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Background: Chemical exchange saturation transfer (CEST) MRI requires the acquisition of multiple 
saturation-weighted images and can last several minutes. Misalignments among these images, which are 
often due to the inevitable motion of the subject, will corrupt CEST contrast maps and result in large 
quantification errors. Therefore, the registration of the CEST series is critical. However, registration is 
challenging since common intensity-based registration algorithms may fail to differentiate CEST signals 
from motion artifacts. Herein, we studied how different patterns of motion affect CEST quantification and 
proposed a cascaded two-step registration scheme by utilizing features extracted from the entire Z-spectral 
image series instead of direct registration to a single image.
Methods: The proposed approach is conducted in two stages: during the first coarse registration, the 
Z-spectral image series is decomposed by robust principal component analysis (RPCA) to separate CEST 
contrast from motion. The recomposed image series using only the low-rank component, which contains 
minimized motion, are averaged to generate a reference for the alignment of the image series. To further 
remove residual misalignments, the coarse registration is followed by a refinement stage, which uses PCA 
iteratively to generate motionless synthetic reference series with the first few principal components (PCs) 
that correspond to CEST contrast. In the end, the quality check is performed to exclude the images with 
unsuccessful registration.
Results: The proposed registration scheme (RPCA + PCA_R) was assessed by both phantom experiments and 
in vivo data of tumor-bearing mouse brain, with simulated random rigid motion in different patterns applied 
to the acquired static Z-spectral image series. For comparison, previous correction schemes using an explicit 
image [either S0 or Ssat(∆ω)] as registration reference were also performed, named as S0_R and Ssat_R respectively. 
To illustrate the advantage of combination of RPCA and PCA, registration was also exploited using either only 
the RPCA-based method (RPCA_R) or only the PCA-based one (PCA_R). Compared with the above four 
methods, RPCA + PCA_R allowed for more accurate correction of the corrupted Z-spectral images, exhibiting 
smaller MTRasym(∆ω) error maps and lower residual Z-spectra referring to the static data. Among all the five 
correction methods, the corrected Z-spectral image series by RPCA + PCA_R and the resulting MTRasym(∆ω) 
maps achieved the highest correlation coefficients (CC) with respect to the static ones.
Conclusions: The registration scheme of RPCA + PCA_R provides robust motion correction between 
two specific Z-spectral images and among an entire image series, through extraction of the static component 
from the entire Z-spectra set and inclusion of a PCA-based refinement step. Therefore, this method can help 
improve CEST acquisition and quantification.
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Introduction

Chemical exchange saturation transfer (CEST) MRI is 
an alternative contrast mechanism that indirectly detects 
biomolecules by probing their exchangeable protons with 
a frequency-specific saturation pulse. Through multiple 
chemical exchanges, the saturation signal transfers to bulk 
water and is amplified for detection (1). CEST MRI has 
been shown to be able to map certain dilute metabolites 
such as creatine (2), glucose (3,4), salicylic acid analogs (5),  
and changes in microenvironment properties, like 
temperature (6) and pH (7-9), which are promising in a host 
of applications in cancers and neurological diseases (10-20).

To observe the CEST effect, a series of images of the 
bulk water is acquired as a function of saturation frequency 
offsets (∆ω), called Z-spectra data. The most-commonly 
used CEST quantification method is asymmetry analysis on 
the magnetization transfer ratio (MTRasym) (21). MTRasym 
takes the difference between two saturation-weighted 
images at opposite offsets (+/−∆ω), then normalizes by 
S0 image (without saturation pulse applied), as described 
below:

sat sat
asym

0

S (-Δω)-S (+Δω)MTR = 100%
S

• 	 [1]

To achieve higher spectral resolution and sample 
adequate ∆ω’s of interest, acquisition of Z-spectra usually 
lasts several minutes. The inevitable motion of subjects, 
however, can seriously affect CEST contrast maps and 
quantification, especially for voxel-by-voxel analysis. Even 
if individual images are motion-free, any misalignments 
among CEST images can easily corrupt Z-spectra and 
MTRasym quantification by introducing signal variations 
(peaks or dips) that resemble those expected from the 
molecules of interest (22). The MTRasym image can also 
easily get distorted, usually due to the motion-induced 
misalignments among Ssat(+∆ω), Ssat(−∆ω), and the S0 image 
for normalization. Therefore, the application of a proper 
registration algorithm is critical for CEST analysis, directly 
affecting image quality and quantification (12,23-32).

However, image registration for Z-spectral image 
series imposes two challenges. Firstly, images at different 
Δω inherently possess variable signal intensity via CEST 
contrast, compromising intensity-based registration 
algorithms. To register images with varying intensities, the 
pair-wise approach is generally used with a dissimilarity 
metric such as the sum of squared difference (SSD), 
correlation coefficient (CC), and mutual information  

(MI) (33). Still, with such conventional strategies, it is 
difficult to distinguish intensity changes induced by CEST 
contrast and motion. Secondly, the selection of a reference 
image for the alignment of other images is an important 
step in the context of CEST analysis. Several previous 
studies have taken S0 image as the reference image (24-
29). But, since the intrinsic contrast of S0 is considerably 
different from other saturated images, registration results 
are poor (32). For amide proton transfer (APT) imaging 
that is quantified by MTRasym(3.5 ppm), the 3D human 
brain data has suggested the use of a saturated image at  
3.5 ppm as the registration reference can yield best  
quality (32). However, when different or multiple offsets 
are of interest, the selection of reference image(s) needs to 
be optimized again. Instead of a single reference image, one 
recent method generated a corresponding reference for each 
saturation image at ∆ω, using the low-rank approximation 
of the Z-spectral images, termed as LRAZ. Despite that 
the low-rank components containing less motion, LRAZ 
exploits singular value decomposition (SVD) and the level 
of separation between motion and CEST signal strongly 
depends on regularization parameters, which needs to be 
tuned in a heuristic manner (34). In addition to the above 
methods that registered CEST images post-acquisition, 
CEST imaging sequence can be modified by including 
navigators, enabling real-time corrections of motion, and 
shimming during acquisition (22).

Previously, dynamic contrast enhancement (DCE-)  
MRI has developed methods for distinguishing signal 
intensity changes due to contrast enhancement from those 
corresponding to motion. A progressive principal component 
registration method (PPCR) gradually removes motion for 
both liver and breast DCE-MRI (35,36). This method is 
based on the iterative use of principal component analysis 
(PCA) to create a synthetic reference series that is free from 
motion but preserves contrast enhancement. However, the 
ability of PCA to separate motion from contrast enhancement 
breaks down when the image series contains a large amount 
of motion. Another robust data decomposition registration 
algorithm (RDDR) separates contrast enhancement and 
motion by assuming that the sparse component is attributable 
to contrast changes and the low-rank is attributable to motion 
after applying robust principal component analysis (RPCA), 
allowing iterative re-alignment of the liver, small bowel, and 
prostate DCE-MRI (37). More recently, a robust non-rigid 
motion correction approach was proposed for myocardial 
perfusion MRI, which consists of RPCA and non-rigid 
image registration (38). However, DCE pharmacokinetics 
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and CEST Z-spectra have different features. In DCE-
MRI, the contrast agent directly changes tissue relaxation 
and causes significant and rapid variation of the signal. In 
CEST experiments, especially for the endogenous CEST, 
the variation in CEST signal is smooth when compared to 
motion which results in rapid signal variation. Based on this 
characteristic, CEST contrast is assumed to be separated 
from motion by RPCA. However, it is difficult for RPCA to 
differentiate these two perfectly, and residual motion needs 
to be further considered.

Herein, we introduce a two-stage motion correction 
approach specifically designed for Z-spectral image series, 
which consists of RPCA-based coarse registration and 
PCA-based refinement registration, together called “RPCA 
+ PCA_R”. Our hypothesis is that RPCA + PCA_R allows 
for a robust capability in achieving accuracy registration for 
various motion scenarios of Z-spectral image series.

Methods

Theory

Registration scheme
Motion correction is conducted in a two-stage scheme 
(Figure 1). Coarse registration accounts for bulk motion, 
where the Z-spectral image series is decomposed by 

RPCA to robustly separate CEST contrast from motion, 
achieving to minimize motion component in the reference 
image. Then, refinement registration gradually removes 
the remaining small misalignments by using PCA for 
the iterative generation of a motionless reference series. 
To ensure registration quality, a quality check is finally 
performed.

Stage I: coarse registration
A matrix of vectorized images M can be decomposed 
into a sum of the sparse component (S) and the low-
rank component (L) in the context of simultaneous image 
alignment (39). The portion of images that cannot be 
described by L is allocated to the S part. Hence, L can 
be interpreted as correlated information among images, 
which is not constant but rather smooth and global changes 
between frames, while S captures dynamic information 
introduced in each subject, which is rapid with local 
intensity changes. Such matrix decomposition can be solved 
by RPCA and formulated as an optimization problem to 
recover L and S from the input data (40):

* *
* 1

L,S
{L ,S }=argmin ( L +λ S )

subject to M = L + S
	 [2]

where *  denotes the nuclear norm (i.e., the sum of the 

Figure 1 Illustration of the scheme for motion correction in CEST MRI, including a coarse registration step, a refinement registration step, 
and a quality check module at the end. CEST, chemical exchange saturation transfer.
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matrix singular values) and 1  denotes the l1-norm (i.e., 
the sum of the absolute values of the matrix). The trade-
off parameter (λ) corresponds to rank of L: for high values, 
most information will appear in L with a large rank while 
S will be empty, and vice-versa. The optimal {L*,S*} can be 
efficiently computed through an augmented Lagrangian 
multiplier method using alternating direction approach 
(ADM) (41).

The information in the Z-spectral image series can 
be regarded as a combination of smooth CEST contrast 
changes and rapid motion variation. We hypothesize 
that RPCA decomposes the Z-spectral image series into 
L, corresponding to CEST contrast, and S, containing 
the motion. The Z-spectral image series with x×y voxels 
at Nf different ∆ω is converted to a (x·y by Nf) Casorati 
matrix M and then decomposed by RPCA with suitable 
λ. Next, a series of pair-wise registrations are performed, 
in which the average image of the low-rank series is used 
as reference for the whole input series, resulting in the 
coarse registered series having bulk motion eliminated. 
Specifically, to minimize the contribution of motion in 
the reference image, λ is adjusted experimentally so that 
most motion is incorporated into S. Alternatively, λ can be 
chosen independent of the application and the nature of 
data (Candès value, λ0) (40) :

0
f

1λ =
max(x y,N )× 	

[3]

Stage II: refinement registration
PCA is a common method to discover and exploit linear 
correlation in data (42). PCA linearly transforms the 
correlation input into a set of uncorrelated variables by 
orthogonal transformation, extracting principal components 
(PCs). The PC with larger variance is ranked higher, 
containing more data information. The image series post the 
coarse registration of RPCA is firstly transformed to a 2D 
matrix M (x·y by Nf), with its covariance matrix defined as:

1C=
1

T

f

MM
N − 	

[4]

C is eigenvalue decomposed, and the generated eigenvectors 
are sorted in descending order of the corresponding 
eigenvalue. Orthogonal matrix U, whose columns are 
eigenvectors, transforms the correlation input into 
uncorrelated data W:

TW U M= 	 [5]

where W contains PCs of the input. M can be approximately 

reconstructed using only the d highest ranked PCs’:

'
dM d dU W= 	 [6]

where Ud and Wd contain first d columns of U and W, 
respectively.

In coarse registration, it is difficult to optimize 
λ to correct for both large and small deformations 
simultaneously; thus, misalignments remain in the coarse 
registered series. However, the residual motion is slight 
and noise-like and assumed to appear in less significant PCs 
when compared with continuous CEST contrast which is 
more significant. Therefore, the PCA-based registration, 
similar to previous methods (35,36), has the ability to 
remove the residual motion efficiently by using a limited 
number of PCs that correspond to CEST contrast.

Each voxel in a coarse registered image is interpreted as a 
variable for the function describing the corresponding signal 
intensity along ∆ω as an observation. The coarse registered 
series is subject to PCA, looking for linear correlations 
between the voxels with regard to ∆ω and generating 
PCs. In the ith iteration, the first i PCs are used to create 
a synthetic motionless reference series, in a ∆ω-by-∆ω 
manner. Importantly, only the reference series is updated 
and refined in iterations, while the source images are always 
represented by the coarse registered series. This process is 
repeated until the d’s highest ranked PCs are included.

Quality check
Since motion-free Z-spectral signals are continuous and 
smooth in theory, we use the CC between the corrected 
saturation-weighted image and the average image at its two 
neighboring offsets to assess registration quality, defined as 
follows:

i=1 j=1

2 2

i=1 j=1 i=1 j=1

P(i,j)- Q(i,j)-
CC=

P(i,j)- Q(i,j)-

yx

y yx x

P Q

P Q

      

      

∑∑

∑∑ ∑∑
	 [7]

where x and y are the dimensions of the image. P  and 
Q  denote the average intensities of the two comparison 
images, respectively. The closer the value of CC is to 1, the 
more similar the two images are, with the alert being raised 
when CC <0.9.

Registration details

In principle, any registration technique can be used in the 
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Figure 2 Phantom CEST MRI data after applying rigid motion of different patterns. (A) Profile of the phantom, in which the tubes are 
filled with different concentrations of salicylic acid (SA) solution dissolved in 0.01 M phosphate-buffered saline (PBS) at pH 6.8 (top row) 
and pH 7.4 (down row) corresponding to the MTRasym(9.25 ppm) map of the original data. (B,C) MTRasym(9.25 ppm) maps of the phantom 
data corrupted by applying shifts (x-direction and y-direction) and rotations (xy-plane) with 0 mean, different SD in normally distributed 
pseudo-random numbers to each Z-spectral image, and the corresponding differences from the original data. (D) The normalized root mean 
square error (NRMSE) of Z-spectral image series corrupted by motion in various patterns to the original data. CEST, chemical exchange 
saturation transfer; MTRasym, asymmetry analysis on the magnetization transfer ratio.

proposed motion correction scheme. Herein, pair-wise 
rigid registration with SSD-based dissimilarity metric is 
exploited. For each stage, we used a MATLAB (MathWorks, 
Natick, MA, USA) custom function. An optimizer, based 
on built-in-function fminsearch, looks for the optimal 
solution that minimizes the dissimilarity metric. A multi-
resolution strategy is used, in which the large deformations 
are corrected first, and finer deformations are corrected 
at higher levels. The number of resolution levels is set to 
3. Bicubic interpolation is used to interpolate the images 
among rigid transformation.

Experiments

Phantom study
The phantom was prepared using NMR tubes of 1 mm in 
diameter. Salicylic Acid (SA) solutions were dissolved in 
0.01M phosphate-buffered saline (PBS) at 6 concentrations 
(1.56, 3.12, 6.25, 12.5, 25, and 50 mM), producing a range 

of CEST contrast. Figure 2 illustrates the profile of the 
phantom, which includes 2 groups of samples at pH 6.8 and 
pH 7.4.

All experiments were performed on a Bruker 11.7 T 
vertical MRI scanner with a 15 mm birdcage for both 
excitation and signal detection. CEST MRI images were 
acquired using a continuous-wave (CW) saturation pulse, 
followed by a single-sliced rapid acquisition with relaxation 
enhancement (RARE) sequence (RARE factor =32). A 
total of 89 saturated images, which were the Z-spectral 
image series, were collected from −11 to 11 ppm [0.25 ppm 
step, tsat =3,000 ms, B1,sat =5.9 μT, repetition time (TR)/
echo time (TE) =6,000 ms/4.5 ms]. The total scanning 
time for the Z-spectral image series was 18 min. The S0 
image was collected at 40 ppm. A group of images was 
acquired by sweeping ∆ω from −1 to 1 ppm (0.05 ppm step)  
(tsat =500 ms, B1,sat =0.28 μT, and TR/TE =2,500 ms/4.5 ms) 
to generate the B0 map using WASSR (43), resulting in  
3 min and 25 s of scanning. The other imaging parameters 
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were as follows: field of view (FOV) =1.7×1.4 cm2, 
acquisition matrix size =128×64, slice thickness =1 mm.

In vivo study
All animal experiments were performed in accordance 
with the Johns Hopkins University Animal Care and 
Use Committee guidelines. A SCID/NCR mouse was 
xenografted intracranially to the striatum of the brain with 
100,000 human glioblastoma cancer cells derived from 
patients (44,45). MR imaging was performed 6 weeks 
post-injection with the mouse anesthetized using 0.5–2% 
isoflurane prior to imaging. MR images were acquired 
with the RARE readout on a Bruker 11.7T horizontal 
MRI scanner, using a 23 mm birdcage transmit-receiver 
coil. The in vivo experiments used the same RARE 
sequence as that for the phantom study, but it was slightly 
modified given the different relaxation characteristics 
and offset frequencies of interest. A total of 49 Z-spectral 
images with ∆ω incremented from −6 to 6 ppm (0.25 ppm 
step) were collected using tsat =2,500 ms, B1,sat =2.4 μT, 
TR/TE =5,500 ms/11.1 ms, resulting in 9 min and 10 s 
of scanning. The S0 image at 40 ppm was collected. B0 
inhomogeneity was corrected using WASSR (43), which 
were saturation images with a weak saturation pulse 
(B1,sat =0.5 μT, tsat =500 ms) sweeping from −1 to 1 ppm 
(0.1 ppm step) (TR/TE =2,000 ms/10.8 ms). The other 
imaging parameters were as follows: RARE factor =16, 
FOV =1.7×1.4 cm2, acquisition matrix size =96×64, slice 
thickness =1.2 mm.

Simulated motion

The statically acquired Z-spectral image series were seen 
as original data. To verify RPCA + PCA_R, each image 
was corrupted by random shifts and rotations to simulate 
rigid motion for tubes of phantom and in vivo mouse head. 
Motion under three patterns was applied to phantom data: 
normally distributed pseudo-random numbers with 0 mean 
and SD for shifts in x-direction and y-direction of 0.2 or  
0.5 pixel, 0 mean and SD for rotation in the xy-plane of 0.1° 
or 0.3°, and combinations of different shifts and rotations. 
In vivo data was corrupted by motion under the other  
3 patterns: 0 mean and 0.5 or 1 pixel SD for shifts, and 0.5° 
or 1° SD for rotations as well as their different combinations 
in normally distributed pseudo-random numbers. To assess 
the robustness of registration methods, the simulation of 
each motion pattern was repeated 10 times to obtain various 
motion scenarios between the image series.

Image processing

The original Z-spectral image series, as well as WASSR 
images, were first aligned using the proposed registration 
method, followed by the regular CEST processing flow 
which consists of the voxel-wised correction for B0 
inhomogeneity, calculation of the MTRasym(∆ω) map, and 
the ROI-based Z-spectra analysis. For comparison, previous 
registration strategies using an explicit image as the reference 
of registration were also performed, termed as S0_R (using S0 
image) (24) or Ssat_R which used saturated image Ssat(∆ω) (∆ω 
=+9.25 ppm for phantom and +3.5 ppm for in vivo) (32). In 
addition, to illustrate the advantage of combination of RPCA 
and PCA, registration was also exploited using either only 
RPCA-based method (RPCA_R) or only the PCA-based one 
(PCA_R). All the exploit correction schemes used the same 
registration core technique as described earlier in the session 
of ‘Registration details’.

All data processing was performed using custom-
written scripts in Matlab 2016a. All statistical analyses were 
performed with Prism8 (GraphPad Software) with P<0.05 
considered as statistically significant.

Evaluation of registration performance

To fully evaluate the changes of the entire Z-spectral image 
series due to motion, and after correction, we expanded 
the whole series to form a 2D offset-cut map, with the 
x-dimension representing the (selected) voxels of the Ssat 

image at a specific ∆ω and the y-dimension depicting the 
Z-spectrum of a specific voxel. The offset-cut map was 
then normalized by the average image of the whole series. 
The registration accuracy was quantitatively assessed using 
CC between the normalized offset-cut map of the data 
corrupted by motion (or after correction) and that of the 
original data. Furthermore, the CC for the MTRasym(∆ω) 
map was calculated to assess the registration effects between 
Ssat(+/−∆ω) images.

We also quantitatively compared Z-spectra and the 
MTRasym(∆ω) of particular regions of interest (ROIs), 
which were calculated from the original data, the motion-
corrupted data, and the corrected data, using different 
methods in each data set. The residual Z-spectra referring 
to the original data, were also plotted to describe the 
deviation. For the phantom, the ROI was defined at the 
25 mM pH 6.8 tube as shown in Figure 3. For the in vivo 
experiments, the ROI of tumor was defined by a 4 pixel  
×5 pixel box at the tumor core, and a mirrored ROI of 
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normal tissue at the contralateral hemisphere (marked on 
Figure 4).

Other qualitative assessments through direct visualization 
of different kinds of maps are detailed below:
	The offset-cut maps, which display both the oscillation 

of Z-spectra for a particular voxel and the signals for 
(selected) voxels on a particular Ssat(∆ω) image.

	The MTRasym(∆ω) maps, which exhibit the intensity 
and distribution of CEST contrast.

	The error maps, which depict the difference of 
MTRasym(∆ω) maps from original data.

Results

Phantom study

The performance of RPCA + PCA_R was first verified 
on a phantom. Firstly, we compared how different 
motion patterns affected the CEST contrast. The spatial 
distribution of SA tubes is shown in Figure 2A. The 
motion-corrupted MTRasym(9.25 ppm) maps displayed 
substantial errors, particularly at the edge of the tubes 
(Figure 2B,C). The form and degree of deformation affected 
the corruption of Z-spectral images, in which shift had a 
greater impact on motion corruption, and combined with 
rotation would worsen it (Figure 2D). Among the simulated 
patterns, the worst-case motion pattern was created by 
a combination of the maximum shift (0.5 pixel SD) and 
rotation (0.3° SD), resulting in the largest normalized root 
mean square error (NRMSE) to the original data (0.31). 
For this worst case, the saturation-weighted images were 
clearly misaligned (Figure S1), while the L components 
after RPCA decomposition contained less motion, and the 
S components had more obvious motion. Herein, the value 
of λ was set experimentally to generate a low rank of L (rank, 
4–6) to minimize the motion component in the reference 
image. In refinement registration, PCA was repeated 2 or 
3 times empirically; details of the parametric registration 
model for phantom studies are provided in Figure S2.

Figure 3 depicts the visual registration results of the 
phantom data corrupted by the simulated motion with the 
above-mentioned worst pattern. As seen in Figure 3A, the 
MTRasym analysis was corrupted completely by motion, 
and S0_R, Ssat_R, RPCA_R, and PCA_R removed part of 
the motion artifacts. However, residual misalignments 
still existed, causing MTRasym(9.25 ppm) maps to exhibit a 
distinct deviation from the original data (Figure 3B,C,D,E). 
Among all the methods, RPCA + PCA_R performed the 

best, reproducing the MTRasym(9.25 ppm) map with only a 
slight difference from the original one (Figure 3F).

We further performed a quantitative assessment of these 
methods. The motion-corrupted dataset used in Figure 5A  
and B was same as that in Figure 3. Compared with the 
original data, the motion-corrupted Z-spectrum contained 
false peaks and dips, which might have been affected by 
the different patterns of motion including the directions. 
The motion-induced oscillations were corrected at 
different levels by the 5 methods. The residual curve of the 
Z-spectrum suggested that RPCA + PCA_R produced the 
most similar and smooth Z-spectrum with reference to the 
original one, by excluding most of the wiggles (Figure 5A). 
Figure 5B summarizes the measured MTRasym(9.25 ppm)  
for multiple tubes, and the corrected values display a more 
linear relationship for the concentration over the range 
of 1.5 to 25 mM (pH 7.4) (46) when comparing to the 
motion-corrupted one. More specifically, the relationship 
regained by RPCA + PCA_R was closer to the original 
one. Figure 5C,D display the statistics of the CC between 
the MTRasym(9.25 ppm) maps of the data corrupted by 
motion (or with correction) and that of the original data, in 
addition to the CC for the whole Z-spectral image series in  
10 repeated simulations (with the same motion pattern 
as that in Figure 3). All methods increased CC for 
both ;  however,  CC for  RPCA + PCA_R showed 
the most significant rise with small SD [0.90 for the  
MTRasym(9.25 ppm) map and 0.60 for the whole series].

In vivo study

RPCA + PCA_R was then tested in a mouse tumor-bearing 
brain model. As seen in Figure 6, the saturation-weighted 
images were markedly misaligned due to motion (M: 1st 
row). Post-RPCA decomposition, the low-rank components 
appeared static (L: 2nd row), while the S components had 
obvious motion (S: 3rd row).

Figure 7 displays the detailed manner of parameterizing 
the registration model for the same motion-corrupted  
in vivo data as that in Figure 6. The rank of L was plotted as 
a function of λ, indicating that a smaller λ corresponded to 
a lower rank of L (Figure 7A). To reduce the contribution 
of the motion in the reference image, λ was selected as a 
smaller value that distributed most motion component in 
S but kept some contrast in L. As seen in Figure 7B,C,D, 
the recomposed L with rank =3 or 4 provides distinction 
of Z-spectra between tumor and normal tissue, while with 
maintaining a relatively small motion component. When 
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Figure 5 Quantitative assessment of the RPCA + PCA registration method for motion-corrupted phantom data, in comparison with the 4 
other registration methods including S0_R, Ssat_R, RPCA_R, and PCA_R. (A) Z-spectra of ROI (as defined in Figure 3A) and the residual 
curves referring to the original data. (B) The relationship between the MTRasym(9.25 ppm) and the concentration of SA over the range from 
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****P<0.0001. RPCA, robust principal component analysis; ROI, region of interest; CC, correlation coefficient; MTRasym, asymmetry 
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the rank >4, L demonstrates obvious motion with the offset-
cut map displaying changed voxel locations among images 
at various ∆ω. Since the coarse registered series could be 
expressed as a linear combination of its first 3 principal 
eigenvalue images, the number of iterations using PCA 
was determined to be 3 (Figure 7E,F). The choices of λ for 
various motion patterns are shown in Table S1.

Figure 4 shows the registration results for in vivo data 
corrupted by the simulated large motion (1 pixel SD for 
shifts and 1° SD for rotations). The 1st row shows the 
offset-cut maps which expand the Z-spectra of voxels on 
the black dashed line in Figure 4A into a 2D map. The 

original data without misalignments among the Z-spectral 
images obtained an MTRasym(3.5 ppm) map with higher 
signal intensities in tumor and lower ones in normal tissue  
(Figure 4A). Due to the applied motion, the offset-cut 
map displays wiggles indicating location of voxels changed 
significantly among Z-spectral images, resulting in an 
MTRasym(3.5 ppm) map with a bright-dark pattern in normal 
tissue and changes of tumor shape and position (Figure 4B). 
S0_R, Ssat_R, RPCA_R, and PCA_R reduced misalignments; 
however, the offset-cut maps still exhibit jitters, while the 
MTRasym(3.5 ppm) error maps show visible signal variation 
and deformation of tumor (Figure 4C,D,E,F). RPCA + 
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Figure 6 Decomposition of Z-spectral image series using RPCA, for in vivo CEST MRI data of mouse tumor-bearing brain. (A) Z-spectral 
image series corrupted by simulated rigid motion, M. (B) low-rank component, L. (C) sparse component, S. A horizontal line (yellow) 
illustrates the different positions of the mouse head among Z-spectral images. As can be seen, after decomposition, S images exhibit obvious 
motion while L images appear static. RPCA, robust principal component analysis; CEST, chemical exchange saturation transfer.

PCA_R eliminated the motion-induced interference, 
recovered the spatial location of voxels, and regained the 
analytical MTRasym(3.5 ppm) map (Figure 4G).

Figure 8 quantitatively summarizes the registration 
performance for the in vivo data. For the data corrupted 
by the simulated large motion, the Z-spectra of the tumor 
show that RPCA + PCA_R improved the corrupted 
Z-spectrum (the corrupted data was same as Figure 4) with 
only a slight difference from the original data, while other 
methods rendered obvious discrimination (Figure 8A).  
In 10 repeated simulations with the large motion pattern, 
the statistical results demonstrate that RPCA + PCA_
R obtained the highest CC between the corrected 
MTRasym(3.5 ppm) map and that of the original data, among 
all the exploited methods (Figure 8B). This is also the case 
for the CC of the corrected whole Z-spectral image series 
(Figure 8C). The MTRasym(3.5 ppm) values for both tumor 
and normal tissue obtained by RPCA + PCA_R were 
closest to the original data with the smallest SD among the  
10 repeated simulations. For PCA_R, the MTRasym(3.5 ppm) 
of normal tissue was also very close to the original data but 
with larger SD (Table 1). In small motion patterns, RPCA + 
PCA_R corrected the artificially added motion and achieved 
a similar registration performance as the bigger one (Figure 
8D,E). Registration results can also be seen in Figure S3.

Discussion

In this study we proposed a novel registration scheme 
for the correction of misaligned images acquired 
during a CEST MRI scan, which first exploited RPCA 
decomposition for coarse registration, followed by a PCA-
based refinement step, and a quality check module at the 
end. Compared with the 4 other methods, our RPCA 
+ PCA_R allowed for more accurate correction of the 
Z-spectral images, with smaller MTRasym(∆ω) error maps 
and lower residual Z-spectra referring to the original data 
(Figures 3,5 for phantom and Figures 4,8 for in vivo). Among 
all the 5 exploited methods, the corrected Z-spectral image 
series by RPCA + PCA_R and the resulting MTRasym(∆ω) 
maps exhibit the highest CCs to the original ones. In 
particular, RPCA + PCA_R provided a robust correction 
under both large and small motion patterns of in vivo data 
in multiple repeats (Figure 8). Additionally, quality check 
module certified that the motion-corrected by RPCA + 
PCA_R was valid (Figure S4). The residual Z-spectra and 
MTRasym(∆ω) error maps after RPCA + PCA_R slightly 
deviated from the original data. This was mainly due to the 
interpolation during transformation of registration, which 
means the motion can in principle be corrected to a great 
amount, but slight discrimination might still arise.
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Figure 8 Quantitative assessment of the RPCA + PCA registration method for motion-corrupted in vivo tumor-bearing mouse brain, by 
comparison with the 4 other registration methods including S0_R, Ssat_R, RPCA_R, and PCA_R. (A) Z-spectra of tumor (ROI defined in 
Figure 4B) and the residuals curves referring to the original data (The large motion-corrupted data was same as Figure 4). (B) Correlation 
coefficients (CCs) between the corrected MTRasym(3.5 ppm) map and the original static one, in comparison with those calculated from 
non-corrected motion-corrupted data, for 10 repeated simulations with the same large motion pattern as that in Figure 4 (mean ± standard 
deviation). (C) Simulations are the same as (B), but are plotted CC of the corrected whole Z-spectral image series with respect to the original 
static data. (D) CCs between the RPCA + PCA_R corrected MTRasym(3.5 ppm) map and the original static one, in comparison with those 
calculated from non-corrected motion-corrupted data, for 10 repeated simulations with small motion of different patterns. (E) Same as (D), 
but CC values are for the whole Z-spectral image series. The significance between different registration results and motion-corrupted data: 
*P<0.05, ***P<0.001, ****P<0.0001. RPCA, robust principal component analysis; ROI, region of interest; MTRasym, asymmetry analysis on 
the magnetization transfer ratio.

Table 1 Statistics of MTRasym(3.5 ppm) for the original in vivo data, the data corrupted by motion with 0 mean and 1 pixel SD for shifts and 1° SD 
for rotations in normally distributed pseudo-random numbers, and the corrected ones using different registration methods in 10 simulations

Variable Original Corrupted S0_R Ssat_R PCA_R RPCA_R RPCA + PCA_R

MTRasym_tumor (%)

Mean 1.60 2.97 1.35 1.14 1.43 1.44 1.50

SD – 0.60 0.18 0.18 0.09 0.17 0.05

MTRasym_normal (%)

Mean −3.11 −4.51 −3.21 −3.20 −3.08 −3.02 −3.17

SD – 2.43 0.40 0.23 0.20 0.26 0.03

RPCA, robust principal component analysis; MTRasym, asymmetry analysis on the magnetization transfer ratio.
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In contrast to previous methods that used an explicit 
registration reference image, either S0 (24-29) or a specific 
saturated image Ssat(∆ω) (32), RPCA + PCA_R extracted 
the relative static low-rank component from the entire 
Z-spectral image series and used their averaged image as the 
registration reference. Results suggest that S0_R showed the 
worst registration between Ssat(+/–∆ω) images, which might 
be because S0 image intensities and contrast are different 
from saturated ones (32). Despite a better performance in 
correcting Ssat(+/–∆ω) images than that of S0_R, among all 
the 5 methods, Ssat_R exhibited the lowest CC between the 
corrected whole image series and the original static data. 
This indicates that the selection of a single saturated image 
as a registration reference is less robust, and may result in 
poor registration for images of other offsets in the CEST 
dataset.

The idea of decomposition of Z-spectral image series 
for separating CEST contrast from motion is similar to the 
previous LRAZ method (34). However, LRAZ registered 
each image to its corresponding low-rank one, with the 
quality of registration strongly depending on the choice of 
regularization parameters. RPCA-based registration had a 
similar principle but used the averaging of L as a reference, 
which enabled the improvement of robustness. PCA-
based registration also corrected motion by attributing 
motion to less significant PCs. Both only RPCA- (RPCA_
R)- and only PCA- (PCA_R)-based methods performed 
well in compensating for misalignments among entire 
image series in the phantom (Figure 3). This is presumably 
because motion-induced signal changes were smaller and 
faster compared with CEST contrast, and the separation 
was easier. However, neither RPCA_R nor PCA_R was 
unable to completely correct motion in vivo, or for the 
Ssat(+/–9.25 ppm) images in the phantom study. RPCA_
R did not work well since λ was difficult to determine for 
accurately separating the CEST contrast from motion. As 
seen in Figure 7C,D, the recomposed L using a small λ still 
contained undifferentiated motion. For PCA_R, the larger 
motion was likely to appear in the first PCs, resulting in 
a synthetic image series with motion. Hence, to improve 
the robustness and effectiveness of registration, we chose 
a combination of RPCA and PCA, with PCA_R further 
correcting the residual motion after the coarse registration 
by RPCA_R.

Despite coarse registration not requiring a complete 
differentiation motion and CEST contrast, λ cannot be 
selected arbitrarily (Figure S5). An excessively small λ will 
lead to less information in L and generate a sparse reference 

image that differs significantly from the saturated ones, 
causing the failure of coarse registration as in S0_R. While 
a too large λ introduces too much motion into L, coarse 
registration will be less effective. Herein, to provide a 
motionless reference image for coarse registration, λ was 
adjusted experimentally to keep the most motion in S but 
some CEST contrast in L with sufficient information to 
distinguish different tissues. The optimization of λ will 
be further investigated, which may use the lineshape of 
the Z-spectrum obtained from a quantitative model as a 
constraint for RPCA to guide the information to be retained 
in the L or S components.

However, the hypothesis of coarse registration that 
CEST contrast appears in L while motion in S may be 
limited, specifically when continuous and periodical motion 
occurs. This limitation can be exploited in dynamic CEST 
MRI, where contrast enhancement seems to be rapid 
in comparison to motion. RPCA + PCA_R represents a 
scheme for the image series registration, which means that 
pair-wise registration in RPCA + PCA_R is exchangeable. 
Any other optimization algorithms, like group-wise 
registration (47-49), can be introduced to improve the 
performance of RPCA + PCA_R. Equally, any non-rigid 
registration methods can replace the rigid algorithm used in 
this study.

Realistic in vivo motion was not studied in this paper. 
Indeed, it is important to test our method by mimicking real 
motion scenarios. For example, some of the previous studies 
examined skeletal muscles under exercise with obvious 
motion involved but with relatively simple anatomy (34),  
while others used brain data with minor and random 
motion (32,50). As an initial study, we employed the well-
studied brain tumor model with simulated random motion. 
Additionally, we included both large and small motion 
in different patterns with multiple repeats to prove the 
robustness and effectiveness of RPCA + PCA_R. We 
will further test the method in multiple realistic motion 
scenarios including brain and body imaging.

CEST MRI is still at the early stage that precedes 
widespread clinical application. Most existing preclinical 
data are acquired at high field, as well as a large portion of 
data on human subjects, used 2D single-slice sequences. 
Particularly, when multiple offsets on Z-spectra are of 
interest, 2D data are acquired first to shorten the scan time 
and to simplify the analysis. Therefore, in this study we 
focused on correcting the misalignments among 2D CEST 
images caused by in-plane rigid motion, similar to recent 
works by other groups (22,34). However, in cases where an 
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image moves out of the imaging plane, our current method 
using 2D data may not work as well. Nevertheless, those 
images with unsuccessful correction will be captured by 
the quality check module (Figure 1), raising alerts for a 
manual check. Additionally, motion correction using RPCA 
and that using PCA has been successfully applied to a 3D 
dataset in DCE-MRI (36,37). Therefore, we are optimistic 
that our method can also be applicable for 3D CEST data, 
which will be the focus of our next work.
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Table S1 The selected rank of low-rank component, corresponding 
to trade-off parameter (λ), for different motion patterns of phantom 
and in vivo data

Motion 
patterns

Phantom Rank of L In vivo Rank of L

Shift only 0.2 pixel 6 0.5 pixel 5

0.5 pixel 4 1 pixel 3

Rotation 
only

0.1° 6 0.5° 5

0.3° 4 1° 3

Shift + 
rotation

0.2 pixel + 0.1° 4 0.5 pixel + 0.5° 3

0.2 pixel + 0.3° 4 0.5 pixel + 1° 3

0.5 pixel + 0.1° 4 1 pixel + 0.5° 3

0.5 pixel + 0.3° 4 1 pixel + 1° 3
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Figure S4 Graphs of CC in quality control for phantom and in vivo, respectively. CC, correlation coefficient.

Figure S5 Subtraction between average image of the original data and that of low-rank series with different ranks for motion-corrupted in 
vivo data (same as Figure 6). (A) Rank =1; (B) rank =3; (C) rank =25 (corresponds to λ0).
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