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Abstract

Low socioeconomic status (SES) is associated with greater risk for symptoms of attention-deficit/

hyperactivity disorder (ADHD). One mechanism through which SES may confer risk for ADHD is 

by influencing brain structure. Alterations to cortical thickness, surface area and subcortical 

volume have been associated with low SES and with the presence of ADHD across multiple 

studies. The current study examined whether cortical thickness, surface area or subcortical volume 

mediate the associations between SES and ADHD in youth 3–21 years old (N = 874) from the 

Pediatric Imaging, Neurocognition and Genetics Study. Freesurfer was used to estimate cortical 

thickness, surface area and subcortical volume from structural magnetic resonance imaging. 

Parents reported on demographics, family SES, ADHD diagnoses and the presence of child 

attention problems. Statistical mediation was assessed using a bootstrap resampling procedure. 

Controlling for parental ADHD, child age, gender, birth weight and scanner, children in low SES 

families were more likely to be in the ADHD group. Consistent with previous reports in this 

sample, low SES was associated with reduced surface area across the frontal lobe and reduced 

subcortical volume in the amygdala, cerebellum, hippocampus and basal ganglia. Of these regions, 

a significant indirect effect of SES on ADHD status through subcortical volume was observed for 

the left cerebellum (95% confidence interval: 0.004, 0.022), the right cerebellum (95% confidence 

interval: 0.006, 0.025), and the right caudate (95% confidence interval: 0.002, 0.022). 

Environmentally mediated changes in the cerebellum and the caudate may be neurodevelopmental 

mechanisms explaining elevated risk of ADHD in children in low SES families.
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1 | INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common 

neurodevelopmental disorders, occurring in 7%–9% of children (Froehlich et al., 2007; 

Thomas, Sanders, Doust, Beller, & Glasziou, 2015). Children with ADHD exhibit a 

persistent pattern of inattention and/or hyperactivity-impulsivity that interferes with daily 

functioning (American Psychiatric Association & DSM-5 Task Force, 2013). Initial research 

demonstrates that adverse early environments—including maltreatment, neglect and low 

socioeconomic status (SES)—contribute to risk for ADHD diagnosis and persistence of 

ADHD over time (Law, Sideridis, Prock, & Sheridan, 2014; McLaughlin, Sheridan, Winter, 

et al., 2014; Ouyang, Fang, Mercy, Perou, & Grosse, 2008).

Relatedly, the impact of early adversity on brain structure and function has garnered 

increasing interest as a potential mechanism through which adversity could influence risk 

for psychopathology (Bick & Nelson, 2015; Noble et al., 2015). A study of children raised 

in institutional settings during early childhood showed that reductions in cortical thickness 

mediated the association between neglect and elevated rates of ADHD (McLaughlin, 

Sheridan, Winter, et al., 2014). These findings support that altered neural structure may be a 

key link between adversity and ADHD etiology. Low SES, while less severe than neglect, 

may influence brain development because children from low SES families are more likely to 

lack access to the same resources and experiences as high SES children (Bradley & Corwyn, 

2002; Raviv, Kessenich, & Morrison, 2004; Tamis-LeMonda, Shannon, Cabrera, & Lamb, 

2004). Prior work suggests that the effect of socioeconomic disparities on cognitive 

functioning and behaviour are mediated through differences in cognitive stimulation in a 

child’s home (Hackman & Farah, 2009; Noble, McCandliss, & Farah, 2007; Noble, Norman, 

& Farah, 2005; Sarsour et al., 2011).

Low parental SES in childhood is associated with reductions in grey matter volume in the 

amygdala, hippocampus, cerebellum, temporal, and prefrontal cortices (Hair, Hanson, 

Wolfe, & Pollak, 2015; Hanson et al., 2015; Holz, Laucht, & Meyer-Lindenberg, 2015; 

Jednoróg et al., 2012; Lawson, Duda, Avants, Wu, & Farah, 2013; Luby & et al., 2013; 

Noble, Houston, Kan, & Sowell, 2012). Cerebellar grey matter volume has been associated 

with family SES in early life (Cavanagh et al., 2013). With lower heritability than other 

brain structures, the cerebellum is particularly sensitive to the environment (Giedd, Schmitt, 

& Neale, 2007). In studies using the Pediatric Imaging Neurocognition and Genetics (PING) 

dataset, also reported on here, Noble and colleagues found that low parental SES was 

associated with lower total surface area (Noble et al., 2015), lower fractional anisotropy and 

volume (Ursache, Noble, & Pediatric Imaging, Neurocognition and Genetics Study, 2016) 

and smaller amygdala volume (Merz, Tottenham, & Noble, 2017). Additionally, family SES 

moderated the relationship between cortical thickness and cognition (language and executive 

function abilities) (Brito, Piccolo, & Noble, 2017). In sum, there is substantial evidence that 

low parental SES is associated with differences in brain structure across development.

Although alterations in neural structure and function are a plausible mechanism linking low 

childhood SES to risk for ADHD, current work has not linked SES, neural structure and risk 
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for ADHD. Thus, while there is substantial evidence that SES disparities are associated with 

differences in neural structure, there is little evidence concerning if these differences in 

neural structure are linked with ADHD. Interestingly, the patterns of neural structure 

associated with low SES are highly similar to patterns observed in children with ADHD. 

There is evidence that children with ADHD have overall smaller brain volumes, most 

prominently in prefrontal regions compared to controls (Castellanos et al., 2002; Krain & 

Castellanos, 2006; Mostofsky, Cooper, Kates, Denckla, & Kaufmann, 2002). Children with 

ADHD show reduced cortical thickness in frontal and temporal regions (Almeida et al., 

2010; Batty et al., 2010; Narr et al., 2009; Schweren et al., 2015; Shaw et al., 2006) and 

altered subcortical volume, including reduced volume in the basal ganglia, amygdala, 

hippocampus and cerebellum (Brieber et al., 2007; Carmona et al., 2005; Castellanos et al., 

2002; Durston et al., 2002; Hoogman et al., 2017; Qiu et al., 2009; Wyciszkiewicz, Pawlak, 

& Krawiec, 2017).

Despite these similarities, only one study to date has investigated the relationship between 

early adversity, brain development and ADHD. As noted above, this study documented that 

children reared in institutions have widespread reductions in cortical thickness which 

mediated the association of institutionalization with ADHD symptoms (McLaughlin, 

Sheridan, Winter, et al., 2014). Additional work is warranted in broader populations of 

children given that deprivation present in institutionalization is less common than other 

adversities which may function through similar mechanisms, such as low parental SES.

The purpose of the current study is to examine if neural structure mediates the relationship 

between low parental SES and ADHD. We investigate these relationships in the PING 

dataset, a large cohort of youth from sites across the United States (Jernigan et al., 2016). 

This dataset is one of the largest and most diverse neuroimaging datasets available to 

identify associations between SES, neural structure and mental health. We assessed whether 

variation in neural structure accounts for elevations in ADHD in children raised in low SES 

families. Because previous studies examining parental SES in this sample have focused on 

surface area (Noble et al., 2015) but decreases in cortical thickness have been commonly 

linked with ADHD (Almeida et al., 2010; Shaw et al., 2006), we examine mediation in 

cortical surface area, cortical thickness and subcortical volume. We hypothesized that 

children with low SES will be more likely to have ADHD group membership and that 

alterations to brain structure would partially account for the association between SES and 

ADHD.

2 | METHODS AND MATERIALS

2.1 | Sample

Data were obtained from the PING Study, a data resource of standardized magnetic 

resonance imaging (MRI) data for a large cohort of children 3–21 years old (Jernigan et al., 

2016). Participants were recruited at ten sites and were excluded due to major neurological 

disorders; diagnoses of autism spectrum disorder, bipolar disorder or schizophrenia; brain 

injury; prematurity; exposure to illicit drugs or alcohol prenatally; head trauma with loss of 

consciousness; or contraindications for MRI. All participants and parents gave their 

informed written consent/assent to all study procedures.
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Each site administered a standardized structural MRI protocol. Pre-and post-processing 

techniques have been previously described but we review them succinctly here (Jernigan et 

al., 2016). The MRI protocol included a T1-weighted scan and a T2-weighted volume. 

Cortical reconstruction and volumetric segmentation were performed with FreeSurfer 

imaging analyses to obtain measures of cortical thickness and surface area (Destrieux, 

Fischl, Dale, & Halgren, 2010; Fischl & Dale, 2000). FreeSurfer procedures have 

demonstrated good test-retest reliability across scanner manufacturers and field strengths 

(Desikan et al., 2006; Han et al., 2006).

The PING study collected acceptable structural imaging data on 1,239 youth 3–21 years old. 

Information about SES, ADHD status and control variables were available for 874 

participants; data were missing for age (n = 5), birth weight (n = 195) parental education (n 
= 28), parental diagnosis of ADHD (n = 8), parental report of attention problems (n = 26), 

household income (n = 31) and parental occupation (n = 72). SES was defined as a 

composite measure of parental education for the primary caregiver, parental occupation for 

the primary caregiver and family income (Akshoomoff et al., 2014) (see Data S1 for more 

information regarding SES coding). ADHD group membership was defined by a two-item 

questionnaire: a parent report of a previous child diagnosis of ADHD (n = 58; 6.7%) and/ or 

a parent report of significant child attention problems (n = 77; 8.8%) for a total sample of 91 

(10.4%) children with ADHD group membership (Table 1). While this rate is consistent with 

prevalence rates of ADHD in population samples (Polanczyk, de Lima, Horta, Biederman, & 

Rohde, 2007), this manner of identifying ADHD does not comply with rigorous diagnostic 

criteria. Future work will need to investigate these associations in children with more 

carefully assessed ADHD diagnoses. Our approach of considering attention problems 

broadly is consistent with current approaches to understanding neurobiological mechanisms 

of psychopathology (Insel et al., 2010). However given the limited nature of diagnostic 

information, results should be considered preliminary vis-a-vis ADHD diagnostic status.

Parents reported demographic information, except for adult participants who provided self-

report (Jernigan et al., 2016). There was no association between ADHD group membership 

and race or ethnicity, with the exception of Pacific Islander (Table 1). Participants who were 

identified by their caregiver as Hispanic (t = 7.65 p < 0.001), Pacific Islander (t = 7.44, p < 

0.001), American Indian (t = 2.69, p < 0.01) or African American (t = 8.04, p < 0.001) had 

lower parental SES compared to all other participants. Gender was included as a covariate as 

children in the ADHD group were significantly more likely to be male, consistent with 

population estimates of ADHD (Polanczyk et al., 2007) (Table 1). There were no gender 

differences by SES (t = 0.41, p = 0.68). Because there were significant differences in scanner 

used to collect data by ADHD group and by SES (F(3,870) = 6.05, p < 0.001), scanner was 

included as a covariate. Parent diagnoses of ADHD obtained through self-report were 

included as a covariate (no parental history of ADHD or one or more parents with an ADHD 

diagnosis). There were no significant differences in parent ADHD by SES (t = 1.18, p = 

0.24). However, children in the ADHD group were significantly more likely to have parents 

diagnosed with ADHD, consistent with high heritability estimates (Nikolas & Burt, 2010). 

There were significant differences in birth weight by SES; families with higher SES had 

children with higher birth weight on average (r = 0.07, p < 0.05). There were no significant 

differences in ADHD group membership by birth weight. There were no significant 

Machlin et al. Page 4

Dev Sci. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences in age by SES (r = 0.04, p = 0.29) or ADHD group membership (Table 1) 

however, we included age as a covariate due to the wide age range.

2.2 | Statistical analyses

We investigated whether the relationship between ADHD group membership and SES was at 

least partially accounted for by differences in neural structure using statistical mediation.

2.2.1 | Data reduction—Using FreeSurfer, subcortical volume was segmented into eight 

regions and cortex was segmented into 32 regions in each hemisphere. We approached 

reducing the overall number of mediation paths tested using a priori theory coupled with a 

data-driven approach. First, given extensive prior evidence of differences in prefrontal 

cortical thickness and surface area in children with ADHD (Durston, 2003; Friedman & 

Rapoport, 2015; Krain & Castellanos, 2006; Vaidya, 2011), we selected thirteen prefrontal 

cortical regions a priori in each hemisphere identical to those used in a study examining 

differences in cortical thickness and grey matter volume for children with and without 

ADHD (Batty et al., 2010). These regions from the 2005 Desikan-Killiany FreeSurfer atlas 

are as follows: caudal anterior cingulate, caudal middle frontal, frontal pole, lateral 

orbitofrontal, medial orbitofrontal, paracentral, pars opercularis, pars orbitalis, pars 

triangularis, precentral, rostral anterior cingulate, rostral middle frontal and superior frontal 

(Desikan et al., 2006) (Figure 1). Differences in subcortical volume were investigated in: the 

nucleus accumbens, amygdala, caudate, cerebellum, hippocampus, pallidum, putamen and 

the thalamus (Figure 2). The analyses for cortical thickness, surface area and subcortical 

volume were conducted independently. Thus, we took this reduced group of regions and 

conducted analyses of the a, b and c paths using regression prior to testing the significance 

of the indirect effects for the full model. We only tested indirect effects (i.e. the full model) 

for regions with statistically significant a, b and c paths. For these analyses, a false discovery 

rate (FDR) correction, implemented in Statistical Analysis Software was applied to account 

for multiple comparisons (FDR corrected alpha of p < 0.05) for each group of analyses: 

cortical thickness, surface area and subcortical volume.

2.2.2 | Statistical mediation—First, we examined path c (if SES significantly predicted 

ADHD group status) using logistic regression while controlling for child age, gender, birth 

weight, scanner and parent ADHD. Age was mean-centered. Second, we investigated 

potential a paths (differences in cortical thickness, surface area and subcortical volume by 

SES) using linear regression analyses and the same controls. Third, we chose the regions 

which were significantly associated with SES following FDR correction and tested the b 
path (links between neural structure and ADHD group membership) using logistic 

regression and controlling for aforementioned covariates. Finally, for neural regions which 

met our strict criteria, we tested the significance of the indirect effects of parent SES on 

ADHD group membership through neural structure using a boot-strapping approach that 

provides bias-corrected confidence intervals (Preacher & Hayes, 2008). Confidence intervals 

that do not include zero indicate a significant indirect effect. These analyses were performed 

on the sample which had complete data (N = 874). Because the functional form of 

associations between age and subcortical volume differ across studies (Ostby et al., 2009; 

Wierenga et al., 2014), we additionally tested all significant mediation analyses including a 
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non-linear age covariate (age2). We report when these results differ from our primary 

findings.

2.2.3 | Multiple imputation—The sample which included complete data on all of our 

covariates and predictors was significantly smaller than the full dataset (N = 1,239). To 

ensure that data loss did not account for our observed associations, a supplementary analysis 

was conducted using multiple imputation. First, we determined that the pattern of data was 

not missing completely at random (Little’s MCARS test, χ2 = 140.39, p < 0.001). This lack 

of randomness may compromise the multiple imputation (Donders, Heijden, Stijnen, & 

Moons, 2006) however, violation of the missing completely at random assumption also 

affects listwise deletion procedures (Schafer & Graham, 2002). Thus, we report results from 

both listwise deletion (primary analysis) and multiple imputation for the full model. For 

multiple imputation, we use fully conditional specification (FCS), an iterative Markov chain 

Monte Carlo (MCMC) procedure, in SPSS 24. For every variable a model including all other 

variables is created to predict imputed values; this continued over 20 iterations, which were 

averaged to create the imputed dataset. We performed this procedure twice. Statistically 

significant mediation results observed in the primary analysis with complete data were 

reanalysed within these two datasets.

3 | RESULTS

3.1 | SES and ADHD group membership

Results of a logistic regression analysis indicated that ADHD group membership differed by 

composite SES (OR = 1.07, df = 1, p < 0.05). Children with lower SES were more likely to 

be in the ADHD group. In this and all subsequent analyses we controlled for child age, child 

gender, child birth weight, scanner and parent ADHD (see Table 1 and Sample section for 

more information on covariates).

3.2 | SES and cortical thickness

Results of the linear regression analyses examining the relationship between SES and 

cortical thickness indicated that the right precentral region differed significantly by SES at p 
< 0.05 after FDR correction (see Table S2 for more information). Lower SES was associated 

with reduced thickness in the right precentral cortex.

3.3 | SES and surface area

Results from the linear regression analyses identified 25 brain regions out of the 26 regions 

tested in which SES significantly predicts surface area at p < 0.05 after FDR correction (see 

Table S3 for more information). For all significant regions, lower SES was associated with 

reduced surface area.

3.4 | SES and subcortical volume

Results from the linear regression analyses identified 10 subcortical regions out of the 16 

regions tested in which SES was significantly associated with subcortical volume. SES 

significantly predicted subcortical volume in the left amygdala, caudate, cerebellum, 

hippocampus, putamen and the thalamus, as well as the right amygdala, caudate, cerebellum 
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and the hippocampus (see Table S4 for more information). All analysed regions were 

significant at p < 0.05 after FDR correction. For all significant regions, lower SES was 

associated with less subcortical volume.

3.5 | Cortical thickness and ADHD

Logistic regression analysis demonstrated that the right precentral cortex was not 

significantly associated with ADHD group membership.

3.6 | Surface area and ADHD

Logistic regression analysis demonstrated that no cortical surface area regions associated 

with SES were significantly associated with ADHD group membership.

3.7 | Subcortical volume and ADHD

Logistic regression analysis demonstrated that the left and right cerebellum were 

significantly associated with ADHD group membership at p < 0.05. Increases in subcortical 

volume in the left and right cerebellum were associated with higher risk for ADHD group 

membership. The right caudate was also significantly associated with ADHD group 

membership at p < 0.05. Increases in subcortical volume in the right caudate were associated 

with higher risk for ADHD group membership. All other regions associated with SES were 

not significant within the model. For all regions, increases in subcortical volume were 

associated with higher risk for ADHD group membership.

3.8 | Mediation analysis

No cortical regions met our stringent criteria for conducting the mediation analysis 

examining either thickness or surface area. A significant indirect effect of SES on ADHD 

group membership through subcortical volume was observed for the left cerebellum (95% 

confidence interval: 0.004, 0.022) and the right cerebellum (95% confidence interval: 0.006, 

0.025) (Figure 3). When including age2 as an additional covariate, the significant indirect 

effect of SES on ADHD group membership through the left and right cerebellum remains 

significant.

A significant indirect effect of SES on ADHD group membership through subcortical 

volume was additionally observed for the right caudate (95% confidence interval: 0.002, 

0.022) (Figure 4). When including age2 as an additional covariate, the significant indirect 

effect of SES on ADHD group membership through the right caudate is no longer 

significant. In both imputed datasets, the indirect effect of the left cerebellum, the right 

cerebellum and the right caudate between SES and ADHD group were significant at the 95% 

confidence interval.

Given the unexpected direction of effects, we additionally analysed cerebellar white matter 

volume to probe the indirect effect of SES on ADHD group membership and explore if the 

same pattern observed in cerebellar grey matter occurs in cerebellar white matter, which are 

often included together in an overall measure of subcortical volume. A significant indirect 

effect of SES on ADHD group membership through subcortical volume was observed for 
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the left cerebellar white matter (95% confidence interval: 0.0003, 0.013) and the right 

cerebellar white matter (95% confidence interval: 0.0003, 0.014).

4 | DISCUSSION

Low SES is one form of adverse early experience that has been previously linked to greater 

risk for ADHD (e.g. Law et al., 2014). In a large, diverse cohort of youth, we investigated 

whether differences in brain structure constituted a mechanism linking low SES and ADHD 

group membership. Subcortical volume in the left and right cerebellum partially mediated 

the relationship between low SES and ADHD group membership.

Consistent with the present findings, prior work indicates that low parental SES has been 

associated with decreases in cerebellar volume (Cavanagh et al., 2013; De Bellis & 

Kuchibhatla, 2006; Edmiston et al., 2011). Surprisingly, we also found that ADHD group 

membership was associated with increases in cerebellar grey matter and white matter. This 

could have been due to our inclusion of numerous covariates (e.g. due to collinearity) 

however, this is unlikely as we observe this direction of effects in the bivariate associations 

as well (see Table S1). Numerous studies have documented smaller cerebellar volume in 

children with ADHD (Berquin et al., 1998; Castellanos et al., 2002; Durston et al., 2004; 

Hill et al., 2003). The discrepancy between our findings and others may be accounted for by 

differences in methodology in measuring cerebellar volume, such as slice-by-slice hand-

tracing or use of other automated image analysis techniques (Berquin et al., 1998; Bledsoe, 

Semrud-Clikeman, & Pliszka, 2011; Castellanos et al., 2002).

The cerebellum is important for coordination of motor movements and higher-order 

cognitive functions, including attentional shifting (Gottwald, Mihajlovic, Wilde, & 

Mehdorn, 2003). Relatedly, numerous theories have proposed that psychological deficits in 

ADHD are linked with alterations to frontal-cerebellar circuits in addition to frontal-striatal 

circuits (Castellanos & Proal, 2012; Durston, van Belle, & de Zeeuw, 2011; Nigg & Casey, 

2005). Thus, the current study provides evidence that the environmental sensitivity of the 

cerebellum (Giedd et al., 2007) may be one mechanism through which the experience of low 

SES increases risk for ADHD.

Subcortical volume in the right caudate partially mediated the relationship between low SES 

and ADHD group membership. There is evidence that children with ADHD show reductions 

in caudate volume (Castellanos et al., 2002; Nakao, Radua, Rubia, & Mataix-Cols, 2011; 

Qiu et al., 2009; Valera, Faraone, Murray, & Seidman, 2007), although some studies have 

not found a significant effect (Bussing, Grudnik, Mason, Wasiak, & Leonard, 2002; Pineda 

et al., 1999). Interestingly, little prior research has linked parental SES to caudate volume, 

although links between childhood adversity and striatal structures have been observed 

(Edmiston et al., 2011). When we examined quadratic age effects, caudate volume no longer 

mediated the association between ADHD and SES. However, it is unlikely that non-linearity 

in age accounts for our findings because there were no age differences between children 

with and without ADHD. Overall this observation warrants follow-up and further 

investigation.
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Consistent with previous work in this sample and elsewhere, we additionally observed 

bilateral reductions in subcortical volume associated with SES in the amygdala and 

hippocampus (Hanson, Chandra, Wolfe, & Pollak, 2011; Jednoróg et al., 2012; Luby et al., 

2013; Merz et al., 2017; Noble et al., 2015, 2012). The amygdala and hippocampus are 

critical to social emotional functioning and are closely linked with hypothalamic-pituitary-

adrenal axis stress response, one mechanism through which low parental SES could 

influence brain structure and function (Frodl & O’Keane, 2013; Lupien, McEwen, Gunnar, 

& Heim, 2009). Interestingly, volume of the hippocampus and amygdala did not mediate the 

association between SES and ADHD.

Findings in the present study build on prior research using the PING dataset (e.g. Noble et 

al., 2015) by linking low parental SES to ADHD through brain structure. The indirect effect 

of subcortical volume on the relationship between low parental SES and ADHD group 

membership constitutes an ‘inconsistent mediation’ indicating that the direct and indirect 

effects occur in opposite directions (MacKinnon & Fairchild, 2009; MacKinnon, Krull, & 

Lockwood, 2000). An inconsistent mediation indicates that there are multiple pathways 

through which SES confers higher risk for ADHD, not only the positive indirect effect 

through subcortical volume.

Low SES puts children at risk for environments characterized by low cognitive stimulation, 

exposure to complex language and careful supervision by adults (McLaughlin, Sheridan, & 

Lambert, 2014; Noble et al., 2007; Windsor, Moraru, Nelson, Fox, & Zeanah, 2013). 

Differences in cognitive stimulation and exposure to language may impact brain structure 

through typical experience-dependent neurodevelopmental processes (Brito & Noble, 2014; 

Sheridan & McLaughlin, 2014, 2016). Thus, the differences in subcortical volume that, in 

part, statistically account for the relationship between children with low family SES and 

ADHD symptoms may stem from differences in the developmental environment.

The present study presents novel findings linking socioeconomic disparities, brain structure 

and ADHD group membership observed in a large dataset comprised of a socioeconomically 

and racially diverse group of participants across a wide age range. However, several 

limitations should be noted. First, validated research diagnoses of ADHD were not obtained 

for the PING study. The PING study relied on parental report of ADHD diagnosis and/or 

parent-reported significant attention problems meaning that results are best interpreted as 

mediating the association between SES and inattention problems or community diagnosis. In 

light of this limited diagnostic information, these results should be considered preliminary 

observations. Future work should confirm that these associations are consistent when ADHD 

diagnosis is confirmed. Second, the PING study did not evaluate the presence of other 

psychological disorders in the full sample. Future work should explore if these associations 

are consistent when controlling for other psychological conditions. Third, the present study 

did not measure other forms of early adversity, such as abuse, exposure to domestic violence 

or exposure to community violence. Future studies should investigate depriving experiences 

and threatening experiences. Fourth, the present study was not a longitudinal analysis, 

compromising the directional interpretation of the mediation analysis.
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In summary, this study documents that the link between low SES, a common early adverse 

experience and ADHD group membership is explained, in part, through alterations in 

bilateral cerebellar volume and right caudate volume. We provide this evidence in a large, 

diverse sample and across a wide range of ages, controlling for many potential confounders. 

The findings suggest that alterations to the cerebellum and caudate are potential 

neurodevelopmental mechanisms linking low SES with ADHD.
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Research highlights

• The current study examined the relationship between family socioeconomic 

status (SES), alterations in brain structure and attention-deficit/hyperactivity 

disorder (ADHD) status in youth.

• Low SES was associated with reduced surface area across the frontal lobe and 

reduced subcortical volume in the amygdala, cerebellum, hippocampus and 

basal ganglia.

• Subcortical volume in the left cerebellum, right cerebellum and the right 

caudate statistically mediated the relationship between low SES and ADHD 

status in children.

• These findings were for ADHD status as reported by parents and thus should 

be considered preliminary.
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FIGURE 1. 
Tested prefrontal regions from the 2005 Desikan–Killiany FreeSurfer atlas 127 × 94 mm 

(300 × 300 DPI)
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FIGURE 2. 
Tested subcortical regions from the 2005 Desikan– Killiany FreeSurfer atlas 126 × 107 mm 

(300 × 300 DPI)
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FIGURE 3. 
Left and right cerebellum mediates family socioeconomic status and child attention-deficit/

hyperactivity disorder group membership (N = 874) 101 × 60 mm (300 × 300 DPI)
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FIGURE 4. 
Right caudate mediates family socioeconomic status and child attention-deficit/hyperactivity 

disorder group membership (N = 874) 101 × 60 mm (300 × 300 DPI)
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