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ABSTRACT Recombinant inbred lines (RILs) are an important resource for mapping genes controlling complex traits in many species.
While RIL populations have been developed for maize, a maize RIL population with multiple teosinte inbred lines as parents has been
lacking. Here, we report a teosinte nested association mapping (TeoNAM) population, derived from crossing five teosinte inbreds to
the maize inbred line W22. The resulting 1257 BC1S4 RILs were genotyped with 51,544 SNPs, providing a high-density genetic map
with a length of 1540 cM. On average, each RIL is 15% homozygous teosinte and 8% heterozygous. We performed joint linkage
mapping (JLM) and a genome-wide association study (GWAS) for 22 domestication and agronomic traits. A total of 255 QTL from JLM
were identified, with many of these mapping near known genes or novel candidate genes. TeoNAM is a useful resource for QTL
mapping for the discovery of novel allelic variation from teosinte. TeoNAM provides the first report that PROSTRATE GROWTH1, a rice
domestication gene, is also a QTL associated with tillering in teosinte and maize. We detected multiple QTL for flowering time and
other traits for which the teosinte allele contributes to a more maize-like phenotype. Such QTL could be valuable in maize improve-
ment.
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RECOMBINANTinbred line (RIL)populationsarepowerful
tools for investigating the genetic architecture of traits

and identifying the causal genes that underlie trait variation.
RIL populations have beenwidely used inmany organisms. In
mammals, thewell-knownCollaborativeCross, consisting of a
large panel ofmousemultiparental RILs, has been specifically

designed for the analysis of complex traits (Churchill et al.
2004). Similarly, the Drosophila Synthetic Population Re-
source (DSPR), which consists of two sets of RILs, has been
designed to combine the high mapping resolution offered by
multiple generations of recombination with the high statisti-
cal power afforded by a linkage-based design (King et al.
2012). In plants, the maize nested association mapping
(NAM) population, which crossed 25 founders to a common
parent in maize (Yu et al. 2008), has been successfully ap-
plied to a large number of traits (Buckler et al. 2009; Kump
et al. 2011; Tian et al. 2011). The NAM design has also been
utilized in other crops such as barley (Maurer et al. 2015;
Nice et al. 2016), rice (Fragoso et al. 2017), sorghum
(Bouchet et al. 2017), wheat (Jordan et al. 2018), and soy-
bean (Xavier et al. 2018). In Arabidopsis, another design,
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called the Multiparent Advanced Generation Intercross
(MAGIC) population, provides high precision for the detec-
tion of QTL (Kover et al. 2009; Huang et al. 2011). This de-
sign has also been used in wheat (Huang et al. 2012; Mackay
et al. 2014), rice (Bandillo et al. 2013), and maize (Dell’Acqua
et al. 2015).

For the study ofmaizedomestication,manynewdiscoveries
were made using a biparental maize–teosinte BC2S3 RIL pop-
ulation. Shannon (2012) performedQTLmapping for 16 traits
and examined the genetic architecture of domestication at the
whole-genome level. This RIL population has also been widely
used to fine-map QTL, and identify causal or candidate genes
for many traits, including seed shattering (Lin et al. 2012), leaf
number (Li et al. 2016), kernel row number (KRN) (Calderón
et al. 2016), shoot apical meristem morphology (Leiboff et al.
2016), vascular bundle number (Huang et al. 2016), tassel-
related traits (G. Xu et al. 2017), nodal root number (Zhang
et al. 2018), and leaf morphological traits (Fu et al. 2019).
Using this population, several QTL have been fine-mapped
to single genes including grassy tillers1 (gt1) for controlling
prolificacy (PROL) (Wills et al. 2013), prolamin box-binding
factor1 (pbf1) for kernel weight (Lang et al. 2014), glossy15
(gl15) for vegetative phase changes (D. Xu et al. 2017), UPA1
(Upright Plant Architecture1) and UPA2 for leaf angle (Tian
et al. 2019), aswell as several genes regulating flowering time:
ZmCCT10 (Hung et al. 2012), Zea Agamous-like1 (zagl1)
(Wills et al. 2017), ZmCCT9 (Huang et al. 2018), Zea mays
CENTRORADIALIS8 (ZCN8) (Guo et al. 2018), and MADS-
box transcription factor69 (ZmMADS69) (Liang et al. 2019).
In addition to phenotypic traits, the maize–teosinte BC2S3 RIL
population was used for comprehensive genome-wide expres-
sion QTL (eQTL) analysis to study the changes in gene expres-
sion during maize domestication (Wang et al. 2018), and
metabolite QTL analysis to study metabolic divergence be-
tween maize and teosinte (Xu et al. 2019).

Despite its utility, themaize–teosinte BC2S3 RIL population
has three limitations. First, there is only a single teosinte
parent, which cannot broadly represent the diversity of teo-
sinte. Second, this population had two generations of back-
crossing, which has produced a background in which some
teosinte traits are suppressed and do not segregate among
the RILs. Third, the teosinte parent was a wild outcrossed
individual which, unlike an inbred line, could not be main-
tained as a permanent resource.

In this paper, we report the development of a teosinte NAM
(TeoNAM) population of 1257 BC1S4 RILs using five teosinte
inbred parents crossed with a common maize parent (W22)
for mapping QTL for domestication and agronomic traits. We
have genotyped the RILs with 51,544 genotype-by-sequencing
(GBS) markers that provide a high-density genetic map.
The TeoNAM population captures a large number of recom-
bination events for localizing QTL to genomic locations and
the single generation of backcross allows enhanced expres-
sion of teosinte traits as compared to the BC2S3 RIL popula-
tion. We report data for 22 traits but focus our discussion on
nine traits to illustrate the utility of TeoNAM, including the

identification of candidate genes. TeoNAM will be a valuable
resource for dissecting the genetic basis of domestication and
agronomic traits.

Materials and Methods

Population development

The TeoNAM population was designed as a genetic resource
for studying maize genetics and domestication. Five wild
teosinte parents were chosen, with four teosinte inbred lines
that capture somediversity ofZ.mays ssp. parviglumis (TIL01,
TIL03, TIL11, and TIL14) and one teosinte inbred line of Z.
mays ssp.mexicana (TIL25). The common parent is a modern
maize inbred line (W22) that has been widely used in maize
genetics. The five teosinte parents were crossed to W22, and
followed by one generation of backcrossing and four gener-
ations of selfing (Supplemental Material, Figure S1). We
obtained 1257 BC1S4 RILs with 223, 270, 219, 235, and
310 lines for W22 3 TIL01, W22 3 TIL03, W22 3 TIL11,
W22 3 TIL14, and W22 3 TIL25, respectively.

Marker data

All DNA samples of 1257 lines were genotyped using GBS
technology (Elshire et al. 2011). The genotypes were called
from GBS raw sequencing reads using the TASSEL5-GBS Pro-
duction Pipeline based on 955,690 SNPs in the ZeaGBSv2.7
Production TagsOnPhysicalMap file (Glaubitz et al. 2014).
Then, the raw GBS markers were filtered in each RIL subpop-
ulation using the following steps. We first removed sites
with minor allele frequencies (MAFs) , 5% and thinned
sites 64-bp apart using “Thin Sites by Position” in TASSEL5
(Bradbury et al. 2007), and thenwe ran FSFHap Imputation in
TASSEL5 separately for each chromosome using the following
parameters: backcross, Phet = 0.03125, Fillgaps = TRUE, and
the default settings for other features. The imputed parental
call files from the 10 chromosomes were then combined to-
gether and passed to R/qtl (Broman et al. 2003) to estimate
the genetic map. The B73 reference genome v2 was used
to determine marker order, and genetic distances between
markers were calculated using the Haldane mapping function
as part of the est.map command with an assumed genotyping
error rate of 0.001, taking the BC1S4 pedigree of the RIL into
consideration (Shannon 2012). Bad genetic markers were
identified by visual inspection of the genetic map and re-
moved, thenwe repeated all filtering steps. Finally, an average
of 13,733 high-quality SNPs was obtained for each subpopu-
lation (Table 1).

Field design and phenotyping

The TeoNAM population was planted using a randomized com-
plete block design at the University of Wisconsin West Madison
Agricultural Research Station in different years. The subpopula-
tions W22 3 TIL01, W22 3 TIL03, and W22 3 TIL11 were
grown in summer 2015 and 2016, subpopulation W22 3
TIL14was grown in summer 2016 and2017, and subpopulation
W223 TIL25 was grown in summer 2017 with two blocks. We
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planted one subpopulation within each block and all lines were
randomized within each block. Each row had 16 seeds planted
1-ft apart, and spacing between any two rows was 30 in.

Twenty-two traits were scored (Table 2): days to anthesis
(DTA) (number of days between planting and when at least
one-half of the plants in a plot were shedding pollen); days to
silk (DTS) (number of days between planting andwhen at least
one-half of the plants in a plot were showing silk); anthesis–silk
interval (ASI) (number of days between anthesis and silk);
tassel branch number (TBN) (number of tassel branches on
the main stalk); culm diameter (CULM) (diameter of the nar-
rowest plane of the main stalk right above the ground); plant
height (PLHT) (distance from the ground to the topmost node
on the main stalk); leaf length (LFLN) (length of a well-de-
veloped leaf, usually fourth to sixth from top); leaf width
(LFWD) (width of a well-developed leaf, usually fourth to sixth
from top); tiller number (TILN) (number of tillers surrounding
main stalk); PROL (0 vs. 1 for absence/presence of secondary
ears at the topmost branch-bearing nodeon themain stalk); ear
branch number (EB) (number of branches on the primary lat-
eral inflorescence); staminate spikelet (STAM) (0–3 scale for
spikelet sex on the primary lateral inflorescence, where 0 indi-
cates completely feminized and 3 indicates completely stami-
nate); KRN (number of internode columns on the primary
lateral inflorescence); ear length (EL) (length of the primary
lateral inflorescence); ear diameter (ED) (diameter of the
primary lateral inflorescence); kernel weight (KW) (average
weight of 50 random kernels from five ears); shattering
(SHN) (number of pieces into which an ear shatters when
dropped to the floor from a height of�1.8 m); barren ear base
(BARE) (0–2 scale for lack of kernels at the base of the ear,
where 0 indicates kernels present at the base and 2 indicates no
developed kernels at the base of the ear); glume score (GLUM)
(0–3 scale for glume size, where 0 indicates small and 3 indi-
cates large); glume color (GLCO) (0–4 scale of glume color for
white through brown); red pericarp (REPE) (0–2 scale for col-
orless to red pericarp); and yellow pericarp (YEPE) (0–2 scale
for dull yellow to bright yellow pericarp). The average trait
values from 2 years were used for QTL analysis.

Genetic map construction and marker imputation

A composite genetic map was constructed for the TeoNAM
population.Themarkers fromthefiveRIL subpopulationswere
combined together into 51,544 unique SNPs, and the missing
genotypes were imputed according to the flanking markers. If
the flanking markers had same genotypes, the missing geno-
type was imputed as the samewith flankingmarkers, or other-
wise left as missing. The imputed genotypes were then passed
to R/qtl software to estimate the genetic map.

Since stepwise regression cannot use individuals with
missing marker data, we performed a further step to impute
missing data around breakpoint as previously described (Tian
et al. 2011). First, we transformed genotypes to a numeric
format, in which markers with a homozygous W22 parent
were coded as 0, markers with a homozygous non-W22
parent were coded as 2, and markers with heterozygous ge-

notypes were coded as 1. Markers within breakpoint were
imputed according to the genetic distance of flanking two
markers. Because stepwise regression is computationally in-
tensive, we thinned SNPs within 0.1 cM. We finally obtained
4578 markers for subsequent joint linkage analysis.

Simple QTL mapping

QTLmapping was carried out using amodified version of R/qtl
(Broman et al. 2003), which takes into account the BC1S4 ped-
igree of the RILs (Shannon 2012). For each trait, a total of
1000 permutation testswere used to determine the significance
threshold levels for claiming QTL. After permutation, an ap-
proximate LOD score of 4.0 at P, 0.05 was obtained across all
traits. With the LOD threshold, simple interval mapping was
first fitted using Haley–Knott regression implemented in the
scanone command of R/qtl. The multiple QTL model was then
applied to search for additional QTL, and accurately refineQTL
positions using refineqtl and addqtl in R/qtl. The entire process
was repeated until significant QTL could no longer be added.
The total phenotypic variation explained by all QTL was calcu-
lated from a full model that fitted all QTL terms in the model
using the fitqtl function. The percentage of phenotypic varia-
tion explained by each QTL was estimated using a drop-one
ANOVA analysis implemented with the fitqtl function. The C.I.
for each QTL was defined using a 1.5-LOD support interval. To
make results comparable among five subpopulations, the com-
posite genetic map was used for QTL mapping.

Joint linkage mapping

To map QTL in the TeoNAM population, a joint linkage
mapping (JLM) procedure was performed as previously de-
scribed (Buckler et al. 2009; Tian et al. 2011). First, a total of
1000 permutations were performed to determine the signif-
icance cutoff for each trait. JLM was performed using the
stepwise linear regression fixed model implemented by the
PROC GLMSELECT procedure in SAS software. The family
main effect was fitted first, and then marker effects nested
within families were selected to enter or leave the model
based on the permutated P-value using a marginal F-test.
After the model was fitted with stepwise regression, each
marker was dropped from the full model one at a time and
a single best marker was refitted to improve the overall fit of
the model. A threshold of a = 0.05 was used to declare
significant allele effects across families within each QTL iden-
tified by stepwise regression. The QTL support interval was
calculated by adding each marker from the same chromo-
some of that QTL at a time to the full model. If the P-value
of the marginal F-test of the QTL was not significant at the
0.01 level, the flanking marker should be in the support in-
terval for the QTL, as the new flanking marker explained the
QTL as well as the original marker.

Genome-wide association study

A genome-wide association study (GWAS) approach was
also used to map QTL in the TeoNAM population. Since GBS
producesrelatively low-densitymarkers, the955,690 rawSNPs
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from the GBS pipeline were filtered using less-conservative
criteria: MAF. 0.01, missing rate, 0.75, and heterozygosity
rate, 0.1. After this filtering, 181,404 GBS SNPs were used to
run FSFHap Imputation in TASSEL5 separately for each chro-
mosome and subpopulation using the following parameters:
backcross, Phet = 0.03125, Fillgaps = TRUE, and the default
settings for other features. Imputed genotypes were then com-
bined together, and SNPs with missing rate. 0.2 and MAF,
0.05 across 1257 RILs were removed, and a total of 118,838
SNPs were kept and used for GWAS. GWAS was performed
using a linear mixed model accounting for population struc-
ture (Q) and kinshipmatrix (K), where Qwas computed as the
first five principle components and K was calculated using a
centered Identity-By-State (IBS) method as implemented in
TASSEL (Bradbury et al. 2007). P-values , P = 0.00001
(LOD = 5) were considered to be the significance threshold,
following a previous study (Kremling et al. 2018).

QTL candidate analysis

To report the QTL position following the latest genomic
version, we used the CrossMap (Zhao et al. 2014) software
to uplift the GBS SNP positions from maize B73 reference
AGPv2 coordinates to AGPv4 coordinates. QTL candidates
were analyzed by checking the gene annotations of genes
within QTL support intervals.

Data availability

Seeds for all 1257 RILs in TeoNAM are available at the Maize
Genetics Cooperative Stock Center. The SNP genotypes for
TeoNAM are available at the Cyverse Discovery Environment
under the directory: http://datacommons.cyverse.org/browse/
iplant/home/shared/panzea/genotypes/GBS/TeosinteNAM.
The genotypic data were uploaded with AGPv2 position in
the marker name. The raw phenotypic data for TeoNAM are
available at Figshare database: https://doi.org/10.6084/
m9.figshare.9820178. The seed information, SNP genotypes,
and phenotypic data for the BC2S3 maize–teosinte RIL pop-
ulation can be found in Shannon et al. (2019). Supplemental
material available at Figshare: https://doi.org/10.25386/
genetics.9250682.

Results

Characterization of a TeoNAM population

We developed a TeoNAM population, which was constructed
by crossing five teosinte inbred lines to a maize inbred line

(W22), followed by one generation of backcross to the com-
mon recurrent maize parent and four generations of selfing
(Figure S1). The teosinte parents include four Z. mays ssp.
parviglumis lines and one Z. mays ssp.mexicana line. As such,
TeoNAMencompasses five biparental families, eachwith 219–
310 BC1S4-derived RILs for a total of 1257 RILs. The number
of segregating SNP markers ranges from 11,395 to 16,109
per family, with over 51,000 total SNP markers (Table 1).

Theexpected segregation for aBC1S4population is 73.44%
homozygous recurrent, 3.13% heterozygous, and 23.44%
homozygous donor parent. Overall, the percentage of geno-
types observed were 76.6% W22 homozygous, 15% teosinte
homozygous, and 8.1% heterozygous across all SNP sites
in the TeoNAM population (Table 1). The percentage of
teosinte varied among subpopulations from 14.2 to 16.2%
(Table 1), and also varied across the genome in all subpop-
ulations (Figure S2). The observed higher than expected het-
erozygosity may be due to unconscious selection for more
heterozygous plants that had hybrid vigor. The chromosomal
region of highest heterozygosity is on the short arm of chro-
mosome 4 near teosinte glume architecture1 (tga1) (Wang
et al. 2005). Selection against homozygotes for the teosinte
allele of tga1, which have poor ear and kernel quality, may
be the cause. For a BC1S4, the expected frequency of the
maize allele is 75%. All subpopulations deviate from this with
an excess of maize alleles (Table 1) and the amount of excess
varies across the genome (Figure S3).

We constructed genetic linkagemaps for each family and a
composite linkage map based on all RILs across all families,
and identified and annotated 51,544 high-confidence SNPs
that were used to impute the SNP alleles in the RILs. The
composite genetic map based on these markers is 1540 cM in
length including 35,880 crossovers. We examined the rela-
tionship between genetic distance in centimorgans and phys-
ical distance in megabases based on the composite genetic
map. The mean value is 0.75 cM/Mb. However, there is wide
deviation from themean across the genome (0–5.52 cM/Mb).
As expected, there is suppressed recombination near the cen-
tromeres (Figure S2) and frequent recombination near the
telomeres, where gene density is high as well (Figure S2).

We scored 22 traits for the TeoNAM lines of which 15 traits
are domestication related, including vegetative gigantism
(CULM, LFLN, and LFWD), prolificacy (PROL), tillering
(TILN), ear SHN, conversion of the inflorescence from stami-
nate to pistillate (STAM), multiple ear-related traits (EB, ED,
EL, KRN, andKW), glume traits (GLCOandGLUM), andREPE

Table 1 TeoNAM genetic map statistics

Population No. RILs No. Markers Length (cM) No. XOs cM/Mb W22 (%) Heterozygous (%) Teosinte (%)

W22 3 TIL01 223 13,088 1457 6,291 0.71 75.8 7.7 16.0
W22 3 TIL03 270 16,109 1596 8,505 0.78 75.5 8.1 16.2
W22 3 TIL11 219 13,187 1398 5,745 0.68 76.3 7.6 15.6
W22 3 TIL14 235 11,395 1348 6,462 0.65 75.7 9.4 14.6
W22 3 TIL25 310 14,884 1506 8,877 0.73 77.6 8.0 14.2
Composite 1257 51,544 1540 35,880 0.75 76.6 8.1 15.0

No., number; RIL, recombinant inbred line; XO, crossover.
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(Table 2). Additionally, several agronomic traits were scored
including flowering (ASI, DTA, and DTS), plant architecture
(PLHT and TBN), BARE, and YEPE. Most traits (ASI, CULM,
DTA, DTS, ED, EL, KRN, KW, LFLN, LFWD, PHLT, and TBN)
follow approximately normal distributions, suggesting oligo-
or polygenic genetic control of these traits, but other traits
(BARE, EB, GLCO, GLUM, PROL, REPE, SHN, STAM, TILN,
and YEPE) exhibited a skewed or nonnormal distribution.
Some of these traits are meristic or discrete traits (e.g., PROL
or TILN). A few traits, like STAM, show a two-part distribu-
tion with a spike at 0 plus a continuous range of values from
0 to 2, which suggests that they may be polygenic threshold
traits (Figure S4). There are also substantial differences in
trait means among the five subpopulations, indicating under-
lying differences in genetic architecture among the five teo-
sinte inbreds (Figure S5).

Validation of the power of TeoNAM

QTL mapping: We used both JLM and the GWAS method as
two complementary approaches for QTL detection. We also
used basic interval QTL mapping for the five individual sub-
populations to provide a guide for futurework to fine-map the
genes underlying the QTL. We detected 255 QTL for 22 traits
by JLM, which combines information across all families (Fig-
ure 1 and Table S1). We detected a total of 150 QTL by
GWAS, among which 57 QTL overlapped with QTL by JLM
(Table S2). Separate QTL mapping for each subpopulation
detected 464 QTL in total, among which 293 QTL overlapped
with QTL by JLM (Figures S6–S27 and Table S3). Below, we
focus on QTL detected by JLM for our characterization of
the genetic architecture and the distribution of QTL allelic
effects.

Among 22 traits, the numbers of QTL range from 2 to 24;
the traitwith themostQTL is KRN.Genetic architecture varies
considerably among traits (Figure 2 and Figure S28). Several
traits—including BARE, GLCO, GLUM, PROL, REPE, and
STAM—had relatively simple genetic architectures, with a
single QTL of very large effect plus a few (3–10) QTL of small
effect. The largest QTL for each of these traits has between
2.1 and 11.7 times the size of the effect of the second largest
QTL. A second class of traits has a genetic architecture that is
either more polygenic (ED, KRN, KW, LFLN, TBN, and TILN)
or has only a few QTL of small effect (ASI, CULM, EB, LFWD,
PLHT, and SHN). For these traits, there was no single large-
effect QTL that accounts for the majority of the explainable
variation. The largest effect QTL for each of these traits has
between 1 and 1.8 times the size of the effect of the second
largest QTL. A final class of traits has a genetic architecture
with both a single QTL of moderately large effect plus multi-
ple (11–19) QTL of small effect. These traits include DTA,
DTS, EL, and YEPE. The largest effect QTL for each of these
traits is between 2.1 and 3.7 times the size of the effect of the
second largest QTL.

QTL for agronomic traits: DTA is a classical quantitative
trait formaize, and inTeoNAM, it is controlledbya large-effect
QTL plus many small-effect QTL from JLM results. We de-
tected19QTLthatexplained68%of the total variance forDTA
(Figure 3). Among them, several recently cloned flowering
time genes were detected. For example, zagl1 was included
within QTL DTA1.1, which affects flowering time as well as
multiple traits related to ear size, with the maize allele con-
ferring larger ears with more kernels (Wills et al. 2017).
ZmMADS69 was included within QTL DTA3.1, which func-
tions as a flowering activator through the ZmRap2.7-ZCN8
regulatory module, and contributes to both long-day and
short-day adaptation (Liang et al. 2019). ZCN8 was included
within QTL DTA8.1, which is the maize florigen gene and has
a central role in mediating flowering (Meng et al. 2011; Guo
et al. 2018). ZmCCT9 was included within QTL DTA9.1, in
which a distant Harbinger-like transposon acts as a cis-regu-
latory element to repress its expression to promote flowering
under the long days of higher latitudes (Huang et al. 2018).
ZmCCT10 was included within QTL DTA10.1, which is a
known gene involved in the photoperiod response in maize
(Hung et al. 2012; Yang et al. 2013).

In addition to these genes, we also identified several other
candidate genes for DTA that have not previously been char-
acterized as genes underlying a QTL. Z. mays CENTRORADIA-
LIS12 (ZCN12) was included within QTL DTA3.2, which is a
potential floral activator (Meng et al. 2011). Z. mays MADS19
(Zmm19) was included within QTL DTA4.1 and Z. mays
MADS31 (Zmm31) was included within DTA5.1. silky1
(si1) was included within QTL DTA6.1, which is also a
MADS-box gene required for lodicule and stamen identity
(Ambrose et al. 2000). Zea AGAMOUS1 (ZAG1) was included
within QTL DTA6.2, which is known to affect maize flower
development (Schmidt et al. 1993). It is well known that

Table 2 List of 22 domestication and agronomic traits scored

Trait Abbreviation Units Category

Anthesis–silk interval ASI count Agronomic
Barren ear base BARE score Agronomic
Days to anthesis DTA count Agronomic
Days to silk DTS count Agronomic
Plant height PLHT cm Agronomic
Tassel branch number TBN count Agronomic
Yellow pericarp YEPE score Agronomic
Culm diameter CULM mm Domestication
Ear branch number EB count Domestication
Ear diameter ED mm Domestication
Ear length EL cm Domestication
Glume color GLCO score Domestication
Glume score GLUM score Domestication
Kernel row number KRN count Domestication
Kernel weight KW g Domestication
Leaf length LFLN cm Domestication
Leaf width LFWD cm Domestication
Prolificacy PROL binary Domestication
Red pericarp REPE score Domestication
Shattering SHN count Domestication
Staminate spikelet STAM score Domestication
Tiller number TILN count Domestication
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MADS-box genes encode transcription factors that are key
regulators of plant inflorescence and flower development
(Theissen et al. 2000). Other thanMADS genes, delayed flow-
ering1 (dlf1), a floral activator gene downstream of ZCN8
(Meng et al. 2011), was included within QTL DTA7.2.

As expected, the teosinte alleles delayed flowering for the
above QTL that mapped to candidate genes (Figure 3). We
plotted the phenotypic difference in DTA between teosinte
and maize across the whole genome, and the teosinte geno-
type was associated with late flowering over most of the
genome, even where no QTL were detected, suggesting that
there are many additional minor-effect QTL that were not
detected due to insufficient statistical power (Figure S29).
Interestingly, chromosomes 5 and 7 are exceptions to this
pattern, with the teosinte genotype being associated with
early flowering at most sites (Figure S29). Results for DTS
were similar to those for DTA, as expected (Figure S30).

TBN is the only tassel trait that we scored. We detected
12 QTL of small effect that explained 52% of the total vari-
ance for TBN (Figure S31). Among them, several classical
genes were identified. fasciated ear4 (fea4) was included
within QTL TBN6.1, which is a bZIP transcription factor with

fasciated ears and tassels, as well as greatly enlarged vegeta-
tive and inflorescence meristems (Pautler et al. 2015).
tasselsheath1 (tsh1) was included within QTL TBN6.2, which
is a GATA class transcription factor that promotes bract
growth and reduces branching (Whipple et al. 2010).
ramosa1 (ra1) was included within QTL TBN7.1, which is a
C2H2 zinc finger transcription factor that has tassels with an
increased number of long branches as well as branched ears
(Vollbrecht et al. 2005). tasselsheath4 (tsh4) was included
within QTL TBN7.2, which is a SQUAMOSA promoter-bind-
ing protein (SBP)-box transcription factor that functions
to repress lateral organ growth and also affects phyllotaxy,
axillary meristem initiation, and meristem determinacy
within the floral phase (Chuck et al. 2010). Barren inflores-
cence1 (Bif1) was included within QTL TBN8.1, which shows
decreased production of branches and spikelet pairs
(Barazesh and McSteen 2008). Zea floricaula leafy1 (zfl1)
was included within QTL TBN10.1, which together with its
homolog zfl2 leads to a disruption of floral organ identity and
patterning, as well as to defects in inflorescence architec-
ture and in the vegetative-to-reproductive phase transition
(Bomblies et al. 2003).

Figure 1 Genomic distribution of
QTL for all 22 traits in TeoNAM.
The 22 agronomic (A) and do-
mestication (B) traits are plotted
in layers with different back-
ground colors, following the or-
der of ASI, BARE, DTA, DTS,
PLHT, TBN, YEPE, CULM, EB, ED,
EL, GLCO, GLUM, KRN, KW,
LFLN, LFWD, PROL, REPE, SHN,
STAM, and TILN outward. Black
dots indicate QTL peaks detected
by JLM and colored bars indicate
the support interval of QTL for
different traits. The heat map in
the outmost layer (C) shows the
number of QTL peaks using a slid-
ing window of 10- and 1-cM
steps, where low-to-high densi-
ties of QTL (0–13) are shown in
light-to-dark red, respectively.
ASI, anthesis–silk interval; BARE,
barren ear base; DTA, days to
anthesis; DTS, days to silk; CULM,
culm diameter; EB, ear branch
number; ED, ear diameter; EL,
ear length; GLCO, glume color;
GLUM, glume score; KRN, kernel
row number; KW, kernel weight;
LFLN, leaf length; LFWD, leaf
width; PLHT, plant height; PROL,
prolificacy; REPE, red pericarp;
SHN, shattering; STAM, stami-
nate spikelet; TBN, tassel branch
number; TILN, tiller number;
YEPE, yellow pericarp. chr, chro-
mosome; JLM, joint linkage map-
ping; TeoNAM, teosinte nested
association mapping.
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QTL for domestication traits: TILN is a classical domestica-
tion trait that measures the difference in plant architecture
between maize and its wild relative teosinte, i.e., the low
apical dominance of a highly branched teosinte plant as
compared to the less-branched maize plant. We detected
18 small-effect QTL that explained 68% of the total variance
for TILN (Figure S32). Among them, teosinte branched1 (tb1)
was included within QTL TILN1.3, which is a TCP family of
transcriptional regulators contributing to the increase in api-
cal dominance during maize domestication (Doebley et al.
1997). Additionally, Zea AGAMOUS2 (ZAG2) was included
within QTL TILN3.2, which is a MADS-box gene recently
found to be downstream of tb1 (Studer et al. 2017). Zmm20
and Zmm26 were included within QTL TILN1.1 and TILN5.2,
respectively, which are two other MADS-box genes that were
possible targets of selection during domestication (Zhao et al.
2011). PROSTRATE GROWTH1 (PROG1) was included within
QTL TILN7.1, which is a C2H2 zinc finger protein controlling a
key change during rice domestication from prostrate to erect
growth, and also affecting plant architecture and yield-related
traits (Jin et al. 2008; Tan et al. 2008). There are 13 genes in the
support interval and the QTL peak is closest to PROG1, being
�14 kb 59 of the start site (Figure S32). This is the first evidence
that PROG1 may have had a role in maize domestication.

GLUM is a classical maize domestication trait that mea-
sures the dramatic change from the fruitcase-enveloped ker-
nels of the teosinte ear to the naked grains of maize ear.
Previously, this trait was shown to be largely controlled by
a single gene that is known as teosinte glume architecture1
(tga1) (Wang et al. 2005, 2015). Interestingly, tga1 is a direct
target of tb1. We detected 11 QTL that explained 62% of the
total variance for GLUM. These QTL include tga1 itself within
a large-effect QTL GLUM4.1 plus several small-effect QTL

(Figure S33). Among the small-effect QTL, two MADS genes
(Zmm27 and Zmm7) were included within GLUM2.2 and
GLUM7.1, respectively. In this regard, Studer et al. (2017)
recently defined a maize domestication gene network in
which tga1 regulates multiple MADS-box transcription
factors.

PROL is also an important domestication trait that mea-
sures the difference between the many-eared plants of teo-
sinte and the few-eared (one or two) plants of maize.
Previously, a large-effect QTL was fine-mapped to a region
2.7 kb upstream of gt1 (Wills et al. 2013). Interestingly, gt1 is
a known target of tb1 (Whipple et al. 2011).We detected four
QTL that explained 39%of the total variance for PROL, which
included a single large-effect QTL plus three small-effect
QTL (Figure S34). Concordantly, gt1 was included within
QTL PROL1.1. The QTL PROL3.1 support interval included
sparse inflorescence1 (spi1), which affects the initiation of
axillary meristems and lateral organs during vegetative and
inflorescence development in maize (Gallavotti et al. 2008).

STAM measures the proportion of the terminal lateral
inflorescence on the uppermost lateral branch that is stami-
nate.Relative todomestication, this trait represents the sexual
conversion of the terminal lateral inflorescence from tassel
(staminate) in teosinte to ear (pistillate) in maize. Currently,
tb1 and tassels replace upper ears1 (tru1) are the only two
genes that have been shown to regulate this sexual differ-
ence. We detected five QTL that explained 27% of the total
variance for STAM (Figure 4). QTL STAM1.2 mapped up-
stream of tb1, which is an important domestication gene
known for various traits (Doebley et al. 1995). tru1 was in-
cluded within QTL STAM3.1, which is a direct target of tb1
(Dong et al. 2017). tassel seed2 (ts2) was includedwithin QTL
STAM1.1, which is a recessive mutant that produces pistillate
spikelets in the terminal inflorescence (tassel) (Irish and
Nelson 1993). Z. mays MADS16 (Zmm16) was included
within QTL STAM3.2. tassel sheath4 (tsh4) was included
within QTL STAM7.1, which is an SBP-box transcription fac-
tor that regulates the differentiation of lateral primordia
(Chuck et al. 2010). In addition to these QTL, two other
STAM QTL were detected by GWAS. Notably, a QTL on chro-
mosome 1 (AGPv4 chromosome 1:234.4–249.9 Mb) is lo-
cated upstream of tb1 and colocalized with STAM1.1 from a
recent study (Yang 2018). The known gene anther ear1 (an1)
is a strong candidate gene for this QTL since loss of an1 func-
tion results in the development of staminate flowers in the
ears (Bensen et al. 1995). The tb1 QTL region was also de-
tected by GWAS with a strong signal (AGPv4 chromosome
1:264.1–283.1 Mb), which includes tb1.

SHNmeasures ear shattering, the loss ofwhich is a key step
during crop domestication (Doebley et al. 2006). Teosinte
ears have abscission layers between the fruitcases (modified
internodes) that allow the ear to shatter into single-seed units
(fruitcase) at maturity. The maize ear lacks abscission layers
and remains intact at maturity. Currently, only two maize
orthologs (ZmSh1-1 and ZmSh1-5.1+ZmSh1-5.2) of sor-
ghum and rice Shattering1 (Sh1) have been verified for seed

Figure 2 Distinct genetic architectures for different traits. The nine traits
that we focused on in the main text are shown. The x-axes indicate QTL
and the y-axes indicate the phenotypic variation explained by each QTL
(R2). Red numbers indicate variance explained by the QTL model for each
trait. The R2 distribution for 13 additional traits can be found in Figure
S28. DTA, days to anthesis; GLUM, glume score; KRN, kernel row num-
ber; PROL, prolificacy; REPE, red pericarp; SHN, shattering; STAM, stami-
nate spikelet; TBN, tassel branch number; TILN, tiller number.
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SHN (Lin et al. 2012). We detected six QTL that explained
30% of the total variance for SHN (Figure S35). Sh1-1 and
Sh1-5.1/5.2 were included within QTL SHN1.1 and SHN5.1,
respectively, confirming prior identification of these maize
paralogs of the sorghum SHN gene as strong candidates for
our QTL.

KRN is a domestication trait measuring the dramatic
change from the two-ranked teosinte ear to amultiple-ranked
(fourormore)maizeear.Wedetected24small-effectQTL that
explained 62% of the total variance for KRN (Figure S36).
Among them, indeterminate spikelet1 (ids1) was included
within QTL KRN1.3, which is an APETALA2-like transcription
factor that specifies determinate fates by suppressing inde-
terminate growth within the spikelet meristem (Chuck et al.
1998). A previous fine-mapping study of KRN using a maize–
teosinte BC2S3 RIL population also identified ids1 as a strong
candidate for KRN (Calderón et al. 2016). unbranched3 (ub3)
was included within QTL KRN4.2, which is an SBP transcrip-
tion factor that has been shown to regulate KRN in both
mutant and QTL studies (Chuck et al. 2014; Liu et al.
2015). ramosa1 (ra1) was included within KRN7.1, which
is a C2H2 zinc finger transcription factor controlling inflores-
cence architecture (Vollbrecht et al. 2005).

REPE, which concerns a reddish–brownish pericarp, is a
trait that distinguishes teosinte kernels from those of most
maize. The role of pigmentation in domestication is complex
in that pigments can provide defenses against molding and

bird predation, but can also impart bitterness and astringency
(Morohashi et al. 2012). The red (or reddish–brownish) pig-
mentation often results from the accumulation of phloba-
phenes, which are flavonoid pigments (Morohashi et al.
2012). In the absence of the reddish–brownish pigment,
the kernels are white unless anthocyanins (blue–purple) or
carotenoids (yellow–orange) are present. Our results show
that Pericarp color1 (P1) was included within QTL REPE1.1
(Figure S37), which encodes an R2R3 Myb-like transcription
factor that governs the biosynthesis of brick-red flavonoid
pigments (Grotewold et al. 1994).

Results for 13 additional traits (ASI, BARE, CULM, DTS,
EB, ED, EL, GLCO, KW, LFLN, LFWD, PLHT, and YEPE) are
reported in the supplemental figures and tables (Figures S30
and S38–S49, and Table S1).

New discoveries and avenues for future research

QTL hotspots: To evaluatewhetherQTL detected in TeoNAM
are overrepresented in specific genomic regions, we counted
andplotted thenumberofQTLpeaksusing slidingwindowsof
10- and 1-cM steps (Figure 1). The windows with at least five
QTL were considered as QTL hotspots under 1000 permuta-
tion tests (P, 0.001) and continuous windows were merged
together. We totally identified 15 QTL hotspots, ranging from
5 to 13 QTL (Table S4). The two largest hotspots (hs10-1 and
hs4-1) were located on chromosomes 10 and 4, respectively.
A close view of genes under the hotspots shows that hs10-1

Figure 3 QTL characterization for agronomic
trait DTA. (A) Genomic distribution of 19 QTL
for DTA detected by JLM. The known candidate
genes are shown above the corresponding QTL
in bold italic. (B) Heat map shows additive allele
effects of teosinte relative to maize in number
of days for 19 QTL detected by JLM. The al-
lele effect of teosinte parent 8759 was esti-
mated from the 866 maize–teosinte BC2S3
RILs (Shannon 2012). Insignificant effects are
shown as blank. Red and blue colors indicate
that the teosinte alleles delay or promote flow-
ering time, respectively. (C) Manhattan plot
shows QTL detected by GWAS. The signifi-
cance threshold at LOD = 5 is indicated by
black dotted line. The red stars indicate GWAS
signals overlapping with QTL by JLM. In (A) and
(C), odd and even numbered chromosomes are
shown in blue and orange colors, respectively.
DTA, days to anthesis; GWAS, genome-wide
association study; JLM, joint linkage mapping;
RIL, recombinant inbred line.
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and hs4-1 are around ZmCCT10 and tga1, respectively. These
results suggest that these two regulatory genes may have
pleiotropic effects on multiple traits.

QTL detection and effects: To evaluate the power of QTL
mapping using TeoNAM, we summarized the distribution of
QTL detected with significant effects in the different subpop-
ulations. Among 255 QTL for 22 traits, 246 QTL (96%) were
detected in twoormore subpopulations, 186QTL (73%)were
detected in three or more subpopulations, 83 QTL (33%)
were detected in four or more subpopulations, and 29 QTL
(11%) were detected in all five subpopulations (Figure 5A).
These percentages are conservative as not all traits were
scored in all five subpopulations. If one considers whether
the QTL was detected in subpopulations in which it was
scored, then 205 QTL (80%) were detected in at least one-
half of the subpopulations and 39 QTL (15%) were detected
in all subpopulations.

The allelic effects from different teosinte parents were
estimated simultaneously by JLM. For most QTL, the allelic
effects from different subpopulations are in the same direction
(Figure 5B). For seven traits (EB, GLUM, LFWD, PROL, SHN,
STAM, and YEPE), the teosinte genotypes were consistently
associatedwith a teosinte phenotype and theW22 allelewith a
maize phenotype at all QTL. For all other traits, there were
cases in which a teosinte allele was associated with the maize
phenotype. For example, the teosinte genotype is associated
with late flowering at most QTL for DTA except DTA5.2 and

DTA7.1, for which the teosinte genotype consistently contrib-
utes to early flowering in at least three subpopulations (Figure
2). Similar results were observed for KRN and EL. The teosinte
genotype is associated with lower KRN at most QTL, but there
is one QTL (KRN5.1) for which the teosinte genotype is con-
sistently associated with higher KRN in four subpopulations
and also in the BC2S3 population (Figure S36). The teosinte
genotype is associated with shorter EL at most QTL, but there
are two QTL (EL4.1 and EL9.1) for which the teosinte geno-
type is consistently associated with longer EL in four and two
subpopulations, respectively (Figure S43). These QTL might
be worth exploring further for use in maize improvement.

We also observed notable results for different teosinte
parents. For KW, the teosinte genotype from different subpop-
ulations is associatedwith reduced kernel weight at most QTL.
Only three QTL (KW5.3, KW6.2, and KW9.1) are exceptions,
with one teosinte allele conferring heavier kernels. Interest-
ingly, for these three QTL, the teosinte alleles with effects in
the opposite direction are all from the TIL14 subpopulation
(Figure S45). Similar results were observed for ED, where the
teosinte genotype is associated with a decrease in ED at most
QTL, but the teosinte allele from TIL03 at two QTL (ED2.1 and
ED6.1) is associated with the increase of ED (Figure S42).
These results suggest that there are beneficial alleles from
teosinte that could be utilized for maize improvement.

Comparing and combining TeoNAM with BC2S3: We com-
pared TeoNAM with our previous maize–teosinte BC2S3 RIL

Figure 4 QTL characterization for domestica-
tion trait STAM. (A) Genomic distribution of
five QTL for STAM detected by JLM. The known
candidate genes are shown above the corre-
sponding QTL in bold italic. (B) Heat map shows
additive allele effects of teosinte relative to
maize for five QTL detected by JLM. The al-
lele effect of teosinte parent 8759 was esti-
mated from the 866 maize–teosinte BC2S3
RILs (Shannon 2012). Insignificant effects are
shown as blank. The teosinte genotypes at
all QTL consistently contribute to a stami-
nate lateral inflorescence. (C) Manhattan plot
shows QTL detected by GWAS. The signifi-
cance threshold at LOD = 5 is indicated by
black dotted line. The red stars indicate GWAS
signals overlapping with QTL by JLM. In (A) and
(C), odd and even numbered chromosomes are
shown in blue and orange colors, respectively.
GWAS, genome-wide association study; JLM,
joint linkage mapping; RIL, recombinant inbred
line; STAM, staminate spikelet.
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population. The composite genetic map for TeoNAM is
1540 cM in length. The individual genetic maps based on
the five subpopulations have an average length of 1461 cM
with a range of 1348–1596 cM. The genetic map for BC2S3
RIL population is 1478 cM in length. Thus, the TeoNAM
subpopulations are similar to the BC2S3 RIL population in
genetic map length. The median length of homozygous teo-
sinte segments in TeoNAM is 7.5 Mb. The median length of
homozygous teosinte segments in BC2S3 population is 4.8 Mb.
The longer segment length for TeoNAM is expected given it had
one fewer generations of backcrossing and less opportunity for
recombination. The mean number of homozygous teosinte seg-
ments in TeoNAM is 2414 and the number of homozygous
teosinte segments in BC2S3 is 5745. The total length of teosinte
segments for the five subpopulations is 67 gigabases (Gb)
(W22 3 TIL01), 87 Gb (W22 3 TIL03), 66 Gb (W22 3
TIL11), 59 Gb (W22 3 TIL14), and 79 Gb (W22 3 TIL25),
and BC2S3 (W22 3 8759) exceeds this range with 110 Gb.

Previously, Shannon (2012) performed a comprehen-
sive interval QTL analysis for 16 agronomic traits in the
BC2S3 population and identified 218 QTL for 16 traits.
Among these traits, 14 traits were also scored in TeoNAM
population. For the common 14 traits, 168 and 179 QTLwere
detected for the TeoNAM and BC2S3 populations, respec-
tively. The mean 1.5-LOD QTL support interval across
14 traits for BC2S3 is 5.7 Mb, which is significantly smaller
than the TeoNAM interval of 17.2 Mb determined by JLM

(P= 2.6E–08) (Figure S50). Among these QTL, 50 overlapped
between the two populations. For the common QTL, the
mean variance explained by QTL is 3.4 and 2.9% for BC2S3
and TeoNAM, respectively. Thus, there is no significant dif-
ference in QTL effect size (P = 0.3) (Figure S51).

Among the 50 commonQTL between TeoNAM and BC2S3,
12 QTL were detected with significant effects and consistent
effect directions in all five subpopulations of TeoNAM and
BC2S3 (Table 3). Another 23 QTL were not significant in all
five subpopulations of TeoNAM but with consistent effect
direction (Table 3). Among these QTL, known candidates
include zagl1 for DTA1.1, Zmm31 for DTA5.1, dlf1 for
DTA7.2, ZCN8 for DTA8.1, ZmCCT9 for DTA9.1, ZmCCT10
for DTA10.1, tga1 for GLUM4.1, ids1 for KRN1.3, ra1 for
KRN7.1, P1 for REPE1.1, ZmSh1-1 for SHN1.1, ZAG2 for
TILN3.2, and tb1 for ED1.3 and STAM1.2. There are also
novel candidates: smk1 (small kernel1) for ED2.4 and GIF1
(GRAIN INCOMPLETE FILLING 1) for EL10.1. smk1 encodes a
pentatricopeptide repeat protein required for mitochondrial
nad7 (NADH dehydrogenase subunit7) transcript editing, and
seed development in maize and rice (Li et al. 2014). GIF1
encodes a cell wall invertase required for carbon partitioning
during early grain filling in rice (Wang et al. 2008). Among
the candidates, causative sites have been reported for only
three: ZCN8, ZmCCT10, and tga1. Therefore, there are many
new candidates for future fine-mapping of their causative
polymorphisms.

To maximize the power to detect QTL, we combined
TeoNAM and BC2S3 for eight traits (DTA, ED, EL, KRN,
KW, GLCO, GLUM, and TILN) that were measured in all six
subpopulations via the exact same method used to perform
JLM. Before analysis, we imputed the genotype for BC2S3 at
4578 TeoNAM SNPs according to the flanking markers using
the same procedure as for TeoNAM and permuted a new
P-value cutoff for statistical significance for each trait. The
Least Squared Means (LSMs) from previous analysis (Shannon
2012) were used for JLM. With the combined TeoNAM–BC2S3
data, we detected 184 QTL for these eight traits, which in-
cluded 109 QTL overlapping with TeoNAM, 80 QTL overlap-
ping with the BC2S3, and 32 novel QTL that were not
detected in either TeoNAM or BC2S3 (Table S5). The QTL
with significant allele effects in multiple subpopulations will
be good targets for fine-mapping. For future analysis of ad-
ditional traits, one could combine TeoNAM and the BC2S3
together. The value of this combination is that there is one
additional teosinte allele and increased QTL detection power,
but the downside is that one would need to assay the BC2S3
population using 866 RILs plus TeoNAM with 1257 RILs.

Discussion

RILs are powerful tools for dissecting the complex genetic
architectures of different traits and for gene discovery. RILs
such as the maize NAM population have been successfully
used for the genetic dissection of many traits (Buckler et al.
2009; Kump et al. 2011; Tian et al. 2011). RILs with multiple

Figure 5 QTL detection and effects for all 22 traits. (A) Summary of QTL
detection for all 22 traits. The number above the bar indicates the number
of subpopulations in which the trait was scored. (B) Summary of QTL
effect directions for all 22 traits. The number above the bar indicates
the number of QTL within which a teosinte allele associated with the
maize phenotype was detected.
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parents greatly increase the power and precision to identify
QTL compared to the traditional biparent RIL population.
Multiparent RILs also enable the estimation of allele effects
simultaneously from each inbred parent. Our TeoNAM RILs
were created by crossing five teosinte inbred parents with a
maize inbred parent, but differ from MaizeNAM in that we
applied a generation of backcrossing to the maize parent
before four generations of selfing. The power and precision
of TeoNAM can be shown with several traits. For example,
we detected 19 QTL for DTA, among which many QTL
mapped to recently cloned genes such as ZmCCT10,
ZmCCT9, ZCN8, zagl1, and ZmMADS69. QTL also mapped
to some novel candidates such as dlf1, si1, ZAG1, ZCN12,
Zmm19, and Zmm31, which may have an important role in
flowering time regulation.

For RIL populations, both JLM and GWAS are common
methods for QTL detection. In this study, we identified

255 QTL for 22 traits by JLM, and significant peaks were
detected at 57 QTL by GWAS, which suggests that GWAS is
less powerful than JLM for mapping QTL in TeoNAM. Nev-
ertheless, there were a few instances in which GWAS gave
evidence of closely linked QTL that were not separated by
JLM. For example, we did not identify an1, a strong candidate
for STAM QTL on chromosome 1, with JLM possibly because
it is closely linked to tb1 (candidate of QTL STAM1.2), but we
detected distinct and significant peaks at both an1 and tb1
through GWAS as it tests each SNP independently.

TeoNAMreveals that there aredistinct genetic architectures
fordifferent traits. Traits likePROLandGLUMarecontrolledby
a major effect QTL plus several QTL of very small effect, while
traits like DTA and KRN show more classic polygenic inheri-
tance. Domestication traits controlled by single major genes
have frequently been reported in a variety of crops (Doebley
et al. 2006). There is less emphasis in the literature on

Table 3 QTL with same effect direction between TeoNAM and BC2S3

Trait QTL Chr
QTL peak
(V4) (Mb)

Support
interval
(V4) (Mb)

QTL
peak
(cM)

Support
interval
(cM) P-value TIL01 TIL03 TIL11 TIL14 TIL25 8759a

Candidate
gene

BARE BARE4.3 4 55.9 39.0–124.3 61.5 58.2–66.8 4.72E–07 0.19 0.25 0.19 0.14b 0.09b 0.63 tga1
DTA DTA1.1 1 4.5 2.8–5.6 9.0 3.4–13.2 1.26E–16 0.59 1.02 1.23 1.31 0.77 0.81 zagl1
DTA DTA3.3 3 231.4 226.3–233.4 167.2 156.7–170.0 4.54E–08 0.64 1.05 0.68 0.13b 0.73 0.49
DTA DTA5.1 5 6.9 6.7–7.2 30.7 29.2–31.5 2.62E–18 1.11 0.80 1.11 1.24 1.30 0.66 Zmm31
DTA DTA7.2 7 180.4 180.1–180.8 140.7 139.3–141.8 2.92E–14 0.53 1.37 0.77 0.58 1.16 0.59 dlf1
DTA DTA8.1 8 126.9 126.6–126.9 68.3 68.2–68.3 4.05E–54 1.64 2.00 2.63 1.72 1.59 1.54 ZCN8
DTA DTA9.1 9 117.5 115.7–118.8 72.9 72.4–74.6 4.76E–33 0.65 3.16 1.24 0.74 1.39 0.79 ZmCCT9
DTA DTA10.1 10 95.4 94.9–99.4 54.7 54.3–55.1 9.29E–121 3.47 3.22 2.46 4.87 4.54 3.61 ZmCCT10
EB EB7.1 7 121.5 103.9–132.7 64.8 60.1–72.7 5.18E–14 0.02b 0.01b 0.06 0.05 0.01b 0.05
ED ED1.3 1 277.1 265.1–283.1 134.7 127.6–141.3 6.45E–06 21.02 20.28b 21.38 20.25b 20.64 21.87 tb1
ED ED2.4 2 217.2 211.9–223.4 123.3 116.8–133.5 1.22E–06 20.46b 20.79 20.39b 20.72 20.85 20.88 smk1
ED ED3.2 3 218.4 214.8–219.8 140.1 133.8–142.3 1.34E–13 21.18 20.45 20.72 20.34b 21.33 20.89
ED ED4.1 4 7.8 6.8–11.1 23.8 21.5–30.1 1.50E–11 21.59 20.48 20.01b 20.64 20.25b 20.74
ED ED7.2 7 163.6 160.4–164.2 98.0 94.1–98.4 2.47E–19 20.67 20.94 21.59 21.30 20.78 20.81
EL EL7.1 7 125.5 123.7–130.3 66.8 65.7–70.5 4.64E–17 20.82 20.34 20.56 20.21b 20.81 20.97
EL EL8.1 8 156.5 150.4–157.6 82.5 78.1–83.4 2.84E–11 20.19b 20.48 20.15b 20.21b 20.68 20.66
EL EL10.1 10 115.0 115.0–118.9 58.5 58.8–60.0 6.87E–40 20.12b 20.88 20.85 21.68 21.17 21.34 GIF1
GLCO GLCO4.1 4 42.1 39.0–42.1 59.6 58.2–59.6 5.98E–24 0.01b 0.12 0.08b 0.31 0.37 0.27
GLUM GLUM4.1 4 42.1 40.4–55.9 59.6 59.1–61.5 2.57E–168 0.74 0.77 0.73 0.93 1.06 0.8 tga1
KRN KRN1.3 1 298.5 298.1–299.6 165.7 164.9–168.2 2.73E–16 20.51 20.58 20.35 20.09b 20.26 20.63 ids1
KRN KRN4.3 4 243.5 241.6–244.8 145.6 137.4–152.1 8.27E–07 20.22 20.41 20.18 20.23 20.23 20.55
KRN KRN5.1 5 2.4 2.3–2.9 12.7 11.7–15.0 8.72E–14 0.36 0.51 0.12b 0.40 0.24 0.3
KRN KRN7.1 7 95.2 21.5–123.7 58.6 49.6–65.7 7.00E–11 20.36 20.18 20.54 20.06b 20.42 20.26 ra1
KRN KRN8.2 8 171.3 169.6–173.4 106.8 100.8–113.0 6.70E–13 20.49 20.40 20.38 20.04b 20.15b 20.25
KW KW1.2 1 234.3 222.8–252.5 110.3 106.5–116.4 6.01E–10 20.01 20.01 20.01 20.00b 20.01 20.01
KW KW2.1 2 53.3 36.9–57.5 74.3 64.3–76.1 1.32E–11 20.01 20.00b 20.01 20.01 20.00b 20.01
KW KW4.2 4 170.1 156.8–174.8 82.8 73.6–84.2 1.69E–08 20.01 20.01 20.01 20.00b 20.00b 20.01
KW KW8.1 8 137.7 132.5–145.9 72.7 70.4–75.4 1.31E–12 20.00b 20.01 20.01 20.01 20.01 20.01
REPE REPE1.1 1 47.0 46.5–51.8 64.9 64.4–68.3 2.71E–11 20.10 20.10 20.06 20.10 20.10 20.10 P1
SHN SHN1.1 1 265.1 264.1–265.1 127.6 127.2–127.6 3.21E–16 0.08 0.09 0.18 0.17 0.11 0.07 ZmSh1-1
SHN SHN6.1 6 162.5 162.2–163.6 98.2 97.4–101.1 3.49E–11 0.06 0.04b 0.17 0.03b 0.10 0.06
STAM STAM1.2 1 270.5 269.8–270.5 130.2 129.5–130.2 1.23E–27 0.28 0.02b 0.12 0.07 0.09 0.11 tb1
TILN TILN3.2 3 138.3 137.6–158.6 80.5 80.2–86.2 5.22E–24 0.00b 0.42 0.33 0.08b 0.20 0.14 ZAG2
TILN TILN5.1 5 69.0 36.0–140.7 75.4 69.9–82.7 6.66E–10 0.18 0.24 0.14 0.14 0.16 0.10
TILN TILN10.1 10 62.5 25.3–82.1 47.7 45.0–51.1 4.10E–13 0.15 0.24 0.06b 0.08b 0.28 0.12

BARE, barren ear base; DTA, days to anthesis; EB, ear branch number; ED, ear diameter; EL, ear length; GLCO, glume color; GLUM, glume score; KRN, kernel row number;
KW, kernel weight; REPE, red pericarp; SHN, shattering; STAM, staminate spikelet; TILN, tiller number. Chr, chromosome; JLM, joint linkage mapping; TeoNAM, teosinte
nested association mapping.
a The allele effect of 8759 relative to maize was estimated in BC2S3 by Shannon (2012).
b Indicates that the additive allele effect of teosinte relative to maize estimated from JLM in TeoNAM is not significant.
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polygenic inheritance of domestication traits, although a
well-known example is fruit size in tomato (Frary et al.
2000). Our results highlight the importance of these two
modes of inheritance during the domestication process.

A relatively large phenotypic data set of 22 traits scored in
TeoNAM allowed us to evaluate QTL hotspots. We detected
15 QTL hotspots, in which the largest hotspot could affect
13 traits. However, this should be treated with caution regard
whether thesehotspotswerecausedbyasinglemastergenewith
pleiotropic effects or several genes that are tightly linked to-
gether, as domesticationmay favor the selection of tightly linked
combinations of genes (Le Thierry d’Ennequin et al. 1999).

In our study, a total of 15 domestication traits and 7 agro-
nomic traits were analyzed. Further fine-mapping and gene
cloning will be required to find the causal genes underlying
QTL for these traits. TeoNAM should also be useful for in-
vestigating the genetic control of many new traits that we did
not assay.Morphological traits such as root architecture, shoot
apical meristem size, vasculature, pollen size, and kernel
shape can be explored. Also, molecular traits such as gene
expression (eQTL) (Wang et al. 2018), alternative splicing
(Chen et al. 2018), grain protein content (Cook et al.
2012), and metabolites (Xu et al. 2019) can also be explored
to better understand the full spectrum of changes that oc-
curred during maize domestication. In this context, we note
that TeoNAM was developed as part of an undergraduate
research project and phenotyping performed over three field
seasons, but the entire set of lines was never grown in a single
season. Increased power beyond that which we report here
can be gained by growing the entire set of lines each season
for multiple seasons to obtain better phenotypic data, and
more power in QTL detection.
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