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Abstract
The strain denominated TRQ65 was isolated from wheat (Triticum turgidum subsp. durum) commercial fields in the Yaqui 
Valley, Mexico. Here, we report its draft genome sequence, which presented ~ 4.5 million bp and 45.5% G + C content. Based 
on the cutoff values on species delimitation established for average nucleotide identity (> 95 to 96%), genome-to-genome 
distance calculator (> 70%), and the reference sequence alignment-based phylogeny builder method, TRQ65 was strongly 
affiliated to Bacillus paralicheniformis. The rapid annotation using subsystem technology server revealed that TRQ65 con-
tains genes related to osmotic, and oxidative stress response, as well as auxin biosynthesis (plant growth promotion traits). 
In addition, antiSMASH and BAGEL revealed the presence of genes involved in lipopeptides and antibiotic biosynthesis. 
The function of those annotated genes was validated at a metabolic level, observing that strain TRQ65 was able to tolerate 
saline (91.0%), and water (155.0%) stress conditions, besides producing 28.8 ± 0.9 µg/mL indoles. In addition, strain TRQ65 
showed growth inhibition (1.6 ± 0.4 cm inhibition zone) against the causal agent of wheat spot blotch, Bipolaris sorokiniana. 
Finally, plant–microbe interactions assays confirm the ability of strain TRQ65 to regulate wheat growth, showing a significant 
increment in shoot height (26%), root length (40%), shoot dry weight (48%), stem diameter (55%), and biovolume index 
(246%). These findings provide insights for future agricultural studies of this strain.

Keywords Plant growth-promoting rhizobacteria · Biocontrol agent · Average nucleotide identity · Genome to genome 
distance calculator · Biofertilizer

Introduction

The genus Bacillus was first isolated and described as a rod-
shaped, heat-resistant, and endospore-forming Gram-posi-
tive bacterium (Cohn 1872). The species of this genus are 
widely distributed due to their ability to form endospores, 
which provide them resistance to several habitats, such as: 
environments under optimal or extreme conditions (Tejera-
Hernández et al. 2011). Soil is considered the main reservoir 
of Bacillus, due to the great metabolic diversity of this genus 
associated with metabolizing a large source of organic com-
pounds (McSpadden Gardener 2004).

In agriculture, the Bacillus species are the most exten-
sively studied bacteria for (1) controlling/inducing plant 
systemic resistance against phytopathogens, by consump-
tion of leached exudates, production of siderophores, 
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activity of lytic enzymes (chitinases, glucanases, pro-
teases), production of antibiotics, and biosynthesis of 
cyclic lipopeptides (Villarreal-Delgado et  al. 2017; 
Tiwari et al. 2019), and (2) promoting plant growth and 
development, through the production or regulation of 
phytohormones, solubilization of phosphates, activity of 
1-aminocyclopropane-1-carboxylate (ACC) deaminase, 
production of siderophores, and biological nitrogen fixa-
tion (Berendsen et al. 2012; Trabelsi and Mhamdi 2013; 
Barra et al. 2015; García-Meléndez et al. 2017; Valen-
zuela-Ruiz et al. 2018; Robles-Montoya et al. 2019). Thus, 
Bacillus has been used as an active ingredient for the for-
mulation of (1) biofungicides, v.gr. Ballad Plus (Bacil-
lus pumilus QST2808 against Erysiphe, and Puccinia), 
Serenade ASO (B. subtilis QST713 against Pythium, 
Rhizoctonia, and Fusarium), Fungifree AB (B. subtilis 83 
against Colletotrichum, and Leveillula), EcoGuard-GN 
(Bacillus licheniformis SB3086 against Colletotrichum, 
and Sclerotinia), and DiPel WG (Bacillus thuringiensis 
against Cydia, and Otiorhychus) (Villarreal-Delgado et al. 
2017; Villa-Rodríguez et al. 2019), and (2) biofertilizers, 
v.gr. BIOXTERRA BS (Bacillus subtilis), BIOXTERRA 
BT (Bacillus thuringiensis), Bio-P (Bacillus subtilis, and 
Azotobacter chroococcum), and Hydroguard (Bacillus 
amyloliquefaciens), which colonize and protect the rhizo-
sphere improving root biomass and vigor of plants (Botan-
icare 2012; Valenzuela-Aragon et al. 2018; Kashyap et al. 
2019; BioAgro Chemical 2019a, b; AGSOL 2019).

Strain TRQ65 was isolated from wheat (Triticum turgi-
dum subsp. durum) rhizosphere of commercial fields, in the 
Yaqui Valley, Mexico (27.3692°, 110.3886°). This strain 
is preserved in Colección de Microorganismos Edáficos 
y Endófitos Nativos (México) (COLMENA, http://www.
itson .edu.mx/COLME NA) (de los Santos Villalobos et al. 
2018). According to the strong association of TRQ65 with 
wheat plants in the field, we inferred a synergistic interac-
tion between them, which needs to be studied to propose its 
potential use in the biocontrol of phytopathogens that affect 
wheat production and/or to regulate the growth of this crop. 
Previously, Valenzuela-Aragon et al. (2018) and Villa-Rod-
ríguez et al. (2019)—based on the 16S rRNA sequencing—
affiliated the strain TRQ65 to the genus Bacillus; however, 
Diaz-Rodriguez et al. (2019) affiliated this strain to Bacillus 
licheniformis. Since it is one of the largest bacterial genera 
[comprising 377 named species and 7 subspecies, including 
synonyms (Parte 2018), with a great genomic and metabolic 
diversity], its taxonomic affiliation is complex on the basis 
of traditional phenotypic (Fan et al. 2017) and molecular 
methods (sequencing of the 16S rRNA gene) (Rooney et al. 
2009). Thus, the genome of TRQ65 was sequenced to (1) 
clarify its taxonomic affiliation and (2) explore its genomic 
and metabolic background associated with biological control 
of phytopathogens and wheat growth promotion.

High-quality genomic DNA was extracted from a fresh 
culture of strain TRQ65, which was grown in Nutrient 
Broth [24 h at 32 °C, using an orbital shaker at 121 rpm, 
obtaining 1 × 106 colony forming units (CFU)/mL], and fol-
lowing the protocol described by Valenzuela-Aragon et al. 
(2018). Then, the bacterial DNA was sequenced by Illumina 
MiSeq platform, obtaining a total of 5,079,308 total reads 
[2 × 300 base pairs (bp)]. The quality of the obtained reads 
was analyzed by FastQC version 0.11.5 (Andrews 2010). 
Trimmomatic version 0.32 (Bolger et al. 2014) was used 
to remove adapter sequences and low-quality bases, and 
only 8.42% was dropped. Subsequently, de novo assembly 
was generated by SPAdes version 3.10.1 (Bankevich et al. 
2012), using the “–careful” parameter for error correction in 
reads. The draft genome of TRQ65 presented 4,475,481 bp; 
45.5% G + C content; 676,421 bp N50; 3 L50; and 32 con-
tigs (> 200 bp). The assembled contigs were ordered by 
Mauve contig Mover version 2.4.0 (Darling et al. 2004), 
using the reference genome of Bacillus paralicheniformis 
KJ-16T [KY694465]. In addition, the presence of plasmids 
in the TRQ65 genome was analyzed by PLACNETw (https 
://casti llo.dicom .unica n.es/uploa d/) (Vielva et al. 2017); 
however, no plasmids were observed for strain TRQ65, and 
to our understanding the presence of plasmids has not been 
reported for this species.

The 16S rRNA gene sequence of TRQ65 was used to 
confirm the authenticity of the studied genome according 
to Chun et al. (2018). In addition, the gene sequence was 
submitted to NCBI and EzBioCloud database to determine 
the more closely related strains (based on the cutoff val-
ues on species delimitation established for the 16S rRNA 
gene > 98.7%) (Yoon et al. 2017a; Chun et al. 2018). Thus, 
the highest similarity values (100%) for the 16S rRNA 
gene sequence of TRQ65 corresponded to Bacillus parali-
cheniformis KJ-16T [KY694465], Bacillus haynesii NRRL 
B-41327T [MRBL01000076], and Bacillus licheniformis 
ATCC  14580T [AE017333], followed by Bacillus glycini-
fermentans GO-13 T [LECW01000063], 99.92%, and Bacil-
lus sonorensis NBRC  101234T [AYTN01000016], 99.84% 
(Table 1). This finding supports the previous taxonomic affil-
iation of strain TRQ65 to the genus Bacillus (Valenzuela-
Aragon et al. 2018; Villa-Rodríguez et al. 2019; Diaz-Rod-
riguez et al. 2019). To affiliate that strain at a species level, 
its genome was compared to its more closely related strains 
(Table 1), by using (1) the average nucleotide identity (ANI), 
by the OrthoANI algorithm (Yoon et al. 2017b) and (2) the 
Genome to Genome Distance Calculator (GGDC) version 
2.1, by BLAST (Meier-Kolthoff et al. 2013). Those bio-
informatics tools have been proposed as a strong approach 
to clarify the taxonomic affiliation of prokaryotes, which has 
been used to discover a novel Bacillus species, B. cabrialesii 
 TE3T (de los Santos-Villalobos et al. 2019). Thus, based on 
the profound taxonomic affiliation provided by those tools, 

http://www.itson.edu.mx/COLMENA
http://www.itson.edu.mx/COLMENA
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at a species level [ANI > 95-96% (Varghese et al. 2015), and 
GGDC > 70% (Yoon et al. 2017b)], TRQ65 was strongly 
affiliated to Bacillus paralicheniformis (Table 1).

In addition, a phylogenetic tree was constructed to further 
support the authenticity of the genome data, as well as to 
determine the genetic relationship between strain TRQ65 
and its more closely related species. Thus, the genome 
sequences were aligned using the reference sequence align-
ment-based phylogeny (REALPHY) builder method ver-
sion 1.12 (Bertels et al. 2014), followed by the generation 
of the genome-based phylogenetic tree by MEGA version 
7.0 (Kumar et al. 2016). The neighbor-joining method was 
used with a bootstrap support of 1000 replications, which 
confirmed that the taxonomic affiliation of TRQ65 is Bacil-
lus paralicheniformis (Fig. 1).

The genome annotation of the studied strain was created 
through Rapid Annotation Using Subsystem Technology 
(RAST) server version 2.0 (http://rast.nmpdr .org) (Aziz 
et al. 2008; Overbeek et al. 2013), by the RASTtk pipeline. 
Strain TRQ65 showed a total of 91 RNAs, and 4811 pre-
dicted coding DNA sequences (CDS)—distributed into 361 
subsystems. The most abundant subsystem was amino acids 
and derivatives (392 genes), followed by carbohydrates (360 
genes), protein metabolism (207 genes), cofactors, vitamins, 
prosthetic groups, and pigments (165 genes), nucleosides 
and nucleotides (103), and dormancy and sporulation (96) 
(Fig. 2).

The genome of strain TRQ65 revealed the presence of 
genes involved in (1) the tolerance to abiotic factors in 
agrosystems (oxidative and water stress conditions), (2) 
the biological control of phytopathogens (lipopeptides and 

antibiotic biosynthesis), and (3) the promotion of plant 
growth (auxin biosynthesis) (Table S1). Putative annotated 
genes of strain TRQ65 were validated through a metabolic 
characterization according to Valenzuela-Aragon et  al. 
(2018). The percentage of the abiotic stress tolerance by 
TRQ65 was calculated by subtracting the bacterial growth 
(cm) under abiotic stress condition minus the bacterial 
growth (cm) under optimal condition, and dividing by the 
bacterial growth (cm) under optimal condition. TRQ65 
showed the ability to grow—compared to control condi-
tions—on Petri dishes containing nutrient agar under saline 
(sodium chloride 5%, 6.8 dS  m−1, for 3 days at 28 °C) stress, 
91.0 ± 5.3%, and water (polyethylene glycol 6000 10%, 
− 0.84 mPa, for 3 days at 28 °C) stress, 155.0 ± 3.7%. Simi-
lar findings have been reported by Palacio-Rodríguez et al. 
(2017), Obeidat (2017), and Rajabi Agereh et al. (2019), 
associating the tolerance of abiotic stress conditions from 
bacterial strains to genes involved in glycerol, ferric, iron, 
and zinc uptake, as well as fumarate and nitrate regulation. 
Those and other promising genes were found in the TRQ65 
genome (Table S1).

On the other hand, antiSMASH version 5.0 (https ://
antis mash.secon darym etabo lites .org) and BAGEL ver-
sion 4.0 (http://bagel 4.molge nrug.nl/) were used to iden-
tify putative genes in the TRQ65 genome involved in the 
biological control of phytopathogens. Thus, eight genes 
associated with lipopeptide biosynthesis, bacitracin, bacil-
libactin, butirosin, lichenysin, haloduracin alpha, halodu-
racin beta, were identified by antiSMASH; and nine genes 
associated with lipopeptide biosynthesis, lichenicidin, hal-
oduracin alpha, bottromycin, enterocin, and sonorensin, 

Table 1  16S rRNA similarity, 
ortho average nucleotide 
identity (ANI), and Genome to 
Genome Distance Calculator 
(GGDC) values by the genome 
comparison of TRQ65 vs. its 
more closely related species 
(16S rRNA > 98.7%)

Strain TRQ65 compared to: 16S rRNA 
similarity

Ortho ANI GGDC

% % %

Bacillus paralicheniformis KJ-16T [KY694465] 100.00 99.07 92.40
Bacillus haynesii NRRL B-41327T [MRBL01000076] 100.00 95.13 61.40
Bacillus licheniformis ATCC  14580T [AE017333] 100.00 94.56 57.60
Bacillus swezeyi NRRL B-41294T [MRBK01000096] 99.67 83.27 26.10
Bacillus sonorensis NBRC  101234T [AYTN01000016] 99.84 81.55 24.70
Bacillus glycinifermentans GO-13T [LECW01000063] 99.92 80.84 23.70
Bacillus subtilis subsp. inaquosorum KCTC  13429T [AMXN01000021] 98.93 73.11 19.00
Bacillus subtilis subsp. spizizenii NRRL B-23049T [CP002905] 99.01 72.93 19.10
Bacillus nakamurai NRRL B-41091T (LSAZ01000028) 98.76 72.84 18.70
Bacillus tequilensis KCTC  13622T [AYTO01000043] 98.93 72.79 18.80
Bacillus atrophaeus  JCM9070T [AB021181] 98.76 72.74 18.60
Bacillus velezensis CR-502T [AY603658] 98.70 72.73 19.50
Bacillus subtilis subsp. subtilis NCIB  3610T [ABQL01000001] 98.85 72.70 19.00
Bacillus halotolerans ATCC  25096T [LPVF01000003] 98.85 72.45 18.50
Bacillus siamensis KCTC  13613T [AJVF01000043] 98.76 72.42 19.00
Bacillus subtilis subsp. stercoris  D7XPN1T [JHCA01000027] 98.85 72.39 18.80

http://rast.nmpdr.org
https://antismash.secondarymetabolites.org
https://antismash.secondarymetabolites.org
http://bagel4.molgenrug.nl/
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were identified by BAGEL (Table S1). These lipopeptides 
have been reported as having antitumor, immunosuppres-
sant, surfactant, cytotoxic, and antimicrobial properties 
(Raaijmakers et al. 2010). To validate the functionality of 
those putative genes in the TRQ65 genome, the antagonis-
tic ability of this strain was evaluated in vitro against Bipo-
laris sorokiniana, the causal agent of wheat spot blotch 
(Villa-Rodriguez et al. 2016). For this, a three replicate 
quantitative assay was performed according to Villa-Rod-
ríguez et al. (2019), a volume of 10 µL of Bipolaris soro-
kiniana TPQ3 conidia suspension (1 × 105 conidia/mL) 
was placed in the center of Petri dishes containing potato 
dextrose agar, and 10 µL of Bacillus paralicheniformis 
TRQ65 cell suspension (1 × 106 CFU/mL) was inoculated 
in two equidistant points, at about 2 cm distance of the 
studied phytopathogen. After an incubation for 5 days at 
28 °C, the inhibition halo of Bipolaris sorokiniana TPQ3 
by strain TRQ65 was quantified. Bacillus paralicheni-
formis TRQ65 showed an inhibition zone of 1.6 ± 0.4 cm 
against Bipolaris sorokiniana TPQ3, which confirms the 
function of putative genes associated with the biological 
control of phytopathogens found in the genome of TRQ65 
by antiSMASH and BAGEL (Table S1).

Regarding the ability of strain TRQ65 to promote the 
growth and development of plants, this strain was able 
to biosynthesize 28.8 ± 0.9  µg/mL indoles through the 
Salkowski method (Rahman et al. 2010). This finding con-
firms the functionality of the identified putative genes in the 
TRQ65 genome associated with the biosynthesis of that phy-
tohormone (Figure S1). In addition, to validate the ability 
of strain TRQ65 to regulate the growth of plants, an axenic 
in vivo plant–bacterium interaction assay was performed in 
a growth chamber, under controlled conditions. Thus, wheat 
variety CIRNO C2008 seeds were washed three times in 
sterile distilled water, followed by soaking in 70% (v/v) etha-
nol for 1 min, washed with 3% (v/v) sodium hypochlorite 
for 10 min, and five additional washes with sterile distilled 
water. The strain was grown in nutrient broth for 24 h at 
28 °C and 120 rpm; then, it was centrifuged at 3500 rpm 
for 10 min. The pellet was re-suspended in sterile distilled 
water up to the desired cell concentration. Then, plants (ger-
minated under axenic conditions) were inoculated at day 
0 and day 15 with 1 × 108 CFU of TRQ65. The control 
treatment (uninoculated plants) was only sprayed with ster-
ile distilled water. Two biological replicates (n = 15 wheat 
plants) of each treatment were carried out, grown under a 

Bacillus subtilis subsp inaquosorum KCTC 13429T [AMXN01000021
Bacillus subtilis subsp spizizenii NRRL B-23049T [CP002905]

Bacillus subtilis subsp stercoris D7XPN1T [JHCA01000027]
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Bacillus glycinifermentans GO-13T [LECW01000063]

Bacillus sonorensis NBRC 101234T [AYTN01000016]
Bacillus swezeyi NRRL B-41294T [MRBK01000016]
Bacillus haynesii NRRL B-41327T [MRBL01000076]
Bacillus licheniformis ATCC 14580T [AE017333]
Bacillus paralicheniformis KJ-16T [KY694465]

Bacillus paralicheniformis TRQ65 [ ]100

100

100

100

100

100

100
100

91

100
100

100

100

91

0.005

Fig. 1  Phylogenetic relation between TRQ65 and closely related 
species: Bacillus paralicheniformis KJ-16T [KY694465]; Bacil-
lus haynesii NRRL B-41327T [MRBL01000076]; Bacillus 
licheniformis ATCC  14580T [AE017333]; Bacillus glycinifer-
mentans GO-13T [LECW01000063]; Bacillus sonorensis NBRC 
 101234T [AYTN01000016]; Bacillus swezeyi NRRL B-41294T 
[MRBK01000096]; Bacillus subtilis subsp. spizizenii NRRL 
B-23049T [CP002905]; Bacillus subtilis subsp. inaquosorum 
KCTC  13429T [AMXN01000021]; Bacillus tequilensis KCTC 
 13622T [AYTO01000043]; Bacillus subtilis subsp. subtilis NCIB 

 3610T [ABQL01000001]; Bacillus halotolerans ATCC  25096T 
[LPVF01000003]; Bacillus subtilis subsp. stercoris  D7XPN1T 
[JHCA01000027]; Bacillus atrophaeus JCM  9070T [AB021181]; 
Bacillus nakamurai NRRL B-41091T [LSAZ01000028]; Bacillus 
siamensis KCTC  13613T [AJVF01000043]; Bacillus velezensis CR-
502T [AY603658], constructed by the builder method in REALPHY 
1.12 (Bertels et al. 2014) and MEGA 7 (Kumar et al. 2016) using the 
neighbor-joining algorithm (based on 1000 bootstrap replications). 
Scale bar (0.005) represents the number of nucleotide substitutions 
per site
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sterilized (5 times at 121 °C and 15 psi, for 1 h) soil–per-
lite (70:30) mixture. The assay was carried out in a growth 
chamber BJPX-A450-BIOBASE, under axenic conditions 
and 70% humidity, and a photoperiod 12 h light/dark (25 °C 
during the light, and 15 °C during dark) for 30 days. The 
analysis of plant biometrics was done according to Thilagar 
et al. (2016). The percentage of wheat growth promotion 
by TRQ65 was calculated by subtracting the value (cm or 
g) of inoculated plants minus the value (cm or g) of un-
inoculated plants, and dividing by the value (cm or g) of 
uninoculated plants. The inoculation of strain TRQ65 to 
wheat plants showed a significant (Tukey–Kramer test, 
p = 0.05) increment (compared to uninoculated plants) of 
shoot height (26.14%), root length (36.43%), stem diameter 
(53.33%), stem circumference (54.34%), shoot dry weight 
(100%), and biovolume index (146.05%) (Table 2). These 
findings strongly validate the ability of strain TRQ65 to pro-
mote wheat growth, through metabolites produced by those 
putative genes found in its genome (Table S1) and/or novel 
genes that need to be studied.

In conclusion, the obtained genomic findings—and 
the phenotypic traits previously reported by Valenzuela-
Aragon et al. (2018), Villa-Rodríguez et al. (2019), and 
Diaz-Rodriguez et al. (2019)—strongly confirm that strain 
TRQ65 belongs to Bacillus paralicheniformis. In addition, 
its genome contains genes involved in tolerance of abiotic 

stress conditions, biological control of phytopathogens, and 
plant growth promotion. Therefore, the genomic, meta-
bolic, and ecological background observed in Bacillus par-
alicheniformis TRQ65 suggests this strain as a promising 
plant growth-promoting bacterium, where further analysis 
regarding other functional genes are required for its indus-
trial usage as a microbial inoculant to produce wheat and 
other economic crops.

Accession numbers The assembled contigs were depos-
ited in the DDBJ/ENA/GenBank and published with the 

Fig. 2  Subsystem category distribution of coding DNA sequences (CDS) from strain TRQ65, generated through RASTtk pipeline. CDS: 4811, 
CDS in subsystems: 1419, and subsystems: 361

Table 2  Wheat growth promotion by the inoculation of Bacillus par-
alicheniformis TRQ65 (growth chamber assay)

Means (2 × n = 15) with the same letter are not significantly different, 
according to Tukey–Kramer test (p = 0.05)

Variable Un-inoculated Bacillus par-
alicheniformis 
TRQ65

Shoot height (cm) 18.59 ± 5.41a 23.45 ± 3.26b
Root length (cm) 7.41 ± 2.24a 10.11 ± 2.53b
Stem diameter (cm) 0.15 ± 0.04a 0.23 ± 0.04b
Stem circumference (cm) 0.46 ± 0.13a 0.71 ± 0.13b
Shoot dry weight (g) 0.05 ± 0.01a 0.10 ± 0.03b
Root dry weight (g) 0.09 ± 0.02a 0.10 ± 0.01a
Biovolume index 68.79 ± 29.96a 169.26 ± 47.90b
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accession number SAZD00000000. The version described 
in this paper is the first version of the genome sequence 
deposited.
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