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Abstract

While long non-coding RNAs play key roles in disease and development, few structural studies 

have been performed to date for this emerging class of RNAs. Previous structural studies are 

reviewed and a pipeline is presented to determine secondary structures of long non-coding RNAs. 

Similar to riboswitches, experimentally determined secondary structures of long non-coding RNAs 

for one species may be used to improve sequence/structure alignments for other species. As 

riboswitches have been classified according to their secondary structure, a similar scheme could be 

used to classify long non-coding RNAs.
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Long non-coding RNAs (lncRNAs) have emerged as important players in development, 

epigenetics, stem cell biology, plant biology, RNA processing, hormone response, cancer 

and brain function [1–17]. Preceded by the widespread identification of non-coding RNAs in 

general [18, 19] long non-coding RNAs were shown to have high specificity to tissue type 

and developmental stage [20, 21] (also see [22] and references therein). One of the earliest 

known lncRNAs is Xist (X chromosome inactivation stimulated transcript), responsible for 

X chromosome inactivation during development [23]. More recently, several lncRNAs have 

been shown to be critical in HOX gene systems during development [1]. The ½sbs-lncRNA 

controls mRNA decay by hybridizing with mRNA to form a platform for STAU1 protein 

binding, triggering degradation of mRNA [6]. Other lncRNAs are required for p21 activation 

[24], stem cell reprogramming [25] and stress response [26].

Although the physiological relevance of many of the reported (>20,000) lncRNAs has not 

been determined, many lncRNAs have been shown to possess important, visible phenotypes 

[27]. In addition to Xist, required for dosage compensation, the Braveheart lncRNA has been 

shown to be required for lineage commitment in cardiomyocytes [2]. FENDRR lncRNA is 

required for heart, lung and gastrointestinal development [28]. Linc-brn1b is required for 

neocortex development [28]. The COOLAIR lncRNA is required in A. thaliana for cold-

timed flowering [4]. Additionally, the NEAT1 lncRNA has the clear phenotype of being 

critical for paraspeckle formation [29–31].
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While lncRNAs span a wide range of physiological contexts and functions, they have several 

common characteristics, including length (>200 nts), alternative splicing, poly-adenylation, 

low abundance, lack of protein product, and low sequence identity. Many studies have been 

performed to identify new lncRNAs, determine their protein partners, and determine their 

functions (via loss of function knock down and knock out experiments). However, few 

studies have examined their mechanism at the atomistic level [32]. In the past few years, 

researchers have been laying the foundation for structure-function studies. Genome-wide 

studies of RNA secondary structure have been performed, revealing the lncRNAs tend to be 

more structured than mRNAs, but less structured than ribosomal RNAs [33–39]. Detailed 

secondary structure studies of complete, intact single lncRNA systems show that some 

lncRNAs are hierarchically structured with sub-domains containing modular RNA 

secondary structure motifs [40–42]. Studies of Malat-1 and related lncRNAs show that the 

3’-end forms a triple helix, protecting it from RNase degradation [14, 43, 44]. Recent studies 

have elucidated lncRNA-protein interactions, emphasizing the need for detailed structural 

studies and mechanistic studies at the molecular and atomistic level [45, 46].

LncRNAs tend to have low sequence identity and are often described as non-conserved. We 

note that some of the most well-studied non-coding RNAs (miRNAs and rRNAs) have very 

high sequence identity (>78% in nucleic acid sequence identity) [47]. In contrast, many 

other important classes of non-coding RNAs have relatively low sequence identity (nucleic 

acid sequence identity of ~ 50%−65%), but secondary structures that are conserved across 

thousands of sequences. For example, riboswitches, which regulate metabolism in bacteria, 

typically have sequence identities of only 50%−65%, but have secondary structures 

conserved across thousands of species [47]. The U2 and U4 spliceosomal RNAs have 

sequence identities < 60% but secondary structures conserved for > 9000 sequences. The 5S 

ribosomal RNA has sequence identity of ~ 60% but secondary structure conserved over 

229,000 sequences. The group I intron has decidedly low sequence identity (~ 36%) but 

structure conserved across 60,000 species [47].

RNAs with low sequence identity are difficult to find using conventional search algorithms 

such as BLAST. However, knowledge of secondary structure dramatically enhances the 

search success. In the case of riboswitches, the RNA secondary structure was determined for 

a single species using in vitro chemical probing of the RNA in cell-free reconstituted 

systems[48–55]. Next, this structure was used as a fingerprint to find the structure in 

thousands of other species, despite the low sequence identity [56]. The secondary structures 

determined from cell-free systems by chemical probing were verified by X-ray 

crystallography [57–61].

To determine the RNA secondary structure of lncRNA molecules, we follow similar 

strategies to those used to determine the original 16S rRNA secondary structure [62–64] and 

the riboswitches [65] (Fig. 1). Namely, we perform chemical probing experiments to 

determine nucleotides that are highly mobile and likely to reside in looping regions, as well 

as those nucleotides with low mobility, likely to participate in Watson-Crick base pairs. To 

cope with the large RNA size, we employ 3S (Shot-Gun Secondary Structure), which probes 

the entire RNA first and then probes shorter segments of the RNA in successive rounds of 

probing [40, 66]. By matching signals of short segments with full RNA experiments, we 
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identify modular sub-domains, for which a secondary structure is often readily discernable. 

The resulting secondary structure can be used to improve existing phylogenetic sequence 

alignments, and, in principle, can be used to find instances of the lncRNA not previously 

found in other species. In our studies, we typically begin with either alignments generated 

by genome browser, or alignments using synteny. We then use the initial secondary structure 

to improve these sequence alignments, focusing on alignment of helical regions. Covariance 

analysis helps to validate each helix. Next, we use the helices with the most covariant base 

pairs to further improve the sequence alignment. This process can be performed iteratively, 

with improved or validated helices enabling improved sequence alignments, and improved 

sequence alignments enabling more accurate covariant measures.

To demonstrate this principle, we consider the 873 nt steroid receptor RNA activator 

lncRNA in humans (SRA-1). This lncRNA co-activates the hormone response in human 

T-47D cells and co-immunoprecipitates with a large number of important proteins, including 

several hormone receptors (estrogen receptor, progesterone receptor, androgen receptor, 

glucocorticoid receptor and thyroid receptor) [67–70]. Binding assays in in vitro cell-free 

reconstituted systems have shown strong binding to the pseudouridinylase Pus1p, estrogen 

receptor, thyroid receptor, the sex reversal factor DAX-1, and the epigenetic factor SHARP. 

While the primary function of SRA-1 is to co-activate the hormone response, a speculated 

secondary function involving the binding of SRA-1 to its cognate protein SRAP has recently 

been shown not to occur (SRA-1 does not bind to SRAP) [71].

Our previous study demonstrated that SRA-1 contains four modular secondary structure sub-

domains, each containing multiple secondary structure motifs (Fig. 2). The secondary 

structure was consistent with four different probing techniques (SHAPE, DMS, in-line, and 

RNase V1). Base pair flips with respect to species were found in the vast majority of helices. 

Binding studies have shown that SHARP binds to the helix 12 / helix 13 (H12/13) domain 

[72].

Here, to demonstrate the utilize of secondary structure determination, we use the secondary 

structure of domain IV to improve the phylogenetic alignment of SRA-1 from the Ensembl 

dataset, in a similar manner to that used by Breaker and co-workers to improve alignments 

for riboswitch ncRNAs [65]. Figure 3 shows the alignment from Ensembl and the improved 

alignment of domain IV based on the secondary structure derived form chemical probing. 

The domain IV secondary structure is present in many of the sequences and covariant base 

pairs are observed.

This strategy can, in principle, be used to identify orthologs of lncRNAs in other species. 

Before classifying a lncRNA as a non-conserved RNA, we recommend that the secondary 

structure be studied and used to search other genomes, in addition to performing BLAST 

style searches. We note that in vivo probing studies provide important information validating 

the in vitro structures. In vitro studies are important to establish the ab initio structure 

because the probing signal in vivo may to be obfuscated by multiple proteins binding to the 

RNA, as suggested recently (Fig. 4) [11, 12]. In addition, there are few known cases where 

an in vitro structure of an intact, individual RNA has been shown to differ from its 

corresponding in vivo structure. For example, the vast majority of crystallographic structures 
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of RNAs, which are of course determined in vitro, have either (i) been validated in vivo, or 

(ii) not been disproven in vivo. In the case of riboswitch RNAs, crystallographic data 

strongly support initial secondary structures determined by chemical probing techniques 

discussed above. Overall, structure-function studies of lncRNAs are in their infancy and 

represent an open area of research. Studies of larger lncRNAs (10–100 kB) may open a new 

area of structural biology and have the potential to reveal novel RNA and RNP mechanisms. 

Three-dimensional studies of smaller lncRNAs are also an exciting area, especially in light 

of the combination of specific and non-specific RNA-protein interactions thought to be 

involved in lncRNP complexes [12].

While there are few existing experimentally determined secondary structures of lncRNAs, 

the future determination of the precise and detailed secondary structure of many lncRNAs 

may allow immediate classification into type I: highly structured RNAs with sub-domains 

and complex structural motifs, such as multiway junctions, type II: loosely structured RNAs 

with multiple stem-loops, but lacking hierarchical domain structure and complex motifs, and 

type III: unstructured, disordered RNAs, which lack secondary structure. Further 

classification can proceed upon discovery of many lncRNAs with complex structure in terms 

of the specific structural motifs that organize the RNA.
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Figure 1. 
RNA secondary structure determination. (a) One sequence may be consistent with multiple 

folds. (b) Chemical probing reactivity data helps to lift degeneracy between folds. Multiple 

sequence alignment help identify covariant base pairs (pink). (c) Pipeline to determine 

secondary structures of long non-coding RNAs.
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Figure 2. 
Secondary structure of steroid receptor RNA activator, as determined by 3S, consists of four 

sub-domains. The chemical probing reactivity data helped to improve structure/sequence 

alignments for domain IV.

Sanbonmatsu Page 10

Biochim Biophys Acta. Author manuscript; available in PMC 2019 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Example of sequence alignment for domain IV of SRA. (a) Original alignment from 

Ensembl database. (b) Improved alignment using knowledge of secondary structure.
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Figure 4. 
In vivo probing signals may be obfuscated by protein binding, making it more difficult to 

distinguish configurations. (a) Schematic of SHAPE probing signal for three-helix junction. 

(b)-(d) Other configurations that may be consistent with signal (a).
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