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Abstract

Abnormal methionine dependence in cancer cells has led to methionine restriction as a potential 

therapeutic strategy. We hypothesized that genetic variants involved in methionine-metabolic 

genes are associated with survival in non-small cell lung cancer (NSCLC) patients. Therefore, we 

investigated associations of 16,378 common single-nucleotide polymorphisms (SNPs) in 97 

methionine-metabolic pathway genes with overall survival (OS) in NSCLC patients using 

genotyping data from two published genome-wide association study (GWAS) datasets. In the 

single-locus analysis, 1,005 SNPs were significantly associated with NSCLC OS (P < 0.05 and 

false-positive report probability < 0.2) in the discovery dataset. Three SNPs (RUNX3 
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rs7553295G>T, AMD1 rs1279590G>A and MSRA rs73534533C>A) were replicated in the 

validation dataset and their meta-analysis showed that adjusted hazards ratio [HR] of 0.82 [95% 

confidence interval (CI) =0.75-0.89] and Pmeta=2.86 x 10−6, 0.81 (0.73-0.91) and Pmeta=4.63 x 

10−4, and 0.77 (0.68-0.89) and Pmeta=2.07 x 10−4, respectively). A genetics score of protective 

genotypes of these three SNPs revealed an increased OS in a dose-response manner (Ptrend <.

0001). Further expression quantitative trait loci (eQTL) analysis showed significant associations 

between these genotypes and gene mRNA expression levels. Moreover, differential expression 

analysis further supported a tumor-suppressive effect of MSRA, with lower mRNA levels in both 

lung squamous carcinoma and adenocarcinoma (P <.0001 and <.0001, respectively) than in 

adjacent normal tissues. Additionally, low mutation rates of these three genes indicated the critical 

roles of these functional SNPs in cancer progression. Taken together, these genetic variants of 

methionine-metabolic pathway genes may be promising predictors of survival in NSCLC patients.
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Introduction

Lung cancer is the leading cause of cancer deaths worldwide, and non–small cell lung 

cancers (NSCLC) accounts for almost 80% of lung cancer deaths1,2. Therefore, NSCLC 

represents the most frequent type of bronchogenic carcinomas, consisting primarily of 

adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), and to a lesser extent large-cell 

lung cancer. Despite improvements in the treatments in recent years, NSCLC prognosis has 

only marginally improved with a 5-year survival rate of only around 18% in the United 

States between 2007 and 2013 2. Although epidemiological studies have identified several 

risk factors for NSCLC, such as smoking and radon exposure 3, there are reports about 

altered mRNA and protein expression among thousands of genes, such as p53, K-ras, PTEN 
and FHIT, that also contribute to lung carcinogenesis 1. Recently, some pathway-based 

hypothesis-driven studies using published genome-wide association study (GWAS) datasets 

have identified a number of genetic variants, i.e., single nucleotide polymorphisms (SNPs), 

with moderate but detectable effects on clinical outcomes of NSCLC, following by studying 

potential biological functions in some biological pathways, which have shed some light on 

prognosis prediction and possible individualized therapeutics 1,3–5.

Methionine is an essential amino acid with multiple roles in mammalian growth and 

development, including protein synthesis, methylation of DNA and polyamine synthesis 6–8. 

Methionine dependence is a unique metabolic defect found only in transformed and 

malignant cells 6–8. This defect is defined as the inability of cells to grow in vitro when 

methionine is replaced with its immediate precursor homocysteine 8. In contrast, normal 

cells are relatively resistant to exogenous methionine restriction. It has been hypothesized 

that this defect in cancerous, as compared to normal, cells could be used for therapeutic 

purpose 9–11. A methionine-free diet or methionine-deprived total parenteral nutrition causes 

regression of a variety of animal tumors 12. It has also been suggested that vegan diets, 
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containing relatively lower methionine, may be a useful nutritional strategy controlling for 

cancer growth 13. In addition, the methioninase, which depletes circulating levels of 

methionine, has also been identified as another useful strategy in limiting cancer growth in 

preclinical models 14. Currently, methionine restriction in combination with chemotherapy 

has become a new focus in cancer treatment, and further investigation into fundamental 

mechanisms of methionine dependency is clearly needed.

Methionine dependence in cancer may be due to either genetic variants or alterations in 

expression of genes in the methionine de novo and salvage pathways. Previous studies have 

revealed that genetic variants of methionine metabolism genes, including the methionine 

synthase (MTR) and methionine synthase reductase (MTRR), may affect enzyme activities 

and thereby affect cancer risk in Turkish population and non-Hispanic whites 15, 16. In 

addition, functional SNPs in MTR, MTRR and other genes related to the methionine 

metabolism have also been found to be associated with lung cancer prognosis in two small 

studies 17, 18. In the present study, we used two large published GWAS datasets to determine 

whether common genetic variants in genes involved in the methionine metabolism pathway 

are associated with overall survival (OS) of NSCLC patients. Identification of promising 

prognostic biomarkers may scientific foundation for the metabolism-based therapeutics.

Methods

Study populations

Two independently published GWAS datasets were used in this study. The discovery dataset 

was obtained from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening 

Trial, which enrolled patients between 1993 and 2011 from ten medical centers in the United 

States 19. The validation dataset was obtained from the Harvard Lung Cancer Susceptibility 

(HLCS) Study. The study protocols were approved by institutional review boards at both the 

PLCO trial and the HLCS study with a written informed consent obtained from each of the 

subjects.

The PLCO trial enrolled 77,500 men and 77,500 women aged 55 to 74, who were 

randomized to either the intervention arm with screening or the control arm with standard 

care. All participants were followed for at least 13 years after enrollment. At enrollment, 

their blood samples and personal information including demographic characteristics, family 

history of cancer, smoking history and personal medical history were collected 20. The 

PLCO dataset identified 1,185 NSCLC patients.

Genomic DNA extracted from the blood samples of the PLCO participants was genotyped 

with Illumina HumanHap240Sv1.0 and HumanHap550v3.0 (dbGaP accession: 

phs000093.v2.p2 and phs000336.v1.p1) 21, 22. There were 1,185 Caucasian NSCLC patients 

with genotyping data and complete follow-up information for survival analysis, which were 

available in the subset of the PLCO lung cancer database. Tumor staging was determined 

according to the 5th edition American Joint Committee on Cancer (AJCC) staging system 

(5th edition). The follow-up time was defined from lung cancer diagnosis to the last follow-

up or time of death. OS was the primary endpoint of the current study, and disease-specific 

survival (DSS) of lung cancer was also examined
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The validation dataset from the HLCS GWAS study included 984 histologically-confirmed 

Caucasian NSCLC patients as described previously 23. The tumor histological classification 

was determined by two staff pulmonary pathologists at the Massachusetts General Hospital. 

Blood was collected from each patient was within 1–4 weeks of their diagnosis, and DNA 

was extracted from the blood samples with the Auto Pure Large Sample Nucleic Acid 

Purification System (QIAGEN Company, Venlo, Limburg, Netherlands). Genotyping data 

was obtained by using Illumina Humanhap610-Quad arrays, and imputation was performed 

by using MaCH1.0 based on the 1000 Genomes project.

Gene and SNP selection

Based on the databases of the Molecular Signatures Databases and GeneCards, 100 

autosome genes related to the methionine metabolism were selected for further investigation 

(Supplementary Table S1). After excluding three genes in the X chromosome, 16,378 SNPs 

within the remaining 97 genes and their 2-kb flanking regions (genotyping rate ≥ 95%, 

minor allelic frequency (MAF) ≥ 0.05 and Hardy-Weinberg equilibrium (HWE) ≥ 1×10−6) 

were extracted from and imputed for the PLCO dataset (dbGaP accession: phs000093.v2.p2 

and phs000336.v1.p1) 21. In total, 16,378 SNPs (1,680 genotyped and 14,698 imputed 

SNPs) were selected and used first in a single locus analysis. Significant SNPs were 

subjected to multiple test correction by a false-positive report probability (FPRP) method, 

followed by pairwise linkage disequilibrium (LD) analyses to select representative SNPs in 

each gene in high LD (r2>0.8) and functional SNPs according to functional annotation based 

on RegulomeDB 24 and P value. Finally, significant, representative and potentially 

functional SNPs were further subjected to validation by the HLCS dataset.

Statistical analysis

Cox proportional hazards regression models were used to estimate the hazards ratio (HR) 

and 95% confidence interval (CI) for the associations of demographic and clinical 

characteristics with OS. Imputation was implemented with IMPUTE2 according to the 1000 

Genomes CEU data (phase 1 release V3). The associations between SNPs and OS (in an 

additive genetic model) were analyzed by both univariate and multivariate Cox regression 

models using the GenABEL package of R software, with adjustment for age, sex, smoking 

status, histology, tumor stage, chemotherapy, radiotherapy and surgery, where appropriate or 

available from the original GWAS datasets 25. For multiple testing corrections, the FPRP 

approach was used with a cut-off value of 0.2 to lower the probability of false positive 

findings, because the vast majority (near 90%) of the SNPs to be tested were imputed. 

Pairwise LD was estimated by using the data from the 1000 Genomes Project of 373 

European individuals. Inverse variance weighted meta-analysis was performed to combine 

the results of discovery and validation studies. Cochran’s Q statistics and I2 were carried out 

to assess an inter-study heterogeneity. A fixed-effects model was used when no 

heterogeneity was found between the two studies (Q > 0.10 and I2 < 25.0%); otherwise, a 

random-effects model was used. The meta-analysis of the two studies was performed by 

PLINK 1.07.

The number of protective genotypes (NPGs) was used as a genetic score to assess the 

combined effect of all independent and significant SNPs. Kaplan-Meier curves and log-rank 
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tests were used to estimate the effects of genotypes or NPGs on the cumulative probability 

of OS. The heterogeneity test of associations between subgroups in stratified analyses was 

performed by using the Chi-square-based Q-test to assess possible interactions. The receiver 

operating characteristic (ROC) curves and time-dependent area under the curve (AUC) were 

constructed from the logistic regression model with the survival ROC package of R 

software. Statistical significance of the improvement in AUC was analyzed by the Delong’s 

test.

For those SNPs identified as significant, we first performed bioinformatics functional 

prediction by using two online tools: RegulomeDB (http://www.regulomedb.org) and 

HaploReg (http://archive.broadinstitute.org/mammals/haploreg/haploreg.php). Then, we 

performed the eQTL analysis using linear regression analysis between genotypes of SNPs 

and corresponding gene expression levels with the R software. Gene expression data were 

obtained from multiple sources: lymphoblastoid cell data of 373 European individuals from 

Genetic European Variation in Health and Disease Consortium (GEUVADIS) and the 1000 

Genomes Project (phase I integrated release 3, March 2012) 26; the whole blood and lung 

tissues data from the genotype-tissue expression (GTEx) project; tumor tissues and adjacent 

normal tissue data from the Cancer Genome Atlas (TCGA) database. In the TCGA database, 

associations between gene expression levels and lung cancer OS were accessible for 408 

lung cancer patients of European descent with follow-up information; differences in mRNA 

expression levels between 109 paired lung cancer tissues and adjacent normal tissues (51 

cases of LUSC and 58 cases of LUAD) were examined by the Student t test 27, 28. The 

TCGA level 3 RNAseq data (LUSC_rnaseqv2_Level_3_RSEM_genes_normalized_data. 

2016012800.0.0.tar.gz and LUAD_Level_3_RSEM_genes_normalized_data_ 

2016012800.0.0.tar.gz) were downloaded from the Broad TCGA GDAC site (http://

gdac.broadinstitute.org). The mutation data of those identified genes in lung tumor tissues 

were also publically available from the database of the cBioPortal for Cancer Genomics 

(http://www.cbioportal.org).

Results

Basic characteristics of the two GWAS study populations

The overall workflow chart is shown in Supporting information Fig. 1A. Basic 

demographics and clinical characteristics of 1,185 NSCLC patients from the PLCO trial 

have been described previously 5, and seven clinical variables (i.e., age at diagnosis, sex, 

smoking status, histology, stage, chemotherapy and surgery) were found to be significantly 

associated with NSCLC OS and DSS. In the HLCS study, the basic characteristics of 984 

NSCLC patients, including age, sex, smoking status, and histology and stage of lung cancer, 

were also previously described 5. Although both studies included a Caucasian population, 

there had some differences in the distribution of age, sex, tumor histology and stage, and 

each of these factors were adjusted in the multivariate Cox models for survival analyses.

Multivariate analyses of association between SNPs and NSCLC OS in the PLCO trial

In the discovery PLCO dataset, multivariate Cox regression analysis was firstly performed to 

assess associations between 16,378 common SNPs (i.e., 1,680 genotyped and 14,698 
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imputed SNPs) of the methionine metabolism pathway genes and NSCLC OS with 

adjustment for age, sex, smoking status, histology, tumor stage, chemotherapy, radiotherapy 

and surgery. The Manhattan plot of associations between these variants and NSCLC OS in 

PLCO is shown in Supporting information Fig. 1B. The QQ plot of the observed P values 

showed a fairly uniform distribution (Supporting information Fig. 1C), although the actual P 
values deviated from the expected values at the early stage. In the single locus analysis, 

1,390 SNPs were found to be significantly associated with NSCLC OS at P < 0.05 in an 

additive genetic model, of which 1,005 SNPs in 33 genes were still considered noteworthy 

with an FPRP value < 0.2. After that, we performed pairwise LD analyses (r2 > 0.6) of these 

SNPs in each gene, and the tag SNPs with the lowest RegulomeDB scores (functional 

prediction) were chosen. As a result, there were 101 representative, potentially functional, 

SNPs in these 33 genes with P < 0.05 and FPRP <0.2, which were subjected to validation.

Validation analysis with Harvard dataset and meta-analysis of two studies

To confirm the findings from the PLCO dataset, the 101 representative SNPs were further 

subjected to validation in the HLCS dataset. As shown in Table 1, three SNPs in three genes 

identified in the discovery phase remained statistically significant (P < 0.05): there were 

rs7553295 in runt-related transcription factor 3 (RUNX3), rs1279590 in S-

adenosylmethionine decarboxylase 1 (AMD1) and rs73534533 in methionine sulfoxide 

reductase (MSRA), all of which were associated with an improved survival in both datasets. 

Meta-analysis of these three SNPs from both datasets showed that these associations 

remained statistically significant, without evidence for heterogeneity across the two GWAS 

datasets (Table 1).

Three independent SNPs as NSCLC OS predictors

We further performed functional prediction with RegulomeDB and Haploreg for these three 

validated SNPs (Supporting information Table 2). As indicated by RegulomeDB, the scores 

of RUNX3 rs7553295, AMD1 rs1279590 and MSRA rs73534533 were 4, 5 and 6, 

respectively. Functional annotation of these SNPs in HaploReg demonstrated that RUNX3 
rs7553295 overlaps with a promoter and an enhancer, potentially disrupting the motif of 

Zfp691 and affecting the mRNA expression; AMD1 rs1279590 overlaps with an enhancer in 

18 tissues (e.g., lung, IMR90 fetal lung fibroblasts) and may disrupt three motifs, including 

Nanog, POU class 2 homeobox 2 (Pou2f2/Oct-2) and POU class 5 homeobox 1 (Pou5f1/

Oct-4) and thus affect mRNA expression of the corresponding gene; similarly, MSRA 
rs73534533 may disrupt seven motifs. As the online functional prediction tools suggested 

that these SNPs were biologically functional, then we used initial stepwise Cox regression 

analyses to identify whether these three SNPs were independent predictors of OS. The 

results suggested that these three validated representative SNPs were statistically significant 

independent predictors of NSCLC OS (Table 2).

For each of the three independent SNPs, univariate and multivariable Cox regression 

analysis were further performed to evaluate their effects on risk of death with adjustment for 

age, sex, smoking status, histology, tumor stage, chemotherapy, radiotherapy and surgery 

(Table 3). In the PLCO dataset, the risk of death was significantly decreased with the 

increasing number of rs7553295T, rs1279590 A and rs73534533 A alleles (Ptrend <0.0001, 
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0.011 and 0.005, respectively). Similarly, consistent trends were observed in the risk of DSS 

of in the PLCO dataset (Ptrend = 0.0002, 0.004 and 0.013, respectively) (Supporting 

information Table 3). For the illustrative purposes, Kaplan-Meier survival curves of these 

associations of these SNPs with NSCLC OS and DSS are depicted in Figs. 1A and 1C, 

respectively. In addition, regional association plots for variants in RUNX3, AMD1 and 

MSRA, including the 250-kb regions flanking the neighborhoods of these genes, are shown 

in Supporting information Fig. 2.

Combined effects of the three independent SNPs

To evaluate the joint effect of the three independent SNPs on OS, the protective genotypes 

(i.e., RUNX3 rs7553295 GT+TT, AMD1 rs1279590 GA+AA and MSRA rs73534533 CA

+AA) were combined into a genetic score as the number of protective genotypes (NPGs) 

(Table 3). The trend test indicated that an increased number of NPGs was associated with a 

decreased risk of death in the PLCO dataset (Ptrend < .0001). We next dichotomized all 

patients into a low- protective group (0-1 NPGs) and a high-protective group (2-3 NPGs). 

We observed that the high-protective group had a HR of 0.72 (95% CI =0.60-0.86, P = 

0.0003), compared with the low-protective group. For the illustrative purposes, Kaplan-

Meier survival curves of these associations of the NPGs with NSCLC OS are depicted in 

Fig. 1B. The analysis of lung cancer DSS showed the results similar to that of OS and that 

the high-protective group had a significantly better prognosis (HR = 0.67, 95%CI = 

0.55-0.82 and P <.0001) (Supporting information Table 3). Kaplan-Meier survival curves of 

these associations of the NPGs with NSCLC DSS are shown in Fig. 1D.

Stratified analyses for associations between NPGs and NSCLC OS

Stratified analysis was performed to investigate whether the combined effect of protective 

genotypes on NSCLC OS was modified by covariates in the PLCO dataset. Compared with 

those with 0-1 NPGs, individuals with 2-3 NPGs showed better survival, with no statistically 

significant differences in strata defined by age, sex, smoking status, histology, tumor stage or 

type of treatment (Supporting information Table 4). No statistically significant heterogeneity 

or interactions were observed among these subgroups.

The ROC curves and time dependent AUC

We further estimated the predictive value of the NPGs with time-dependent AUC and ROC 

curves in PLCO. As shown in Supporting information Fig. 3, the time-dependent AUC plot 

indicated an improved prediction performance with the addition of NPGs to the model with 

covariates compared to the model with covariates only. When evaluating the five-year and 

ten-year NSCLC OS, adding NPGs into the model with covariates increased the AUCs from 

86.71% to 86.95% (P = 0.154) and from 84.51% to 84.95% (P = 0.067) respectively, which 

were marginally significant. A similar trend was observed for the predictive value of the 

NPGs in DSS with significantly increased AUC for ten-year DSS (from 83.29% to 83.96%, 

P = 0.049).
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The eQTL analyses

To evaluate correlations between SNPs and their corresponding mRNA expression levels, we 

primarily used the RNA-Seq data of lymphoblastoid cell lines from 373 European 

descendants in the 1000 Genomes Project. As shown in Fig. 2, rs1279590 GA+AA (or the A 

allele) was significantly associated with a decreased mRNA expression level of AMD1 (a 

trend test in a dominant model: P = 0.017) and rs73534533 CA+AA (or the A allele) was 

significantly associated with an increased mRNA level of MSRA (a trend test in a dominant 

model: P = 0.027). However, there was no significant association between rs7553295 GT

+TT and RUNX3 mRNA expression levels (Supporting information Fig. 4A).

In Westra’s 2013 study 29, we also found that rs7553295 GT+TT (or the T allele) and 

rs1279590 GA+AA (or the A allele) were associated with decreased mRNA expression 

levels of RUNX3 and AMD1 in the whole blood (P = 1.25 × 10−5 and 5.45 × 10−6, 

respectively).

Next, we performed the eQTL analysis using data from the GTEx project. In lung normal 

tissues from the donors, the rs7553295 T allele (i.e., GT+TT genotypes and rs1279590 A 

allele (i.e., GA+AA genotypes) had a non-significant trend in correlation with decreased 

mRNA expression levels of RUNX3 (P = 0.140, Supporting information Fig. 4B) and 

AMD1 (P = 0.390, Supporting information Fig. 4C), but this non-significant trend was not 

observed between the rs73534533 A allele (i.e., CA+AA genotypes) and mRNA expression 

levels of MSRA (P = 0.62, Supporting information Fig. 4D).

Finally, we performed an analysis of SNP and mRNA expression correlation using the 

expression data in tumor tissues from 408 NSCLC patients (237 lung squamous cell 

carcinomas and 171 lung adenocarcinomas) from the TCGA database. Only rs7553295 GT

+TT (or the T allele) showed a non-significant trend in correlation with decreased mRNA 

expression levels of RUNX3 in all patients with NSCLC, LUSC or LUAD (P = 0.174, 0.597 

and 0.197, respectively) (Supporting information Figs. 4E–4G). The data for other two SNPs 

were not available in this database.

Differential expression analysis in the TCGA dataset

Using the TCGA dataset, we evaluated mRNA expressions levels of 109 paired tumor and 

adjacent normal tissue samples in NSCLC. As shown in Fig. 3A, lung cancer tissues had a 

lower mRNA expression level of MSRA, compared with that in the adjacent normal tissues 

(135.77 ± 90.57 in tumor vs. 269.65 ± 57.63 in normal, P<.0001). Moreover, the mRNA 

expression levels of MSRA were also lower in tumor tissues either in the 51 pairs of LUSC 

tissues (91.02±53.48 in LUSC vs. 269.23 ±46.67 in normal, P <.0001) and the 58 pairs of 

LUAD tissues (175.12 ±98.31 in LUAD vs. 270.02 ± 66.21 in normal, P <.0001). However, 

AMD1 or RUNX3 mRNA expression levels in paired tumor and normal adjacent tissues in 

either LUSC or LUAD were not significantly different in either LUSC or LUAD.

Mutation analyses

Finally, we investigated the mutation status of RUNX3, AMD1 and MSRA in lung tumor 

tissues by using the public database of the cBioPortal for Cancer Genomics. As shown in 
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Fig. 3B, RUNX3 had a low somatic mutation rate in NSCLC (mutation rate = 0.79% 

[9/1144] in the TCGA 2016 30study) and LUAD (mutation rate = 8.84% [3/34], 1.09% 

[2/183] and 0.87% [2/230] in the MSKCC 31, Broad 32 and TCGA28 studies, respectively); 

AMD1 had a low somatic mutation rate in NSCLC (mutation rate = 0.35% [4/1144] in the 

TCGA 2016 study30), LUAD (mutation rate = 0.87% [2/230], in the TCGA study 28) and 

LUSC (mutation rate = 1.1% [1/178]) in the TCGA study 27; and MSRA also had a low 

somatic mutation rate in NSCLC (mutation rate = 0.79% [9/1144] in the TCGA 2016 study 
30) and LUAD (mutation rate = 0.43% [1/230] in the TCGA study 28). These results 

suggested that given the low mutation rates, the functional SNPs in RUNX3, AMD1 and 

MSRA may play a more important role in the dysregulation of mRNA expression in tumor 

tissues than mutations had.

Discussion

Recent findings in cancer metabolism have resulted in new translational opportunities for 

drug development, dietary intervention in cancer prevention, and biomarkers for the efficacy 

of the anti-metabolic chemotherapeutic drugs. Methionine dependence is a unique metabolic 

defect commonly seen in various cancers, and methionine restriction in combination with 

chemotherapy has become a new focus in cancer treatment 33. In the present study, we first 

identified rs7553295 G>T, rs1279590 C>A and rs73534533 C>A as predictors of NSCLC 

OS. Remarkably, functional relevance of these SNPs with their corresponding mRNA 

expression levels was further confirmed by assessing publicly available datasets. These 

findings suggested that genetic variants in the methionine metabolism pathway genes might 

have biological roles in NSCLC progression, possibly through a mechanism of modulating 

expression of these genes, which provides new scientific insights into metabolism-based 

therapeutics.

In the present study, it appears that the independent effects of genetic variants in RUNX3, 
AMD1 and MSRA on OS and DSS in NSCLC patients can add to a much strong effect 

through a genetic sore, which represents the combined effects of the three genetic variants. 

Remarkably, the combined effect was consistent across analyses of different datasets and 

through stratified analyses, in the presence of other covariates, such as age, sex, smoking 

status, histology and different treatment strategies. Furthermore, based on the genotype-

phenotype correlation analysis and in silico functional prediction, we believe that our results 

are biologically plausible.

RUNX3, located on chromosome 1p36.1, encodes a protein that belongs to the runt domain 

family of transcription factors acting as master regulators of gene expression during normal 

tissue development 34, 35. RUNX3 has been identified as a tumor suppressor in a variety of 

human malignancies, including lung cancer 36–38. Due to aberrant hypermethylation of its 

CpG islands 39, RUNX3 expression has been reported to be lost in the range of 19~95% of 

lung cancer cell lines and tissue samples, and RUNX3 inactivation has been causally linked 

to the preneoplastic stage of lung adenocarcimoma 38. In the present study, we found that 

rs7553295, located in the 2-kb of the 3’ of RUNX3, was associated with a better survival in 

NSCLC patients. According to the Haploreg data 40, 41, rs7553295 overlaps with an 

enhancer activity cluster, which is classified as a genic enhancer by the 15-state core model 
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and as a transcribed 3’ enhancer by the 25-state model. Meanwhile, rs7553295 overlaps with 

histone modification markers H3K4me1, H3K4me4 and H3K27ac, which all contribute to 

the chromatin state assignment at this SNP location. Additional data in Haploreg show that 

this SNP changes the match to a regulatory motif Zfp691 (zinc finger protein 691). In line 

with that, we found the RUNX3 rs7553295 T allele was associated with a significant 

decrease in mRNA expression levels of RUNX3 in whole blood. Therefore, rs7553295 

probably affects gene expression levels by modifying the accessibility of chromatin during 

transcription.

AMD1, located on chromosome 6, encodes the S-adenosylmethionine decarboxylase 1, an 

enzyme that catalyzes the conversion of S-adenosyl methionine to S-

adenosylmethioninamine, controlling the second rate-limiting step in the polyamine 

biosynthetic pathway 42. Polyamines are highly regulated essential cations that are elevated 

in rapidly proliferating tissues of diverse cancers. Reduced levels of intracellular polyamines 

activate checkpoints that constrain proliferation, as seen in senescent and post-mitotic cells, 

while enhanced polyamine synthesis accompanies oncogenic proliferation 42, 43. Recent 

studies demonstrated that rapamycin complex 1 (mTORC1)-dependent AMD1 upregulation 

sustains polyamine metabolism in prostate cancer 44. In the present study, we found that 

NSCLC patients with genotypes of AMD1 rs1279590 GA+AA had better survival. 

According to the Haploreg, this SNP overlaps with an enhancer in many tissues including 

that of the lung. In line with that, we found the AMD1 rs1279590 A allele was associated 

with a significant decrease in mRNA expression levels of AMD1 in lymphobpastoid cell 

lines and whole blood, which supports an oncogenic effect of AMD1. Meanwhile, 

rs1279590 might have some effects on three motifs including Nanog 45, Pou2f2 46 and 

Pou5f1 47, which are all associated with tumorigenesis and metastasis. Taken together, the 

evidence may possibly explain the mechanism underlying the association between 

rs1279590 and NSCLC OS, but further functional investigation is needed.

MSRA, located on chromosome 8p23.1, encodes the methionine sulfoxide reductase, which 

is known to protect proteins from oxidation and acts as a reactive oxygen species (ROS) 

scavenger 48. In the present study, our findings suggested that MSRA rs73534533 is 

associated with a better survival in NSCLC patients. Consistent with that, rs73534533 CA + 

AA genotypes were associated with a significant increase in mRNA expression levels of 

MSRA in lymphobplastoid cell lines. Various studies have shown that MSRA is down-

regulated in several human tumors including lung carcinoma and that the reduction of 

MSRA levels results in increased cell proliferation, extracellular matrix degradation and up-

regulation of VEGF, consequently leading to a more aggressive cellular phenotype, both in 
vivo and in vitro 49, 50. Consistently, the evidence from differential expression analyses 

supports a tumor-suppressive effect of MSRA on NSCLC, with lower mRNA levels in both 

lung squamous carcinoma and adenocarcinoma. According to Haploreg, this SNP influences 

genomic instability (GI). Consistent with that, rs73534533 CA + AA genotypes are 

associated with a significant increase in mRNA expression levels of MSRA in 

lymphobplastoid cell lines, leading to suppressive genic effects on NSCLC. Moreover, 

rs73534533 might have effects on tumor progression through disruption of seven 

transcription regulators motifs, including homeobox protein Hox-B13, which might 

influence angiogenesis and epithelial cell maturation 51; paired box protein Pax-4, which is 
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correlated with cell differentiation and apoptotic process 52; and THAP Domain Containing 

1, which regulates endothelial cell proliferation and G1/S cell-cycle progression 53. Taken 

together, this evidence may partly explain the biological and molecular mechanisms 

underlying the observed associations.

There are several limitations in the present study. First, although some clinical factors were 

included in the analyses, the information about methionine intake, nutritional status, or 

nutrition-based treatment received by the patients was not available. Second, some top SNPs 

from the PLCO trial, including genetic variants of MTRR, which were identified in some 

other previous studies 17, 18, were not validated in the Harvard study. Different distributions 

of the basic characteristics between the two study populations might partially explain the 

reason of non-validated SNPs. Additional validation by studies with larger sample sizes are 

needed to confirm these findings. Third, we used a less stringent FPRP method to control for 

multiple comparisons in the discovery dataset. Although this may lead to some false positive 

findings, it is noteworthy the effects of the identified SNPs on NSCLC OS were consistently 

observed in both the discovery and replication datasets and that these three SNPs all have 

potential functions in mRNA expression regulation. Lastly, although independent SNPs were 

discovered one one dataset and validated in another dataset and their combined effects on 

NSCLC OS were demonstrated, no direct biological experiments were conducted in vitro or 

in vivo for additional validations. Therefore, additional functional studies are needed to 

explore the exact biological mechanisms of these SNPs or genes underlying NSCLC 

progression.
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What’s new?

Methionine dependence is a unique metabolic defect seen in various cancers including 

non-small cell lung cancer (NSCLC), and thus genetic variants involved in methionine-

metabolic genes may have an impact on clinical outcomes of NSCLC. By using 

publically available genome-wide association study datasets, we identified RUNX3 
rs7553295 T, AMD1 rs1279590 A and MSRA rs73534533 A variant genotypes that are 

associated with survival of NSCLC patients. Once validated by other investigators, these 

variants could possibly be used in personalized clinical management of NSCLC.
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Figure 1. 
The combined risk genotypes and survival prediction. Kaplan-Meier survival curves for the 

overall survival of the combined risk genotypes (A) and dichotomized groups of the NPG 

(B) in the PLCO dataset; Kaplan-Meier survival curves for the disease-specific survival of 

the combined risk genotypes (C) and dichotomized groups of the NPG (D) in the PLCO 

dataset. NPG, number of protective genotypes; PLCO, PLCO, Prostate, Lung, Colorectal 

and Ovarian Cancer Screening trial.
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Figure 2. 
Associations between the protective genotypes and their corresponding mRNA expression 

levels. The eQTL for AMD1 rs1279590 (A) and MSRA rs73534533 (B) in 373 Europeans 

from the 1000 Genomes Project in the dominant model. eQTL, expression quantitative trait 

loci analysis.
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Figure 3. 
Differential mRNA expression analysis and mutation analysis of the three genes. (A) 

Differential mRNA expression analysis of MSRA by using the data generated by The 

Cancer Genome Atlas (TCGA). Higher MSRA mRNA expression were found in the tumor 

tissues of 109 NSCLC (a), 51 LUSC (b) and 58 LUAD (c) than in the adjacent normal 

tissues (P < .0001, P < .0001 and P < .0001, respectively). (B) Mutation analysis of RUNX3, 
AMD1 and MSRA gene in non-small cell lung tumor tissues by using public available data 

in the database of the cBioportal for Cancer Genomics (http://www.cbioportal.org). RUNX3 
(a), AMD1 (b) and MSRA (b) had low mutation frequency in NSCLC, LUAD and LUSC.
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Table 1.

Meta-analysis of three validated SNPs of genes in the methionine metabolism pathway using two published 

GWAS datasets

PLCO (n = 1,185) Harvard (n = 984) Meta-analysis

SNP Allele
1 Gene Chr EAF

HR 
(95% 

CI)
2 p

2 FPRP EAF
HR 
(95% 

CI)
3 p

3 phet
6

I
2

HR 
(95% 

CI)
5 p

7

rs7553295
4 G/T RUNX3 1 0.28

0.79 
(0.70–
0.89)

8.0 × 
10−5 0.001 0.28

0.85 
(0.75–
0.96)

0.007 0.424 0
0.82 
(0.75–
0.89)

2.86 
× 
10−6

rs1279590
5 G/A AMD1 6 0.14

0.83 
(0.72–
0.96)

0.011 0.088 0.12
0.79 
(0.66–
0.95)

0.013 0.693 0
0.81 
(0.73–
0.91)

4.63 
× 
10−4

rs73534533
5 C/A MSRA 8 0.09

0.76 
(0.63–
0.92)

0.005 0.049 0.10
0.79 
(0.65–
0.96)

0.016 0.998 0
0.77 
(0.68–
0.89)

2.07 
× 
10−4

Abbreviations: SNP: single nucleotide polymorphism; GWAS: genome-wide association study; PLCO: Prostate, Lung, Colorectal and Ovarian 
(PLCO) Cancer Screening trial; EAF: effect allele frequency; HR: hazards ratio; CI: confidence interval; phet: p value for heterogeneity by 

Cochrane’s Q test.

1
Reference/effect allele; EAF, effect allele frequency;

2
Adjusted for age, sex, stage, histology, smoking status, chemotherapy, radiotherapy, surgery, PC1, PC2, PC3 and PC4 (PC = principal 

component);

3
Adjusted for age, sex, stage, histology, smoking status, chemotherapy, radiotherapy, surgery. PC1, PC2, PC3;

4
Genotyped SNP in the PLCO trial.

5
Imputed SNP in the PLCO trial.

6
Phet: P value for heterogeneity by Cochrane’s Q test;

7
Meta-analysis in the fix-effect model;
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Table 2.

Independent predictors of OS obtained from stepwise cox regression analysis of selected variables in the 

PLCO trial

Parameter
1

Category
2 Frequency HR (95% CI) p

Age ≤71/>71 636/549 1.03 (1.01–1.04) <0.0001

Sex Male/Female 698/487 0.78 (0.67–0.91)   0.001

Smoking status Never/Current/Former 115/423/647 1.18 (1.06–1.31)   0.003

Histology AD/SC/others 577/285/323 1.17 (1.08–1.28)   0.0003

Stage I-IIIA/IIIB-IV 655/528/2 2.79 (2.30–3.39) <0.0001

Chemotherapy No/Yes 639/538/8 0.58 (0.49–0.70) <0.0001

Radiotherapy No/Yes 762/415/8 0.95 (0.80–1.11)   0.498

Surgery No/Yes 637/540/8 0.21 (0.17–0.27) <0.0001

RUNX3 rs7553295 GG/GT/TT 612/483/90 0.78 (0.69–0.88) <0.0001

AMD1 rs1279590 GG/GA/AA 868/290/25 0.81 (0.70–0.94)   0.005

MSRA rs73534533 CC/CA/AA 967/187/10 0.76 (0.63–0.92)   0.004

Abbreviations: OS, overall survival; HR, hazards ratio; CI, confidence interval.

1
Stepwise analysis included age, sex, smoking, stage, histology, chemotherapy, radiotherapy, surgery, PC1, PC2, PC3, PC4 and 3 SNPs 

(rs7553295, rs1279590 and rs73534533).

2
The "category" was used as the reference.
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Table 3.

Associations of the three validated SNPs in the methionine metabolism process with OS of NSCLC in the 

PLCO trial

Frequency Univariate analysis Multivariate analysis
1

Genotype All Death (%) HR (95% CI) p HR (95% CI) p

RUNX3 rs7553295 G > T

 GG 612 439 (71.73)

 GT 483 305 (63.15) 0.76 (0.66–0.87) 0.0003 0.74 (0.64–0.86) <0.0001

 TT 90 54 (60.00) 0.77 (0.58–1.02) 0.071 0.71 (0.53–0.95) 0.022

 Trend test 0.0007 <0.0001

 GT + TT 573 359 (62.65) 0.77 (0.67–0.88) 0.0002 0.73 (0.64–0.85) <0.0001

AMD1 rS1279590 G > A

 GG 868 597 (68.78)

 GA 290 183 (63.10) 0.82 (0.70–0.98) 0.025 O.80 (0.67–0.94) 0.008

 AA 25 17 (68.00) 1.02 (0.63–1.65) 0.948 0.03 (0.50–1.37) 0.461

 Trend test 0.066 0.011

 GA + AA 315 200 (63.49) 0.84 (0.72–0.99) 0.034 0.80 (0.60–0.94) 0.007

MSRA rs7353A533 C > A

 CC 967 660 (68.25)

 CA 187 117 (62.57) 0.85 (0.70–1.04) 0.106 0.72 (0.59–0.89) 0.002

 AA 10 6 (60.00) 0.90 (0.40–2.01) 0.800 1.13 (0.50–2.53) 0.774

 Trend test 0.119 0.005

 CA + AA 197 123 (62.44) 0.85 (0.70–1.03) 0.104 0.74 (0.60–0.90) 0.003

Number of protective genotypes
2

 0 376 279 (74.20)

 1 532 352 (66.17) 0.75 (0.64–0.88) 0.0004 0.63 (0.53–0.74) <0.0001

 2 228 136 (59.65) 0.64 (0.52–0.78) <0.0001 0.54 (0.43–0.66) <0.0001

 3 26 15 (57.69) 0.63 (0.37–1.06) 0.080 0.55 (0.33–0.93) 0.026

 Trend test <0.0001 <0.0001
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Frequency Univariate analysis Multivariate analysis
1

Genotype All Death (%) HR (95% CI) p HR (95% CI) p

 0–1 908 631 (69.49)

 2–3 254 151 (59.45) 0.75 (0.36–0.90) 0.002 0.72 (0.60–0.86) 0.0003

Abbreviations: SNPs, single nucleotide polymorphisms; OS, overall survival; NSCLC, non-small cell lung cancer; PLCO: Prostate, Lung, 
Colorectal and Ovarian (PLCO) Cancer Screening trial; HR, hazards ratio.

1
Adjusted for age, sex, smoking status, histology, tumor stage, chemotherapy, radiotherapy, surgery, PC1, PC2, PC3 and PC4;

2
Protective genotypes were RUNX3 rs7553295 GT + TT, AMD1 rs1279590 GA + AA and MSRA rs73534533 CA + AA.
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