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The Hormone Prolactin Is a Novel, Endogenous Trophic
Factor Able to Regulate Reactive Glia and to Limit Retinal
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Retinal degeneration is characterized by the progressive destruction of retinal cells, causing the deterioration and eventual loss of vision.
We explored whether the hormone prolactin provides trophic support to retinal cells, thus protecting the retina from degenerative
pressure. Inducing hyperprolactinemia limited photoreceptor apoptosis, gliosis, and changes in neurotrophin expression, and it pre-
served the photoresponse in the phototoxicity model of retinal degeneration, in which continuous exposure of rats to bright light leads to
retinal cell death and retinal dysfunction. In this model, the expression levels of prolactin receptors in the retina were upregulated.
Moreover, retinas from prolactin receptor-deficient mice exhibited photoresponsive dysfunction and gliosis that correlated with de-
creased levels of retinal bFGF, GDNF, and BDNF. Collectively, these data unveiled prolactin as a retinal trophic factor that may regulate
glial–neuronal cell interactions and is a potential therapeutic molecule against retinal degeneration.
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Introduction
Retinal degeneration results from the gradual destruction of ret-
inal cells. Such deterioration occurs in aging retinas and accom-
panies a range of prominent human retinal disorders including
age-related macular degeneration, glaucoma, and diabetic reti-
nopathy (Zhang et al., 2012a). These disorders lead to some de-
gree of visual disability, and their treatment remains an unmet
need (Zhang et al., 2012a). Photoreceptors act as a fuse of sorts,
since their irreversible loss has been identified as a cause of blind-
ness in most degenerative retinopathies (Zack, 2000). Neverthe-
less, all retinal cells can contribute to disease activity as they
eventually become dysfunctional or die.

Retinal homeostasis strongly relies on glial activity (Bring-
mann et al., 2006; Langmann, 2007). Glia help determine cell fate

in the retina by contributing to the net secretion of proapoptotic
and antiapoptotic signals, including growth factor and neurotro-
phins (Caffé et al., 1993; LaVail et al., 1998; Bringmann et al.,
2006; Unterlauft et al., 2012). In addition to being neuroprotec-
tive, reactive glial cells can also damage neurons (Bringmann et
al., 2006; Barres, 2008). Nevertheless, there is still no agreement
on whether lessening gliosis, which is detected in every neurolog-
ical disease and also in genetically determined and experimental
models of inner and outer retinal degeneration (Bringmann et al.,
2006; Grieshaber et al., 2012), is helpful or harmful (Barres,
2008). Though clear evidence emerged about a decade ago that
the glia–neuron network is heavily involved in the survival of
surrounding neurons in vivo (Bringmann et al., 2006; Barres,
2008), most aspects of its regulation remain to be elucidated. The
identification of endogenous molecules able to modulate the
function of this network will help promulgate retinal health. One
such molecule may be prolactin, the hormone fundamental for
lactation.

High levels of circulating prolactin in pregnant women are
associated with increased electroretinogram (ERG) B-wave am-
plitude (De Luca Brunori et al., 1985). The primary role of pro-
lactin in the retina, however, appears to be the regulation of its
development, as prolactin gene deletion in zebrafish results in a
thinner retinal inner nuclear layer (Huang et al., 2009). Also,
prolactin promotes visual pigment synthesis in teleosts (Crim,
1975a,b; Allen and Cristy, 1978) and in amphibians (Crim,
1975b). In rodents and nonhuman primates, prolactin receptors
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are present in both outer and inner nuclear layers of the retina
and also in the ganglion cell layer (Rivera et al., 2008). Pioneering
studies in rats proposed that prolactin modulates photoreceptor
susceptibility to light-induced degeneration (O’Steen and Kraeer,
1977). Additionally, antibodies or antisense oligonucleotides tar-
geting prolactin provoke retinal neovascularization and vasodi-
lation (Aranda et al., 2005). Together, these data identify various
types of retinal cells as prolactin targets, but studies remain
sparse.

Considering that prolactin has been recently reported to be
neuroprotective in the hippocampus (Morales, 2011) and that it
signals through pathways similar to those triggered by CNTF,
which is one of the neurotrophic factors most studied for neuro-
protection of the retina (Wen et al., 2012), we evaluated the hy-
pothesis that prolactin mitigates retinal degeneration through
trophic actions.

Materials and Methods
Ethics statement. All experiments were approved by the Bioethics Com-
mittee of the Institute of Neurobiology from the National University of
Mexico (clave NOM-062-ZOO-1999) in accordance with the rules and
regulation of the Society for Neuroscience: Policies on the Use of Animals
and Humans in Neuroscience Research. All efforts were made to mini-
mize the number of animals used and their suffering.

Animals. Male albino rats (Wistar, 250 –300 g), and 28 male and 28
female albino mice (3 months old) were fed ad libitum and reared in
normal cyclic light conditions (12 h light/dark cycle) with an ambient

light level of �400 lux. Only rats were subjected to bright constant light
exposure (BCL).

Rats. Hyperprolactinemia was induced by implanting two anterior
pituitary (AP) glands under the kidney capsule, as previously de-
scribed (Adler, 1986), and sham rats were subjected to similar surgery
without implantation. Rats were then transferred to cages that allow
light to enter unimpeded. BCL was achieved using two cold white
fluorescent light sources positioned 50 cm above the cages (40 W), at
an intensity of �1200 lux at the cage floor. BCL exposure was main-
tained over a period of 48 h, after which time the animals were im-
mediately returned to normal cyclic conditions. Ambient light-reared
animals were used as negative controls. After a 24 h dark adaptation
period, rats were evaluated by ERG or killed by CO2 inhalation and
decapitation. Eyes were enucleated and processed for apoptosis or
RNA extraction.

Mice. Mice heterozygous for prolactin receptor ( prlr �/ �; Ormandy et
al., 1997; 129Sv background) were crossbred, and prolactin receptor-null
( prlr �/�) mice were selected by tail biopsy genotyping (Binart et al.,
2000). Wild-type (7 females and 15 males), prlr �/� (10 females and 2
males), and prlr �/� (11 females and 11 males) mice were subjected to
normal cyclic light. After a 24 h dark adaptation period, mice were eval-
uated by ERG or killed by CO2 inhalation and decapitation. Eyes were
enucleated and processed for histology, apoptosis, immunostaining, or
RNA extraction.

Serum prolactin. Serum prolactin was measured in rats by the Nb2 cell
bioassay, a standard procedure based on the proliferative response of the
Nb2 lymphoma cells to prolactin as previously described (Tanaka et al.,
1980).

Table 1. Primers used for real-time RT-PCR

mRNA NCBI accession number Direction Sequence Amplicon size (bp) Primer efficiency (%)

m BNDF EF125669.1 F ATTACCTTCCTGCATCTGTTG 179 103.85
R TGTCCGTGGACGTTTACTTC

r BDNF NM_001270636.1 F TCCACCAGGTGAGAAGAGTGATG 159 79.17
R TCACGCTCTCCAGAGTCCCATG

m bFGF NM_008006.2 F ACTTAGAAGCCAGCAGCCG 154 99.84
R CCCGACGGCCGCGTGGAT

r bFGF NM_019305.2 F GTCTCCCGCACCCTATCC 121 93.07
R ACAACGACCAGCCTTCCA

m CNTF NM_170786.2 F CTCTATCTGGCTAGCAAGGA 146 72.81
R TCATCTCACTCCAGCGATCA

r CNTF NM_013166.1 F GGACCTCTGTAGCCGTTCTA 161 101.35
R TCATCTCACTCCAACGATCA

m GDNF NM_010275.2 F AATGTCCAACTGGGGGTCTA 180 133.16
R GCCGAGGGAGTGGTCTTC

r GDNF NM_019139.1 F AGAGGGAAAGGTCGCAGAG 91 128.39
R AGCCCAAACCCAAGTCAGT

m/r GFAP NM_001131020.1/NM_017009.2 F AGGCAGAAGCTCCAAGATGA 178/178 99.95
R GTTCTCGAACTTCCTCCTCA

m HPRT NM_013556.2 F GTAATGATCAGTCAACGGGGGAC 177 98.39
R CCAGCAAGCTTGCAACCTTAACCA

r HPRT NM_012583.2 F GACCGGTTCTGTCATGTCG 61 99.60
R ACCTGGTTCATCATCACTAATCAC

m NGF S62089.1 F GGACGCAGCTTTCTATACTG 145 102.34
R TTCAGGGACAGAGTCTCCTT

r NGF NM_001277055.1 F TGCATAGCGTAATGTCCATGTTG 149 159.97
R CTGTGTCAAGGGAATGCTGAA

m PEDF AF036164.1 F TCCAACTTCGGCTACGATCT 143 103.8
R CGGTGAATGACAGACTCTGT

r PEDF NM_177927.2 F CCAACTCTTTGCAGGACATG 78 97.67
R TCACAGGTTTGCCGGTAATC

m rhodopsin NM_145383.1 F ATTCACCACCACCCTCTACA 155 94.80
R GCTTGCAGACCACCACGTA

r prolactin R NM_012630.2 F CCAGGAGAGTTCCGTTGAAA 153 93.61
R GGTGGAAAGATGCAGGTCAT

m, Mouse; r, rat; F, forward; R, reverse.
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Figure 1. Hyperprolactinemia prevents retinal cell apoptosis and photoresponsive dysfunction associated with light damage. A–F, Serum prolactin levels (A), retinal apoptosis (B), representative
ERG responses under scotopic conditions (C), averaged amplitudes and implicit times of A- and B-waves under scotopic conditions (D), representative ERG responses under photopic conditions (E),
and averaged amplitudes and implicit times of the photopic B-wave in sham and hyperprolactinemic (AP) rats exposed or not to BCL for 48 h (F ). ERG analysis was performed on responses registered
at maximal intensity stimulation (1.2 log cd.s/m 2). Serum prolactin levels correspond to the mean � SD of 4 –14 animals per group. Other data correspond to (Figure legend continues.)
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ERG recordings. Animals were anesthetized with 70% ketamine and
30% xylazine (1 �l/g body weight, intraperitoneally), and pupils were
dilated with tropicamide-phenylephrin. ERG responses were recorded
with a silver chloride ring electrode placed on the cornea. Two reference
electrodes were positioned subcutaneously near the eye. The light stim-
ulation included 0.7 ms flashes of increasing intensities (0.3, 0.6, 0.9, and
1.2 log cd.s/m 2; PS33 Plus PhotoStimulator, GRASS Technologies). The
bandpass was set at 10 Hz to 1 kHz (amplifier, A-M Systems). Sixteen
responses were averaged, with flashes at 10 s intervals. Before ERG assess-
ment under photopic conditions, animals were adapted to normal light
(400 lux) for 20 min. The light stimulation under photopic conditions
included 0.7 ms flashes of 1.2 log cd.s/m 2 intensity. For quantitative
analysis, the B-wave amplitude was measured between A- and B-wave
peaks. For each animal, the ERG was recorded simultaneously in both
eyes, and the recordings from the two eyes were averaged. Oscillatory
potentials (OPs) were digitally isolated from the scotopic B-wave using a
100 –500 Hz digital filter.

The amplitude of OPs was determined at maximal illumination inten-
sity (1.2 log cd.s/m 2), as the sum of the amplitudes of OP1–OP5 in rats
and of OP1–OP4 in mice. Of note, separate analyses for male and female
mice revealed no significant differences in ERG response (data not
shown).

Apoptosis determination. The apoptotic cell death detection ELISA
(Roche Diagnostics) was used according to the manufacturer’s in-
structions to quantify fragmented nucleosomal DNA associated with
apoptotic cell death in harvested rat and mouse retinas.

Histology. Mouse eyes were fixed in Davidson solution (40% formalin,
95% ethanol, glacial acetic acid, and distilled water), dehydrated, and
embedded in paraffin for sectioning (8 �m thick) and H&E staining. To
quantify the thickness of the retina, images were taken at equivalent

retinal eccentricities from the optic nerve head.
Layer thickness was measured in at least four
areas from each retina in three animals per
group.

RNA isolation and cDNA synthesis. Retinas
were dissected for mRNA analysis. All RNA
was isolated using TRIzol (Life Technologies)
according to the manufacturer’s instruc-
tions. Total RNA was quantified. Contami-
nating genomic DNA was removed using 1
�l of RNase-free DNase I (Boehringer Mann-
heim)/10 �g of RNA at 37°C for 30 min. A 1 �g
sample was reverse transcribed in a 20 �l reac-
tion using the high-capacity cDNA reverse
transcription kit (Applied Biosystems) in a
Mastercycler (Eppendorf).

Quantitative PCR. Primer sequences are
documented in Table 1, and the conditions
used for the PCRs were as follows: PCR prod-
ucts were detected and quantified with
Máxima Green/ROX qPCR Master (Thermo
Scientific) in a 10 �l final reaction volume con-
taining template and 0.5 �m of each primer.
Amplification, performed in a PCR CFX96
thermocycler (Bio-Rad), included a denatur-
ation step of 10 min at 95°C, followed by 40
cycles of amplification (10 s at 95°C, 30 s at
primer pair-specific annealing temperature,
and 30 s at 72°C). The PCR data were ana-
lyzed by the 2 -��CT method, and cycle thresh-
olds normalized to the housekeeping gene
hypoxanthine-guanine phosphoribosyltrans-
ferase were used to calculate the mRNA levels
of interest.

Statistical analysis. All results were replicated in three or more inde-
pendent experiments. Serum prolactin levels were presented as the
mean � SD, and all others as the mean � SEM; all data showed normal
distribution or equal variance according to D’Agostino–Pearson omni-
bus and Levene’s tests, respectively. Statistical differences between two
groups were determined by a two-tailed Student’s t test, among three
groups with one variable by one-way ANOVA followed by Bonferroni’s
post hoc comparison test, and among four groups with two variables by
two-way ANOVA followed by Bonferroni’s post hoc comparison test
(SigmaStat version 7.0, SYSTAT). Differences in means with p � 0.05
were considered statistically significant.

Results
Hyperprolactinemia protects against retinal degeneration and
photoresponsive dysfunction associated with light damage
Light damage has been used for �4 decades as an experimental
model for human retinal degenerative diseases (Organisciak and
Vaughan, 2010). We used a 48 h moderate BCL exposure in rats
to evaluate the role of prolactin. Because systemic prolactin is
taken up into the eye (O’Steen and Sundberg, 1982), we increased
systemic levels of prolactin by placing AP implants under the
kidney capsule of rats (Fig. 1A) and quantified apoptosis in
BCL-exposed retinas by ELISA. BCL exposure induced a sixfold
increase in retinal apoptosis (p � 0.0001; Fig. 1B). Hyperpro-
lactinemia reduced by 25 � 6% (p � 0.05) the levels of apoptosis
in damaged retinas (Fig. 1B). Alone, hyperprolactinemia did not
modify the basal levels of retinal apoptosis (Fig. 1B). Next, we
addressed whether prolactin modifies the impact of light damage
on retinal function. Figure 1C shows representative ERG record-
ings under scotopic conditions, corresponding to the massed
light responses of rod and cone photoreceptors and of the ON
bipolar cells. Quantitative analysis was performed at maximal
illumination intensity (1.2 log cd.s/m 2), given that no significant

4

(Figure legend continues.) the mean� SEM (n 	 16 –20 per group, three independent ex-
periments; *p � 0.05, **p � 0.01, ***p � 0.001, and ****p � 0.0001, as indicated; two-way
ANOVA with Bonferroni’s post hoc test). n.s., Not significant; PRL, prolactin.

Figure 2. Hyperprolactinemia protects against alterations of OPs caused by light damage. A, B, Representative OP recordings
(A) and averaged OP amplitude and implicit time in response to the maximal light stimulus (1.2 log cd.s/m 2) under scotopic
conditions (B), in sham and hyperprolactinemic (AP) rats exposed or not exposed to BCL for 48 h. Data correspond to the mean �
SEM (n 	 9 –18 per group, three independent experiments; **p � 0.01 as indicated; two-way ANOVA with Bonferroni’s post hoc
test). OP1 to OP5 have been labeled as 1–5. n.s., Not significant.
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difference was observed at lower intensi-
ties (data not shown). Hyperprolactine-
mia did not prevent the reduction in
amplitude of the A-wave registered in
BCL-exposed retinas but did protect
against the delay in A-wave implicit time
caused by BCL (14 � 3% of controls, p �
0.01; Fig. 1D). Also, hyperprolactinemia
prevented the reduction in amplitude and
the delay in implicit time of the B-wave
registered in BCL-exposed retinas (23 �
5% and 12 � 3% of controls, respectively;
p � 0.05; Fig. 1D). ERGs were then re-
corded under photopic conditions to test
the responses of cones (Fig. 1E). BCL re-
duced and delayed the B-wave amplitude
and implicit time by 48 � 6% (of controls,
p � 0.001) and 16 � 5% (of controls, p �
0.01), respectively (Fig. 1F). Hyperpro-
lactinemia did limit the reduction of
B-wave amplitude and prevented the de-
lay in B-wave implicit time induced by
BCL (Fig. 1F). Alone, hyperprolactinemia
did not modify any ERG parameters.

Next, we further assessed the neuro-
protective role of prolactin in the retina.
Because the A- and B-waves cannot be
used to evaluate inner retinal function, we
analyzed OPs, the high-frequency compo-
nents of the ERG that are considered to
partly reflect inner retinal activity and are
known to be altered in retinal degenera-
tive disorders (Wachtmeister, 1998; Wal-
ter et al., 1999; Rangaswamy et al., 2006).
Representative traces of the five OP com-
ponents are shown in Figure 2A. The re-
duction in the amplitudes of OPs caused
by BCL (45 � 8% of control, p � 0.01; Fig.
2B) was prevented in hyperprolactinemic
animals. In addition, the prolonged laten-
cies of OPs (15 � 3% of control, p � 0.05;
Fig. 2B) associated with BCL were eli-
minated by hyperprolactinemia. Alone,
hyperprolactinemia did not modify OP
amplitude or implicit time.

High levels of circulating prolactin
limit retinal gliosis and neurotrophin
expression changes associated with light damage, which, in
turn, upregulates the prolactin receptor in the retina
Because retinal neuron survival and function strongly depend on
glial activity, we next evaluated whether prolactin modifies the
gliosis that accompanies retinal injury. Gliosis, classically defined
as the aggregation of glial cells at the sight of injury, is usually
associated with increased synthesis of GFAP monomers that as-
semble into intermediate filaments in both astrocytes and Müller
cells (Takamiya et al., 1988). Real-time RT-PCR analysis of the
GFAP gene showed that hyperprolactinemia prevented the three-
fold increase in GFAP mRNA levels induced by BCL compared
with levels in sham rats (p � 0.01; Fig. 3A). Alone, hyperpro-
lactinemia drastically reduced (by 94 � 0.1%; p � 0.01) the ret-
inal content of GFAP transcript. Also, relative to unexposed
animals, the BCL-induced increase in retinal GFAP mRNA levels

is greater in hyperprolactinemic than in normoprolactinemic rats
(20-fold vs 3-fold, respectively).

The response of glia to acute retinal damage is known to be
mediated by several neurotrophic factors, including bFGF,
GDNF, BDNF, CNTF, NGF, and pigment epithelium-derived
factor (PEDF; Harada et al., 2000; Bringmann et al., 2006; Wen et
al., 2012). Because prolactin promotes and reduces retinal cell
survival and gliosis, respectively, we therefore studied whether
prolactin upregulates the synthesis of retinal neuroprotective fac-
tors. Figure 3B shows that light damage decreased the bFGF
mRNA levels by 74 � 2% of controls (p � 0.01); increased the
NGF, GDNF, PEDF, and CNTF mRNA levels by 180 � 3% (p �
0.01), 240 � 7% (p � 0.01), 320 � 13% (p � 0.01), and 171 �
8% (p � 0.05) of controls, respectively; but did not alter BDNF
levels. Hyperprolactinemia fully blocked the BCL-mediated re-

Figure 3. High levels of circulating prolactin limit retinal gliosis and neurotrophin expression changes associated with light
damage, which upregulates the prolactin receptor in the retina. A, Quantitative PCR (qPCR)-based quantification of GFAP mRNA
levels in retinas from sham and hyperprolactinemic (AP) rats exposed or not exposed to BCL for 48 h. The data are presented as the
mean � SEM (n 	 4 –9 per group, three independent experiments; **p � 0.01 as indicated; two-way ANOVA with Bonferroni’s
post hoc test). B, qPCR-based quantification of bFGF, NGF, GDNF, PEDF, CNTF, and BDNF mRNA levels in retinas from sham and
hyperprolactinemic (AP) rats exposed or not exposed to BCL for 48 h. The data are presented as the mean � SEM (n 	 4 –9 per
group, three independent experiments; *p � 0.05, **p � 0.01, and ***p � 0.001 as indicated; two-way ANOVA with Bonfer-
roni’s post hoc test). C, qPCR-based quantification of prolactin receptor (PRL-R) mRNA levels in retinas from rats exposed or not
exposed to BCL for 48 h. The data are presented as the mean � SEM (n 	 4 –9 per group, three independent experiments; ***p �
0.001 as indicated, Student’s t test).
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Figure 4. prlr �/� mice show photoresponsive dysfunction. A, B, Representative H&E-stained retinas (A) and averaged thickness of each layer of the retina (B) from prlr �/� and prlr �/� mice.
Four sections per retina from each of six animals per group were analyzed in three separate experiments. Scale bar, 50 �m. C, Representative scotopic ERG response in prlr �/�, prlr �/�, and
prlr �/� mice at 1.2 log cd.s/m 2. D, Averaged amplitudes and implicit times of the scotopic A- and B-waves in prlr �/�, prlr �/�, and prlr �/� mice at increasing stimulus intensities. Data are
presented as the mean � SEM (n 	 3–13 per group, seven independent experiments; *p � 0.05 vs values in prlr �/� mice; one-way ANOVA with Bonferroni’s post hoc test). E, Representative
photopic ERG response in prlr �/�, prlr �/�, and prlr �/� mice. F, Averaged amplitude and implicit time of the photopic B-wave in prlr �/�, prlr �/�, and (Figure legend continues.)
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duction and increase of bFGF and NGF retinal mRNA levels,
respectively, observed in BCL-exposed retinas of normopro-
lactinemic animals. Additionally, the GDNF, PEDF, and BDNF
mRNA levels in BCL-exposed retinas from hyperprolactinemic
rats were upregulated by twofold (p � 0.05), fourfold (p � 0.01),
and approximately threefold (p � 0.01), respectively, compared
with values observed in the damaged retinas of normoprolactine-
mic animals. The CNTF mRNA levels in BCL-exposed retinas
from hyperprolactinemic rats were not different from those in
damaged retinas from normoprolactinemic animals. In the ab-
sence of BCL, hyperprolactinemia increased the bFGF, GDNF,
PEDF, CNTF, and BDNF mRNA levels by approximately three-
fold (p � 0.05), approximately threefold (p � 0.05), approxi-
mately sevenfold (p � 0.001), threefold (p � 0.01), and
approximately threefold (p � 0.05; relative to the control values),
respectively, but did not alter NGF levels.

The long and short isoforms of the rat prolactin receptor differ
in the length of their cytoplasmic tail. Both are determinant of the
responsiveness of cells to prolactin and are present in the retina
(Rivera et al., 2008). Moreover, the expression of these receptors
is regulated by stress-related stimuli in certain regions of the CNS
(Babenko et al., 2012; Benatti et al., 2012). Therefore, we next
evaluated whether light damage regulates the expression of pro-
lactin receptor in retinas using primers that recognize both iso-
forms. The prolactin receptor mRNA levels in retinas from rats
exposed to BCL were fivefold greater than the levels in controls
(p � 0.001; Fig. 3C).

prlr � / � mice show photoresponsive dysfunction
Next, we studied the retinas of mice with a genetic deletion of prlr
(Ormandy et al., 1997). The histology of prlr� / � retinas is similar
to that in wild-type mice (prlr�/�; Fig. 4A) and prlr�/ � mice
(data not shown). The retina is composed of cone and rod pho-
toreceptor outer segments and of three cellular layers: the outer
nuclear layer, comprising cone and rod somata; the inner nuclear
layer, comprising horizontal, bipolar, and amacrine interneu-
rons, and Müller glial cells; and the ganglion cell layer, containing
retinal ganglion cells and displaced amacrine cells. These cell lay-

ers are separated from each other by synaptic layers: the outer
plexiform layer comprises processes of and synapses among pho-
toreceptors, horizontal cells, and bipolar cells; while the inner
plexiform layer is constituted by processes of and synapses
among bipolar, amacrine, and retinal ganglion cells (Wässle,
2004; Sanes and Zipursky, 2010). prlr�/� and prlr�/� mice
showed retinal layers of comparable width (Fig. 4B). Under sco-
topic conditions (Fig. 4C), the amplitudes of the A- and B-wave
in prlr�/� retinas was reduced at all light intensities by an average
of 37 � 3% and 35 � 4% (p � 0.05), respectively, compared with
values in prlr�/� mice (Fig. 4D). The B-wave in prlr�/� retinas
was decreased (by 21 � 4% of wild-type, respectively, p � 0.05)
but only at the most intense illuminations. Under photopic con-
ditions (Fig. 4E), prlr�/� retinas showed decreased B-wave am-
plitude (35 � 7% lower than prlr�/�, p � 0.05) at maximal
illumination intensity (1.2 log cd.s/m 2; Fig. 4F). No difference in
implicit times was found.

We next analyzed OPs as sensitive indicators of inner retinal
function (Fig. 5A). The amplitudes of OPs in prlr�/� and prlr�/�

retinas were reduced by an average of 28 � 4% and 28 � 3%,
respectively, compared with wild-type values (p � 0.05; Fig. 5B).
The amplitudes of OPs did not differ between prlr�/� and
prlr�/� retinas. The implicit times of OPs were not modified
(data not shown).

Retinas from prlr � / � mice display increased GFAP levels and
decreased expression of bFGF, GDNF, and BDNF
Alterations of ERG parameters can reflect retinal degeneration.
Analysis of whole retinas showed that prlr deletion did not affect
the levels of retinal apoptosis (Fig. 6A). In addition, we quantified
the mRNA levels of rhodopsin, which are considered to correlate,
though indirectly, with photoreceptor health. The rhodopsin
mRNA levels in prlr�/� retinas were reduced by �2.5-fold (p �
0.05) compared with rhodopsin mRNA from prlr�/� retinas
(Fig. 6B).

Having demonstrated that increasing prolactinemia limits gli-
osis and neurotrophin expression changes upon retinal injury, we
then investigated whether increased gliosis and reduced overall
synthesis of neurotrophins correlate with ERG alterations in
prlr� / � mice. The GFAP mRNA levels in prlr�/� retinas were
approximately twofold (p � 0.05) greater than those in prlr�/�

and prlr�/� retinas (Fig. 6C). Moreover, the bFGF, GDNF, and
BDNF mRNA levels were reduced in prlr�/� retinas by 67 � 4%,
75 � 1%, and 63 � 5% (p � 0.01), respectively, compared with
values from prlr�/� retinas (Fig. 6D). The expression levels of

4

(Figure legend continues.) prlr �/� mice at 1.2 log cd.s/m 2. Data are presented as the
mean � SEM (n 	 3 per group, three independent experiments; *p � 0.05 as indicated;
one-way ANOVA with Bonferroni’s post hoc test). n.s., Not significant; ONL, outer nuclear layer;
INL, inner nuclear layer; IPL, inner plexiform layer; OPL, outer plexiform layer; OS, outer seg-
ment; GCL, ganglion cell layer.

Figure 5. prlr �/� mice show altered OPs. A, Representative OPs in prlr �/�, prlr �/�, and prlr �/� mice in response to the maximal light stimulus (1.2 log cd.s/m 2). OP1–OP4 have been
labeled from 1 to 4. B, Averaged OP amplitude in prlr �/�, prlr �/�, and prlr �/� mice at 1.2 log cd.s/m 2. Data correspond to the mean � SEM (n 	 3 per group, three independent experiments;
*p � 0.05 vs values for prlr �/� mice; one-way ANOVA with Bonferroni’s post hoc test).
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CNTF and PEDF were the same in the retinas of prlr�/� and
prlr�/� mice. However, NGF mRNA levels in prlr�/� retinas
were approximately eightfold greater (p � 0.001) than those in
prlr�/� mice.

Discussion
Retinal homeostasis strongly relies on glial activity, and Müller
cells are a major source of neurotrophin release in response to
neural death (Bringmann et al., 2006). Postmitotic photorecep-
tor cells cannot compensate for losses during aging and retinal
degenerative disorders including age-related macular degenera-
tion, retinitis pigmentosa, glaucoma, and diabetic retinopathy (Nag
and Wadhwa, 2012). In these diseases, loss of neurotrophic support
leads to neural death, and excessive light exposure can also enhance
the progression and severity of neural damage (Cruickshanks et al.,
1993). Therefore, natural promoters of the neurotrophic activity in
the retina are potential therapeutic agents against degeneration.
Here, we have identified prolactin signaling as necessary for proper
photoresponse and as a molecular mechanism underlying neu-
rotrophic support in the retina.

This is the first report showing that the inactivation of prlr has
a phenotype in adult retinal function. Mice lacking the prlr gene
have an overall reduced ERG response, independent of the light-

ing conditions, implicating prolactin sig-
naling as necessary for retinal function
and consequently, visual perception. Tar-
geted disruption of the prolactin gene in
zebrafish did not compromise early eye
formation, but the inner retinal neurons
were insufficiently differentiated (Huang
et al., 2009).

Consistent with previous studies (for
review, see Organisciak and Vaughan,
2010), we show that BCL reduced the am-
plitudes and prolonged the latencies of
ERG waves and OPs, in association with
retinal cell apoptosis and glia activation.
This BCL model recapitulates essential at-
tributes of alterations observed in experi-
mental retinal degeneration but also in
retinal diseases (Jones et al., 2003; Marc et
al., 2008; Bringmann et al., 2009). Most
significantly, both BCL exposure and prlr
deletion resulted in reduced ERG and OP
magnitudes, effects that were mostly pre-
vented by increasing systemic prolactin.
Prolactin treatment also opposed the
BCL-induced delays in ERG and OPs, and
it reduced retinal cell apoptosis. Though
prlr�/� retinas do not exhibit increased
levels of apoptosis, previous findings
showed that prolactin promotes neuronal
cell survival (Morales, 2011) and de-
creases apoptosis in non-neuronal cells
(Tessier et al., 2001; Bailey et al., 2004). In
particular, prolactin upregulates the anti-
apoptotic protein Bcl-2 (Leff et al., 1996),
whose expression is reduced in retina and
brain by stresses like exposure to damag-
ing light (Grosche et al., 1995). Because
Bcl-2 overexpression inhibits photore-
ceptor degeneration (Quiambao et al.,
2001), increasing prolactinemia may limit
retinal cell death by activating the Bcl-2

pathway. Further, our data may be explained by the incorpora-
tion of systemic prolactin into the retina (O’Steen and Sundberg,
1982), and it shows that prolactin limits the BCL proapoptotic
effect at concentrations (0.06 – 0.16 �g/ml) close to those (0.2–
0.3 �g/ml) circulating during pregnancy and lactation (Ben-
Jonathan et al., 2008).

Abnormal ERG parameters provide information about the
origin of retinal dysfunction. Photopic ERG reflects cone re-
sponse while scotopic ERG includes both cone and rod responses
if light intensity is sufficient. The 1.2 log cd.s/m 2 stimulus evoked
large ERG responses in the photopic recordings; therefore, it was
intense enough to stimulate cones under scotopic conditions. In
the prlr�/� eyes, cone function is compromised, because we
found reduced scotopic A-wave amplitude at all illumination
intensities in association with reduced photopic B-wave ampli-
tude. Consistent with a defect in cone photoreceptor activity, the
scotopic B-wave is reduced. Additionally, prlr�/� mice have de-
creased B-wave amplitudes under both scotopic and photopic
conditions, which are known to involve Müller glia activity
(Bringmann et al., 2006). We also found that the magnitude of
summed OPs is reduced in the prlr�/� eyes. This indicates that
the inner retinal activity is impaired, but there is no significant

Figure 6. Retinas from prlr �/� mice show decreased expression levels of bFGF, GDNF, and BDNF, and a tendency to increased
gliosis. A, Retinal apoptosis from prlr �/� and prlr �/� mice. B, Quantitative PCR (qPCR)-based quantification of rhodopsin mRNA
levels in retinas from prlr �/�, prlr �/�, and prlr �/� mice. Apoptosis data correspond to the mean � SEM (n 	 4 per group, two
independent experiments. qPCR data correspond to the mean � SEM (n 	 4 –9 per group; *p � 0.05 vs values for prlr �/� mice;
one-way ANOVA with Bonferroni’s post hoc test). C, qPCR-based quantification of GFAP mRNA levels in retinas from prlr �/�,
prlr �/�, and prlr �/� mice. The data are presented as the mean � SEM (n 	 4 –9 per group, three independent experiments;
*p � 0.05 vs values for prlr �/� mice; one-way ANOVA with Bonferroni’s post hoc test). D, qPCR-based quantification of bFGF,
GDNF, BDNF, CNTF, PEDF, and NGF mRNA levels in retinas from prlr �/�, prlr �/�, and prlr �/� mice. The data are presented as the
mean � SEM (n 	 4 –9 per group, three independent experiments; **p � 0.01 and ***p � 0.001 vs values in prlr �/� mice;
one-way ANOVA with Bonferroni’s post hoc test). n.s., Not significant.
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change in the number of retinal cells and processes since prlr�/�

and prlr�/� mice showed retinal layers of comparable width.
Although the specific cellular origins of the OPs must still be
established, the circuitry associated with the OPs in the mature
retina includes “ON,” “OFF,” and feedback pathways (Dong et
al., 2004), and many retinal cells influence OP characteristics
(Wachtmeister, 1998). Collectively, these findings indicate that
prolactin signaling helps maintain the activity of most retinal cells
and implicate prolactin as a natural retinal trophic factor.

Photoreceptor degeneration alters the neuron– glial network
to modify the production of neurotrophic factors required for an
environment that minimizes damage (Harada et al., 2002). Our
data support this notion by showing that BCL exposure increases
the retinal expression of neuroprotective factors GDNF, PEDF,
CNTF, and NGF, while decreasing that of bFGF. These neurotro-
phin changes help explain the presence of apoptosis in the BCL-
exposed retinas. Neurotrophic rescue of photoreceptors is
mediated by the action of neurotrophic factors like NGF, BDNF,
CNTF, PEDF, and GDNF on Müller cells and microgliocytes that,
in response, produce bFGF and GDNF, which act directly on the
photoreceptor to promote survival (Fontaine et al., 1998; Wexler
et al., 1998; Harada et al., 2000; Wahlin et al., 2000; Bringmann
and Reichenbach, 2001). For example, blocking NGF signaling
increases the levels of Müller cell-derived bFGF, thereby prevent-
ing light-induced photoreceptor death (Harada et al., 2000, 2002;
Zack, 2000). We found that increasing prolactinemia prevented
the BCL-induced increase and decrease of NGF and bFGF, re-
spectively. Hyperprolactinemia also enhanced the BCL-induced
expression of the prosurvival factors GDNF, PEDF, and BDNF,
consistent with its anti-apoptotic effect. Moreover, the differ-
ences in growth factor mRNA production between prlr�/� and
BCL-exposed animals may explain the lack of retinal cell apopto-
sis and layer disorganization in prlr�/� retinas. We assume that
the reduced rhodopsin mRNA levels in the prlr�/� retinas do not
reflect retinal cell degeneration, although this issue requires fur-
ther studies. Despite decreases in bFGF, GDNF, and BDNF
mRNA levels in prlr�/� retinas, CNTF and PEDF levels were
maintained, and NGF level was increased compared with the
wild-type, indicating that prlr� / � mice may have compensatory
mechanisms responsible for retinal cell survival. The discrepan-
cies between growth factor mRNA levels in hyperprolactinemic
and prlr�/� animals may be attributed to the timing and duration
of prolactin excess (the entire lifespan including early develop-
ment in prlr� / � mice vs transient adult onset in AP-implanted
rats), as previously reported (Ding et al., 2013). These data fur-
ther indicate that in our two models, while the mRNA levels of
certain growth factors (e.g., bFGF, GDNF, and BDNF) are pri-
marily regulated by prolactin, others (NGF, PEDF, and CNTF)
may be regulated by prolactin as well as other factors. The fact
that bFGF, GDNF, BDNF, CNTF, PEDF, and NGF protect
against retinal degeneration (Wahlin et al., 2000; Wen et al., 2012;
Kolomeyer et al., 2013) supports the neuroprotective effects of
prolactin. Previous investigations did not observe the protective
effect of prolactin against photic damage (Olafson and O’Steen,
1976; O’Steen and Kraeer, 1977), but they did not assess retinal
function.

Our working model proposes that prolactin contributes to
retinal homeostasis and neuroprotection by strengthening the
neurotrophic activity of retinal glial cells and limiting their glio-
sis. Indeed, GFAP mRNA levels are threefold lower in hyperpro-
lactinemic animals than in normoprolactinemic animals exposed
to BCL. Relative to unexposed animals, the BCL-induced increase
in retinal GFAP mRNA levels is higher in hyperprolactinemic than

in normoprolactinemic rats (20- vs 3-fold, respectively). However,
this difference is due to the much lower GFAP expression found in
nonexposed hyperprolactinemic rats. BCL exposure upregulates
prolactin receptor in the retina. The signaling events that govern the
retinal synthesis of prolactin receptor are unknown, although up-
regulation of the prolactin receptor may result directly from local
photoreceptor death, as already proposed for the receptor of the
neuroprotective leukemia inhibitory factor (Rattner and Nathans,
2005; Joly et al., 2008). Alternatively, or perhaps concurrently, pro-
lactin receptor synthesis may be stimulated by the upregulation of
TNF-� and IL-1� occurring in retinal glia under degenerative pres-
sure (Busik et al., 2008; Zhang et al., 2012b). These proinflammatory
cytokines increase prolactin receptor expression (Corbacho et al.,
2003, 2004), and also prolactin expression in brain tissue (De Bellis et
al., 2005) and damaged brain (Chioléro et al., 1988; DeVito et al.,
1995; Agha et al., 2004; Möderscheim et al., 2007). Notably, prolactin
promotes reactive gliosis (Möderscheim et al., 2007; Simard and
Rivest, 2007; Azcoitia et al., 2010), stimulates astrocyte proliferation
(DeVito et al., 1995), and may target microgliocytes (Möderscheim
et al., 2007); prolactin induces inducible nitric oxide (NO) synthase
expression and increases NO production in brain (Popeski et al.,
1999; Raso et al., 1999; Dogusan et al., 2001; Vega et al., 2010), and
NO produced at a lesion has been proposed as a stop signal for
microglia to accumulate (Chen et al., 2000). While the role of in-
creasing prolactinemia in retinal gliosis requires further research,
our results show that hyperprolactinemia reduces GFAP expression
per se and can limit the gliosis that accompanies retinal injury.

Together with the presence of prolactin receptor in nonhu-
man primate retina (Rivera et al., 2008), these findings may sug-
gest a role for prolactin in the human retina. High levels of
circulating prolactin are associated with increased ERG B-wave
amplitude in pregnant women (De Luca Brunori et al., 1985) and
protect against diabetic retinopathy (Larinkari et al., 1982; Molo-
ney and Drury, 1982; Bhatnagar et al., 2009). The present study
provides a rationale to further investigate hormonal regulation of
neuron– glia interactions under physiopathological conditions.
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