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Abstract

Obesity is understood to be an inflammatory condition characterized in part by changes in resident 

immune cell populations in adipose tissue. However, much of this knowledge has been obtained 

through experimental animal models. Epigenetic mechanisms, such as DNA methylation may be 

useful tools for characterizing the changes in immune cell populations in human subjects. In this 

study, we introduce a simple and intuitive method for assessing cellular infiltration by blood into 

other heterogeneous, admixed tissues such as adipose tissue, and apply this approach in a large 

human cohort study. Associations between higher leukocyte infiltration, measured by evaluating a 

distance measure between the methylation signatures of leukocytes and adipose tissue, and 

increasing body mass index (BMI) or android fat mass (AFM) were identified and validated in 

independent replication samples for CD4 (pBMI=0.009, pAFM=0.020), monocytes (pBMI=0.001, 

pAFM=4.3×10−4) and dendritic cells (pBMI=0.571, pAFM=0.012). Patterns of depletion with 

increasing adiposity were observed for plasma B (pBMI=0.430, pAFM=0.004) and immature B 

(pBMI=0.022, pAFM=0.042) cells. CD4, dendritic, monocytes, immature B, and plasma B cells 
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may be important agents in the inflammatory process. Finally, the method used to assess leukocyte 

infiltration in this study is straightforwardly extended to other cell types and tissues in which 

infiltration might be of interest.
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INTRODUCTION

Estimating the distribution of leukocyte populations in complex, heterogeneous tissue has 

been an active area of methodological development in the molecular study of human 

inflammatory diseases. Epigenetic patterns, and more specifically, DNA methylation 

(DNAm), have been shown to impact gene expression and cellular differentiation and 

function. Prior studies have identified several differentially methylated DNA regions 

(DMRs) for most major types of leukocytes. Building on this work, methods for 

deconvoluting cellular mixtures have been developed (Houseman et al., 2012), including a 

reference-free approach (Houseman, Molitor, & Marsit, 2014) which permits admixture 

estimation of different cell-types using all available methylation markers. Deconvolution 

estimates may then be used to regress out the effects of the leukocyte subpopulations in the 

primary tissue of interest. However, the adjustment process requires a large number of 

degrees of freedom which may present challenges with respect to power in studies with 

small sample sizes and artificially separate portions of signals which are inherently joint in 

nature. Motivated by a biological interest in the infiltrative effects of leukocytes in obesity, 

rather than seeking to directly deconvolve certain cellular populations in a heterogenous 

tissue sample, we instead explore the effect of particular cell-types conditional on their 

presence in adipose tissue vis-à-vis degree of similarity in methylation patterns between 

leukocyte DMRs and methylation levels in adipose tissue samples.

Obesity, now itself considered to be an inflammatory condition (Das, 2001) is often 

characterized by chronic, low-grade inflammation that is sustained on both a systemic and 

tissue level (Oishi & Manabe, 2016). Obesity-induced inflammation in adipose tissue has 

been shown to promote insulin resistance (McNelis & Olefsky, 2014), and is thought to be 

mediated mostly by adipose tissue macrophage accumulation in fat (Weisberg et al., 2003; 

H. Xu et al., 2003). Macrophage populations are understood to dynamically shift during 

obesity, where anti-inflammatory M2 macrophages commonly present in lean adipose tissue 

are replaced with pro-inflammatory M1 macrophages with increasing adiposity (Castoldi, 

Naffah de Souza, Câmara, & Moraes-Vieira, 2016; Hill, Reid Bolus, & Hasty, 2014; 

Lumeng, Bodzin, & Saltiel, 2007; Odegaard et al., 2007). However, reports from a study by 

Xu et al. (X. Xu et al., 2013) demonstrated no difference in transcriptional levels of 

inflammatory cytokines in M1 versus M2 macrophages in obese mice, suggesting that 

increased inflammatory cytokines in obese adipose tissue could not be explained solely by 

the accumulation of pro-inflammatory macrophages. Further characterization of the 

heterogeneous composition of adipose tissue beyond the M1-versus-M2 paradigm, 
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particularly the role of infiltrating immune cells, is necessary to understand adipose 

inflammation (Carvalheira, Qiu, & Chawla, 2013; Grant & Dixit, 2015; Schipper, Prakken, 

Kalkhoven, & Boes, 2012; Wensveen, Valentić, Šestan, Turk Wensveen, & Polić, 2015).

Much of what is known about inflammation in obesity has been obtained from experimental 

mouse models, but little is known about how these observations might directly translate to 

humans. Interestingly, in recent work by our group, pathway analyses of the top BMI-

associated CpG loci in female adipose tissue also populated a large number of terms 

associated with hematopoietic and immune-related biological processes (Chu et al., 2018). 

Furthermore, in another study we demonstrated that high epigenome-wide correlation 

between adipose tissue and blood is associated with higher BMI (Huang et al., 2016). At the 

same time, the relationship between specific leukocyte infiltration and obesity is still unclear 

with respect to the manner of association, and also with respect to the specific blood cell 

types that might jointly characterize obesity-induced inflammation. Epigenetic signatures 

could potentially be used as biomarkers for identifying leukocyte infiltration and risk of 

insulin resistance. Thus, our primary aim is to use adipose DNA methylation data to identify 

which leukocyte cell types are prominent in human adipose inflammation in obesity and 

their roles.

MATERIALS AND METHODS

An overview of the leukocyte infiltration analyses in the discovery, replication, and pooled 

stages can be seen in Figure 1.

Study Sample

Study subjects were recruited from the Longitudinal Effects on Aging Perinatal (LEAP) 

Project, a nested sub-study of the New England Family Study (NEFS), which has been 

described in detail elsewhere (Agha et al., 2015; Loucks et al., 2016; Slopen et al., 2015). 

Briefly, the LEAP study included Providence-born participants recruited from the NEFS and 

assessed between 2010–2011. Among 796 participants who met inclusion criteria including: 

not deceased or incarcerated, available assessments taken at age 7 years, and located within 

100 miles of a clinical site during 2010–2011, 400 participants consented for further 

participation and were included for the present sub-study. Among these, 316 subjects had 

adequate adipose tissue biopsies, 16 had inadequate specimens, and 68 refused. Adipose 

tissue methylation analyses were conducted on a final, representative set of 143 randomly 

sampled subjects out of 316 participants due to budgetary constraints. The study protocol 

was approved by the institutional review boards at Brown University and Memorial Hospital 

of Rhode Island (#0908000028).

Collection of Covariates and Methylation Data

Body mass index was calculated as weight per height squared (kg/m2). Body weight and 

height were obtained by trained personnel using a calibrated stadiometer and weighing scale. 

Dual-energy x-ray absorbtiometry (DXA) scans were also conducted using the Lunar 

Prodigy Advance scanner (GE Healthcare, Madison, WI) to obtain direct measures of 

android fat mass (AFM) (i.e., centrally located fat). To monitor the reproducibility of the 
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DXA assessments, weekly assessments were performed using models simulating varying 

levels of body fat.

Subcutaneous adipose tissue samples were obtained from the upper outer quadrant of the 

buttock using a 16-gauge needle, and buffy coat was obtained from centrifuged whole blood 

samples. DNA was extracted from the adipose tissue samples and buffy coat using the 

Qiagen DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA) and the Zymo Genomic DNA 

Clean & Concentrator Kit, and sodium bisulfite conversion was performed using the EZ-96 

DNA Methylation-Direct and EZ DNA Methylation-Direct kits (Zymo Research, Orange, 

CA using manufacturer protocols. Adipose tissue samples were then analyzed on the 

Infinium HumanMethylation450 BeadChip array (Illumina, San Diego, CA) at the Core 

Genomics Facility in the UCSF Institute for Human Genetics (San Francisco, CA) using 

manufacturer protocols.

Pre-processing of the methylation data is described in Huang et al (Huang et al., 2016).

Briefly, the ‘methylumi’ package in R was employed to make background and dye-bias 

corrections, and correction for Type 1 and Type 2 probe bias was conducted via the Beta-

Mixture Quantile Dilation approach (Teschendorff et al., 2013); batch effect adjustments 

were made using linear mixed models. Methylation levels were recorded on the beta scale, 

but were converted to the M-scale prior to analysis (Du et al., 2010).

Additional measured demographic and risk factors included included age, race (white or 

non-white), sex, maternal smoking (cigarettes per day), and socioeconomic index at age 7.

External Replication Datasets

Three external datasets with both methylation and BMI data were obtained from the 

National Center for Biotechnology Information Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo/), a publicly available repository of genomic data to 

validate infiltration cell-type candidates identified in our primary analyses. From the GEO, 

we selected GSE67024 (Arner et al., 2015) which contained 29 samples of abdominal 

subcutaneous fat cells from 15 obese and 14 never-obese women, GSE61450 (Bonder et al., 

2014) which contained 71 samples of abdominal subcutaneous fat in subjects who had a 

BMI of 35 or greater, and GSE68336 (Pietiläinen et al., 2016) which contained 70 samples 

of abdominal subcutaneous adipose tissue from 35 monozygotic weight-discordant twin 

pairs, otherwise completely matched for age, race, sex, and family background. BMI was 

assessed as a continuous measure in the GSE67024 and GSE61450 datasets, but was 

categorized as a binary covariate (High (mean 31, s.d. 5.18) or Low (mean 25, s.d. 4.52)) in 

the GSE68336 twin study. All methylation data in the replication datasets were also 

measured on the Infinium HumanMethylation450K BeadChip array. For analyses of the 

GEO datasets, no additional normalization steps were employed to the already pre-processed 

beta values.

Statistical Analyses

mED Construction—To assess cellular infiltration in adipose tissue, we first constructed a 

metric for comparing epigenetic signatures between leukocytes and adipose tissue. 
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Previously reported differentially methylated region (DMR) reference panels were obtained 

for 12 leukocyte cell-types of interest: activated natural killer (aNK) (Wiencke et al., 2016), 

CD4, CD8, dendritic, granulocytes, immature B, memory B, monocytes, naïve B, NK, 

plasma B, and T-regulatory (Treg) cells (Kim et al., 2016). For each cell type, methylation 

levels at 50 uniquely identifying CpG sites were obtained to create a reference methylation 

signature.

The leukocyte reference panels were then compared to the methylation levels at the 

corresponding CpG sites in participant adipose tissue by calculating the methylation 

Euclidean distance (mED) between the expression profiles. More specifically, for each cell 

type j = 1,   2, …,   12, we calculate the mED for subject i = 1,   2,   …,   N as:

mEDi j =
k

50
ai jk − b jk

2

where, for cell type j, ai jk and b jk denote the methylation value of CpG site k in 1) adipose 

tissue for subject i and 2) the reference panel, respectively. The mED constructed here can 

be thought of as representing a similarity score between adipose tissue and the reference 

leukocyte methylation profiles, where smaller values denote greater similarity between the 

tissues, suggesting higher infiltration by that cell-type. Prior to calculating mED, all CpG 

sites were scaled by the adipose tissue standard deviation of DNAm per site to ensure equal 

weighting of all CpG sites within a given leukocyte reference panel.

Cell-Type Specific Infiltration Analysis: Discovery and Replication—Calculated 

adipose mEDs for each leukocyte type were individually regressed on BMI and AFM in 

marginal and covariate adjusted models using least-squares regression. Adjustment 

covariates for the analyses in LEAP included age, sex, race, and smoking (cigarettes/day). 

Given expected high correlation between leukocytes, an initial, lenient significance threshold 

was applied for the discovery phase: cell-types that were significant (p<0.05) in either the 

BMI or AFM analyses were selected as candidate infiltrating leukocytes for replication. Six 

AFM scores were missing and were therefore excluded from the analysis.

To limit potential false discoveries via study design, independent datasets were obtained to 

protect against false positives through replication. Methods identical to those used in the 

primary analyses were used to calculate mEDs and assess infiltration in the external 

replication datasets, GSE67024 and GSE61450. However, conditional logistic regression 

was applied in GSE68336 to accommodate both the binary categorization of BMI, and the 

matched study design. In GSE61450, available adjustment covariates included sex and age, 

and in GSE67024, only age. As the analysis in GSE68336 was applied in monozygotic twin-

pairs, no additional adjustments were made.

Pooled Analysis of Joint Infiltration Effects and Infiltration Profile Selection—
There is evidence that inflammatory immune infiltration involves populations of multiple 

leukocytes, which may vary by the adiposity of the individual (Carvalheira et al., 2013; 

Castoldi et al., 2016). To capture this variability, and to further assess the use of DNAm sites 
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as biomarkers for infiltration, we conducted lasso regression to select predictive profiles of 

leukocyte infiltration after pooling the primary data from LEAP with the two replication 

study datasets with continuous BMI measures (GSE67024 and GSE61450) to conduct an 

analysis of joint effects. Prior to combining all three datasets, mEDs were standardized by 

cell-type, within each cohort, to ensure comparability across the datasets when pooled.

For the joint multicellular analyses, BMI was regressed on all 12 leukocyte types, adjusting 

for age, race (white or non-white), gender, and cohort (LEAP, GSE67024, GSE61450). To 

select predictive joint infiltration profiles, we employed lasso regression with 10-fold cross 

validation in the pooled data sample using the ‘glmnet’ and ‘selectiveInference’ packages in 

R (Lee, Sun, Sun, & Taylor, 2016; Taylor & Tibshirani, 2017). The most parsimonious 

model demonstrating a comparable error to the model which minimized cross-validation 

error was selected, and the active set of covariates selected for inclusion were identified. To 

account for the inferential bias induced by the model-search process of cross-validated lasso, 

post-selection confidence intervals and p-values were obtained for each coefficient.

Cumulative mED Risk Score and BMI—To determine the extent to which cumulative 

effect of mEDs across different cell-types might associate with BMI, we next assessed the 

mEDs across 1) the full panel of 12 leukocytes, 2) the top validated leukocytes in the 

marginal analyses, and 3) the significant leukocytes in the joint multicellular analyses, both 

within each cohort and within the pooled sample. For each subject, cumulative mEDs 

(cmEDs) were obtained by first weighting each cell-type by the pooled covariate-adjusted 

associations with BMI, then summing mED values across the relevant cell-types for each of 

the three analyses as follows:

cmEDi =
jϵS

w j mEDi j

where S corresponds to the different cmED constructions denoted in 1)-3) above. Finally, 

BMI was regressed on each calculated cmED type in each cohort and in the pooled sample, 

with respective covariate adjustments as described in the preceding analyses.

RESULTS

Study Sample

Participants of this study had a mean age of 47 (range 44–50) years; 66% were white, and 

52% were females. Between men and women, the distributions of age, race, BMI at age 7, 

maternal smoking, and adult BMI, our primary outcome of interest, were highly similar 

(Table 1). However, for AFM, the proportion of women decreased at higher levels.

Cell-Type Specific Infiltration Associated with Adiposity

To assess leukocyte infiltration into adipose tissue, we constructed a novel and intuitive 

metric to compare the methylation patterns in adipose tissue with differentially methylated 

region (DMR) signature panels for leukocytes reported in prior literature (Kim et al., 2016; 

Wiencke et al., 2016) by calculating methylation Euclidean distances (mED). In the LEAP 

cohort, we identified the mEDs of aNK (p=4.9×10−4), monocytes (p=0.001), NK (p=0.001), 
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CD4 (p=0.009) and granulocytes (p=0.039) to be significantly negatively associated with 

BMI (Table 2). Negative associations are consistent with our hypothesis of increased 

infiltration with increased adiposity – in other words, as the distance scores decrease, 

adiposity increases, thus suggesting higher infiltration in subjects with higher levels of 

adiposity. Immature B (p=0.022) cells were identified as positively associated with BMI, 

indicating depletion of these leukocytes in the cellular composition of adipose tissue in 

subjects with higher BMI. In the analyses of android fat mass, we identified the mEDs of 

CD4 (p=0.020), aNK (p=0.001), NK (p=1.6×10−4), and dendritic (p=0.002) cells to be 

significantly negatively associated with AFM. Plasma B (p=0.004), immature B (p=0.020), 

and naïve B (p=0.030) cells were identified as positively associated with AFM.

External Replication of Infiltrating Cell-Types

Replication analyses of the primary LEAP study findings were conducted in three 

independent datasets with BMI and DNAm data downloaded from the National Center for 

Biotechnology Information Gene Expression Omnibus (GEO) database: GSE67024, 

GSE61450, and GSE68336. GSE67024 (Arner et al., 2015) included 29 samples of female 

abdominal subcutaneous fat cells, GSE61450 (Bonder et al., 2014) included 71 samples of 

abdominal subcutaneous fat from subjects with BMI≤35, and GSE678336 (Pietiläinen et al., 

2016) included 70 samples of abdominal subcutaneous adipose tissue from 35 monozygotic 

weight-discordant twin pairs. For more specific descriptions of the replication datasets, see 

Materials and Methods.

In the GSE67024 dataset, the mEDs of CD4 (p=0.002), monocytes (p=6.9×10−5), aNK 

(p=0.002), and dendritic cells (p=3×10−8) were identified as significantly negatively 

associated with BMI (Table 3). In GSE61450, the mEDs of CD4 (p=0.031), monocytes 

(p=0.021), NK (p=0.030), and dendritic cells (p=0.007) were significantly negatively 

associated with BMI, and only immature B cells (p=0.032) were identified as having a 

significant positive association. In GSE68336, we conducted two analyses: first in all twin-

pairs, then in BMI-discordant twin-pairs. The twin-pair analyses revealed one negative mED 

association among dendritic cells (pall = 3.2×10−4; pdiscordant = 1.5×10−4 and one positive 

association among Treg cells (pall = 0.002; pdiscordant = 0.019) with BMI category. The 

discordant twin-pair analyses additionally identified monocytes (pdiscordant = 0.009) as 

having a negative mED association with BMI category. Overall, CD4, monocytes, and 

dendritic cell mED associations with BMI in the LEAP analyses were validated by at least 

two of the replication analyses with respect to both direction of effect and significance 

(Table 3). Comparisons of available clinical characteristics between the primary LEAP 

dataset and the replication studies are available in Table S1.

Pooled Analysis of Joint Leukocyte Infiltration Profiles

In the pooled multivariable analysis including all 12 cell types in the model, we identified 

the mEDs of immature B (p=0.002), plasma B (p=0.002), and memory B (p=0.009) cells as 

being associated with BMI (Table 4). Applying lasso regression in the pooled data selected 

immature B, plasma B, memory B, monocytes, aNK, CD4, dendritic, CD8, granulocytes, 

and NK cells as predictive cell-types for BMI, in addition to selecting age, race, gender, and 

cohort for inclusion in the final model. Among the leukocytes, only the mEDs of plasma B 
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(p=0.003), immature B (p=0.012) cells were identified as significant mED predictors of BMI 

via post-selection inference accounting for the model selection process of lasso regression 

(Table 4). Significant lasso model predictors were consistent with the top results of the joint 

pooled analyses. Memory B cells were identified as significant in the pooled multivariable 

analysis, but were shown not to be significant after post-selection inference. In general, that 

the joint multivariable and post-selection lasso models selected identical sets of significant 

jointly-associated leukocytes provides reassuring evidence for the robustness of these 

findings.

Cumulative mEDs and BMI

Given that multiple leukocyte populations likely act together during inflammatory 

dysregulation of adipose tissue, we constructed an intuitive measure of the cumulative effect 

of different leukocyte types called the cumulative methylation Euclidean distance (cmED). 

Within each cohort, each cell-type mED score was weighted by the pooled covariate-

adjusted estimates of association with BMI. Then, these weighted scores were summed 

across all cell-types to create a risk score for infiltration by leukocytes across a given set of 

interest. In the pooled sample, the cmEDs across 1) the full panel of all 12 cell-types 

(p=5.9×10−5), 2) the top validated leukocytes from the marginal analyses (p=0.094) and 3) 

the leukocytes selected by lasso in the pooled analyses of joint leukocyte effects (p=0.001) 

were all positively associated with BMI (Table 5 and Figure 2). The covariate-adjusted 

associations between the composite measure of cmED and BMI for these panels in 

individual cohorts are also reported in Table 5.

DISCUSSION

This study demonstrates a novel, but simple and intuitive, approach for utilizing methylation 

data to identify and estimate the effects of leukocyte infiltration in adipose tissue. Much of 

the literature regarding inflammatory processes in adipose tissue does not include cell 

mixture deconvolution adjustment to separate signals from different kinds of cell types. 

However, our interest lies not in cell mixture estimation per se, but in the slightly more 

challenging task of observing the infiltration of complex, admixed tissue types, such as 

adipose tissue, by blood – which is itself a mixture. To accommodate this goal, we borrow 

information from established DMR reference panels to estimate infiltration effects of 

different cell types, both marginally and jointly. Importantly, this method can accommodate 

both pre-established reference libraries, or study-specific derived reference libraries, and is 

straightforward to apply. Although our study investigated adipose tissue as the target tissue 

of interest, this approach can easily be employed in other tissue types.

Among our top findings in the LEAP cohort, CD4 and monocyte mED associations with 

BMI were replicated in at least two of our replication studies. It is worth noting that 

dendritic cell mED, which was identified as associated with AFM but not with BMI in our 

primary LEAP analyses, was associated with BMI in all three replications. Evidence for 

infiltration by CD4 (Fabbrini et al., 2013; Rocha et al., 2008; Strissel et al., 2010; Winer et 

al., 2009), monocytes (Castoldi et al., 2016; Kanda, 2006; Masoodi, Kuda, Rossmeisl, 

Flachs, & Kopecky, 2015), and dendritic (Chen et al., 2014; Rajan & Longhi, 2016; 
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Stefanovic-Racic et al., 2012) cells with increased adiposity has also been previously 

reported in mice and human studies (Mathis & Shoelson, 2011; Norata et al., 2015), 

providing biological plausibility for our findings. More importantly, the directions of 

association between methylation profile similarity as measured by mEDs and BMI among 

these cell-types were consistent both across all of our analyses (cohort-specific and pooled) 

and with findings described in literature.

In our pooled multicellular analysis, plasma B and immature B cells were associated with 

patterns of depletion in adipose tissue with higher adiposity: increasing profile dissimilarity 

was associated with higher BMI. The role of B cells, and specific subtypes, in inflammatory 

obesogenic processes has been less well studied. Main findings with regard to B cell 

involvement suggest an early accumulation in adipose tissue prior to the recruitment of T 

cells during inflammation (Duffaut, Galitzky, Lafontan, & Bouloumié, 2009; McLaughlin et 

al., 2014), but some recent studies have also identified IL-10 producing populations of B 

regulatory cells that may confer protective effects against insulin resistance (Nishimura et 

al., 2013; Wu, Parekh, Hsiao, Kitamura, & Van Kaer, 2014).

The associations between mED and BMI in immature B and plasma B cells were 

corroborated by our lasso variable selection model with respect to significance and 

directions of effect. Neither of these findings were among the top validated BMI-associated 

hits, but the full active set selected by the lasso regression procedure included the replicated 

LEAP findings of CD4, monocytes, and dendritic cells. In general, that all directions of 

effect for mED associations with BMI, across the validated cell-type and the pooled 

analyses, are largely consistent with each other and with prior research findings is 

compelling.

In the cmED analyses, associations with BMI were consistently positively associated and 

significant across both cohort-specific and pooled analyses, for all cell-type panels. This is 

supportive of the notion that profile-driven summary mED metrics derived from leukocyte 

methylation libraries may provide additional utility in the analysis of leukocyte infiltration. 

Total proportion of variability explained in BMI by the full panel cmEDs was not 

appreciably increased as compared to the joint panels in the pooled sample. In general, the 

full panel demonstrated higher performance than both the joint and validated cell type 

panels. This suggests that the interplay between the infiltrating activity by the different cell 

types is better summarized by an inclusive cmED panel (such as the full or joint panels). 

Taken together, these findings lend credibility to the evidence for significant associations 

between infiltration patterns, as measured by mED, and adiposity.

Although adjustment for multiple comparisons were not explicitly conducted, we reasoned 

that despite testing 12 different cell-types, moderate to high correlation observed between 

some of the leukocytes would suggest a much lower number of independent tests in practice 

(Supplementary Figures S1 and S2). These concerns are somewhat mitigated through study 

design, as we replicated our findings using three independent data sets. Other limitations of 

this study include the dependency of mEDs on the selection of the leukocyte DMR reference 

panels. Although the panels in our construction had good representation from broad, major 

classes of immune cell types, articulating small but important differences in adipose 
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infiltration by highly correlated cell-types remains challenging. The selection of the 

reference panel is one of the most important considerations in this approach, as incomplete 

panels might result in missed associations, and impact the estimation of other cellular 

effects. In this study, we also used reference panels derived from healthy individuals, but it is 

possible that leukocyte signatures in the context of higher BMI might differ from those of 

healthy subjects. Finally, our use of blood DMR sites to identify cell-specific leukocyte 

invasion in adipose tissue does not preclude the possibility that the sites in our reference 

panels might also experience similar methylation in resident adipose cells, which could lead 

to signal obfuscation at those sites. Thus, experimental validation will be necessary as proof-

of-concept for our approach.

CONCLUSION

Our findings support the belief that obesity-related inflammation arises as a result of 

excessive and inappropriate activation of the immune system. Much of the literature on 

inflammation in obesity is derived from experimental animal models, with, to our 

knowledge, few large-sample interrogations in humans. We applied our mED method to 

human tissue data obtained from a large cohort and conducted both replication and pooled 

association studies. That our findings are consistent with prior work on inflammation in 

obesity in animal models and smaller human studies is reassuring with respect to our 

approach and analytic results, but nonetheless will require experimental validation and 

replication, respectively.

Finally, we present a simple and intuitive approach for assessing cellular infiltration by 

blood into other heterogeneous, admixed tissues such as adipose tissue. Our approach is easy 

to apply and straightforwardly extended to other tissues in which leukocyte infiltration might 

be of interest. This method can also be extended to other kinds of cellular infiltration as well, 

provided reference libraries are available or can be derived.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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LIST OF ABBREVIATIONS

AFM android fat mass

DNAm DNA methylation

mED methylation Euclidean distance
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cmED cumulative methylation Euclidean distance

DMR differentially methylated regions

NK natural killer

Treg T-regulatory
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Figure 1. Overview of the leukocyte infiltration and methylation Euclidean Distance (mED) 
analyses.
The study design consisted of three general stages: 1) discovery in the LEAP cohort, 2) 

replication in three independent datasets from the Gene Expression Omnibus database with 

measures of DNAm in adipose tissue and BMI, and 3) a pooled analysis of joint infiltration 

effects and cumulative mED effects.
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Figure 2. Cumulative mEDs and BMI.
The association between BMI and cmEDs employing a) the full panel of 12 leukocytes, b) 

the validated leukocytes, and c) the joint-lasso leukocytes. The cohort-specific and pooled 

cMED effect estimates can be seen in panel d).
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