthoc analysis seeking to

Fig. 6 Distribution of pathway contributions to predictive models. a Distribution of absolute regression coefficients for PLS-DA models from 100
fake pathway sets (grey lines, median shown by black dashed line) or the true pathway set (black solid line). b Histogram of the entropies of the
distributions in (A). c Histogram of the area between the distribution of coefficients for each fake pathway set and the median coefficient
distribution (dashed black curve in A). The filled circles in B and C indicate the value for the true pathway set

Fig. 7 Investigation of different pathway databases. Distributions of area between curves for fake pathways (bars) versus real pathways (filled
circle). The number of pathways in each database is indicated in parentheses in each panel. Results for the entropy metric can be found in
Additional file 1: Figure S6.1
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enhance the interpretability of lists of differentially
expressed genes through a reduction performed with
hypergeometric overrepresentation or GSEA [22]. Instead,
we have built on existing approaches that utilise pathways
explicitly as predictors, hence modelling in the “pathway
space”. Using multivariate models in the pathway space we
have devised a novel strategy to quantify the robustness of
pathway collections as compared to ungrouped genes. In
addition our pathway space representation revealed a po-
tential defining characteristic of genuine pathways as op-
posed to random ones. It should be emphasised again, that
our purpose is not to introduce a new pathway scoring
method, but to use simple or existing approaches to test
the hypothesis that pathway representations are more ro-
bust than those based on genes alone.
Our proposed “predictive robustness” measure assesses the

ability of models to sustain predictive accuracy when the data
is degraded. In this work, strong levels of perturbation to the
original data resulted in lower predictive robustness of gene
space models compared to that of pathway space models.
Multiple controls suggested that these results are independ-
ent of the specific numerical methods or data sets used and
thus the predictive robustness seems a more general property
of a given pathway collection. Notably, the accuracy of path-
way space models is not superior at low levels of degradation.
However, this is not critical to our concept of predictive
robustness, since it takes into account the maintenance of ac-
curacy from zero to 100% degradation of the data.
To build pathway based models we adopted a bottom-up

approach that included the pathway information (the gene
collections) within the input data of the models. This was
implemented by aggregation of the gene expression with an
unsupervised method (PCA) in order to reduce the chance
of over fitting, often observed in gene expression modelling
[23]. Our findings of predictive robustness confirmed the
advantage of aggregation with PCA over simpler options
such as the arithmetic mean used previously, in terms of ac-
curacy and robustness [3, 20]. It should be pointed out that
the higher robustness of pathway space models is not a triv-
ial outcome of the aggregation with PCA, since predictive
models from pathway and genes can both benefit from the
presence of redundant information amongst non-degraded
genes. In addition, we note that a single principal compo-
nent typically summarises a very small fraction of the total
variance of gene expression a pathway (see Additional file 1:
Figure S3). Thus the higher robustness of pathway models is
not simply due to PCA acting as a denoising filter, since
much systematic variation is also lost in higher components.
Using randomised pathway sets we showed that the

accuracy and predictive robustness of the true pathways
bears little or no relation to the gene membership of the
pathways as dictated by current biological knowledge.
This striking result provides an important insight into
the use (and misuse) of predictive models for extracting

information about the explanatory variables in the ‘omics’
sciences. It is often assumed that the model captures the
true relationship between the measured variables and the
outcome. In contrast, when models are assessed only on
their prediction performance, a plausible connection be-
tween the predictors and the outcomes is not required. A
mechanistic connection between the measured variables
and outcomes is not guaranteed in predictive models of
omics data even when machine learning methods combine
efficiently information distributed across many variables
[23], including even those that are only moderately corre-
lated to the outcome. In our case, PLS-DA could detect
the information from useful genes despite their reassign-
ment and aggregation into fake pathways. This confirms
that, when modelling omics data, researchers should
clearly distinguish between optimising prediction per-
formance and model interpretation.
For the second goal of quantifying the relevance of path-

way definitions for multivariate models we proposed a
randomisation method that creates fake mappings be-
tween genes and pathways. Across these models the con-
tribution of the true and fake pathway sets to prediction
rules, as revealed by regression coefficients, distributed
differently, suggesting that true pathways are “special” col-
lections. Specifically, the true pathway sets had signifi-
cantly fewer pathways with high regression coefficients
and an excess of pathways with low coefficients. These
changes in coefficient distributions, summarised though
the entropy and area between distribution curves, showed
clear differences between different source databases (Reac-
tome, KEGG, PIDB, etc), showing a potential application
to pathway collections in general. A second dataset repro-
duced all the conclusions observed throughout this work.
Interestingly a recent method for pathway discovery in-
cluded lasso regularisation to force sparsity in predictive
models of candidate pathways [7]. This supports our ob-
servation that models based on true pathways tend to be
more parsimonious.
The long lasting debate about the predictive power of

pathways suggests that the effect of pathways might be
weak, or perhaps that the predictive accuracy might not
be an adequate metric to assess the effect of pathways.
From a modelling perspective, the predictive robustness
is a novel approach that acknowledges the fact that real
life datasets are degraded versions of the true biological
signals. Our metrics based on predictive robustness and
randomisation of pathway definition could offer a fresh
viewpoint and help during tasks such automated path-
way discovery and pathway curation.

Conclusions
We propose the concept of predictive robustness as a
new tool to assess predictive models. Predictive robust-
ness assesses the strengths of pathways as predictors in
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the face of noisy data, as opposed to the outcomes of
posthoc analysis of differential gene lists. We showed
that pathway-based models achieve more robust predic-
tions than gene-based models, irrespective of the data or
exact workflow used. We also observed that use of real
pathways does not confer a higher quality of models
than randomised pathways, raising a warning regarding
the interpretation of models based on predictive ability
alone. However, we found that models based on true
pathways are simpler, in that fewer pathways contribute
strongly, when compared to those based on random col-
lections of genes. While the current work assesses the
robustness of collections of pathways, an intriguing next
step in this area would be an approach which quantifies
the predictive robustness of individual pathways or gene
sets. This might then be used in assessing the quality of
different pathway definitions.

Methods
Transcriptomic datasets and pre-processing
We employed two independent transcriptomic data sets.
The first dataset derives from the carcinoGENOMICS
(CG) project [17] intended to derive gene expression sig-
natures that predict the carcinogenicity of compounds
from in vitro cell systems (GEO accession GSE48990).
The 156 samples in the data set were hybridised to Affy-
metrix Human Genome U133 Plus 2.0 arrays which in-
cluded 60 samples treated with 6 Genotoxic compounds,
48 samples treated with 5 Non-Genotoxic compounds
and 48 samples treated with 5 Non-Carcinogenic com-
pounds. The second data set comprises microarray gene
expression measurements on the Affymetrix HuGeneFL
Hu6800 array of 72 samples from two leukaemia sub-
types (47 ALL type and 25 AML type samples already
preprocessed and available from Broad Institute website)
[18]. The first data set was pre-processed using RMA
normalisation with the default parameters implemented
in the R package affy [24]. Pathway definitions for 4233
pathways were downloaded from the Consensus Pathway
Data Base (CPDB) [25] which combines pathways from
a variety of widely used source databases. We only
retained those 20,307 genes which were mapped to at
least one pathway within the CPDB set.

Pathway scoring, signal degradation and degradation
profiles
Our approach requires us to summarise the expression
of all genes in each pathway by a score for every bio-
logical sample. Thus, gene space data matrix of n sam-
ples by m genes can be transformed to a pathway space
matrix of n samples by k pathways – see Fig. 1. By de-
fault, the pathway score was taken as the score on the
first principal component of the expression data of the
genes in a given pathway. Alternatively, we explored the

effect of using three principal components per pathway,
using the mean expression of all genes in the pathway as
the score (‘mean aggregation’), and using a previously
published method – single sample Gene Set Enrichment
Analysis (ssGSEA) [16]. By default, degradation of gene
expression profiles was performed by selecting genes at
random and replacing the data with values sampled from
a Normal distribution with the same mean and variance
as the original gene. An alternative degradation method
consisted of randomly permuting the order of the sam-
ples in the expression matrix for the selected genes. The
proportion of genes affected was varied from 0 to 100%
to simulate different levels of noise in the data. The
curve of predictive accuracy vs. level of noise (e.g. pro-
portion of probes degraded) is termed a ‘degradation
profile’ – see Fig. 2 as an example - and indicates how
robust each model is to increasing levels of noise in the
data. At each degradation level 20 data sets were gener-
ated with different sets of degraded genes. For every
realisation of the degraded gene expression matrix, we
updated the pathway score matrix accordingly, e.g. by
recomputing the principal component scores.

Predictive models and robustness statistic
Both the gene level and pathway level data were separ-
ately used to build multivariate models predictive of
relevant outcomes: carcinogenicity class (3 classes) in
the CG data and disease subtype (2 classes) for the
leukaemia data. Models were built using Partial Least
Squares-Discriminant Analysis (PLS-DA), k-Nearest
Neighbour (kNN) and a linear support vector ma-
chines (SVM) and prediction accuracy measured using
cross-validation. Accuracy was defined as the number
of correctly classified samples divided by the total
number of samples. In the case of the CG data, all
samples from a given compound treatment were left
out in the test set at each round. In the case of the
Leukaemia data, balanced 2-fold cross-validation was
used. The model complexity is given by the number of
components in the case of PLS-DA, the number of
neighbours in kNN and the soft threshold in SVM.
The complexity was selected separately for gene and
pathway models as follows: First the median predictive
accuracy was computed for each complexity at each
degradation level. Next the sum of the median accur-
acies across degradation levels was calculated for each
model complexity. The optimal complexity was selected as
the one which maximized this sum (see Additional file 1:
Figures S5.1-S5.9). We re-estimated the required complex-
ity of models for each variation to the workflow.
The local robustness, r, was quantified as the ratio of

the median accuracy, a at a given level of degradation, u,
to the accuracy on the undegraded data (u = 0):
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ru ¼ au=a0; ð1Þ
The overall predictive robustness was then defined as

the area under the local robustness curve:

R ¼
Z 1

0
rudu ð2Þ

which we evaluated using a discrete set of degradation
levels {di} and the trapezium rule. An approximate confi-
dence interval for R was calculated by estimating the ro-
bustness for each of the 20 repeats and identifying the 5
and 95% percentiles of this sample. Note that the differ-
ences in predictive robustness between gene and path-
way models were insensitive to the exact complexity of
the models (Additional file 1: Figure S5.1-S5.9).

Generation of fake pathway sets to assess pathway
significance
The generation of fake pathway sets was performed in
two ways: the default approach was to randomly per-
mute the labels of the genes in the microarray, which
preserves both the pathway sizes and the overlap of gene
membership between pathways. A second approach was
to create groups of randomly selected genes of the same
size as the true pathways.
The distribution of PLS-DA regression coefficients in

models based on true and fake pathway sets was charac-
terised through measures of Shannon entropy and an
area between curves (ABC) statistic. The entropy was
calculated as

H bð Þ ¼ −
Xk

i¼1
p bið Þ ln p bið Þð Þ

where {bi} are the PLS-DA regression coefficients for a
given pathway collection. The probability of a given co-
efficient p(bi) was estimated using a histogram of b,
based on 50 bins. The ABC statistic consisted of the
sum of absolute areas enclosed between distributions of
coefficients from each real pathway collection and the
median distribution from all fake pathway sets.
All data analysis was performed with R (version 2.7)

using custom written scripts and the R packages “class”,
“caret” and “e1071” for kNN, PLS-DA and SVM models,
respectively.
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