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Abstract

Experimental, observational and clinical trials support a critical role of folate one-carbon 

metabolism (FOCM) in colorectal cancer (CRC) development. In this report, we focus on 

understanding the relationship between common genetic variants and metabolites of FOCM. We 

conducted a genome-wide association study of FOCM biomarkers among 1788 unaffected 

(without CRC) individuals of European ancestry from the Colon Cancer Family Registry. Twelve 

metabolites, including 5-methyltetrahydrofolate, vitamin B2 (flavin mononucleotide and 

riboflavin), vitamin B6 (4-Pyridoxic acid, pyridoxal and pyridoxamine), total homocysteine, 

methionine, S-adenosylmethionine, S-adenosylhomocysteine, cystathionine, and creatinine were 

measured from plasma using liquid chromatography-mass spectrometry (LC-MS) or LC-MS/MS. 

For each individual biomarker, we estimated genotype array-specific associations followed by a 
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fixed-effect meta-analysis. We identified the variant rs35976024 (at 2p11.2 and intronic of 

ATOH8) associated with total homocysteine (P=4.9×10−08). We found a group of six highly 

correlated variants on chromosome 15q14 associated with cystathionine (all P<5×10−08), with the 

most significant variant rs28391580 (P=2.8×10−08). Two variants (rs139435405 and rs149119426) 

on chromosome 14q13 showed significant (P<5×10−8) associations with S-adenosylhomocysteine. 

These three biomarkers with significant associations are closely involved in homocysteine 

metabolism. Furthermore, when assessing the principal components (PCs) derived from seven 

individual biomarkers, we identified the variant rs12665366 (at 6p25.3 and intronic of EXOC2) 
associated with the first PC (P=2.3×10−08). Our data suggest that common genetic variants may 

play an important role in FOCM, particularly in homocysteine metabolism.
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Introduction

Folate one-carbon metabolism (FOCM) is a metabolic process in which folate activates and 

transfers one carbon units to support a wide range of biological processes including 

nucleotide synthesis and methylation reactions (Ducker & Rabinowitz, 2017). Due to the 

essential role of FOCM in maintaining genome function and integrity, it is biologically 

plausible that folate and associated one-carbon metabolites may play an important role in 

cancer development, in particular for colorectal cancer (CRC). Indeed, the role between 

these biological reactions and carcinogenesis has been defined in vitro, in vivo 
(Giovannucci, 2002; Kim, 2003; Mason & Choi, 2000), and even in silico (Nijhout, Reed, 

Budu, & Ulrich, 2004; Reed, Nijhout, Sparks, & Ulrich, 2004; Ulrich et al., 2008). 

Epidemiological studies have also shown dietary folates are associated with decreased 

colorectal neoplasia risk (Giovannucci, 2002; Kennedy et al., 2011). Although supporting 

evidence from both experimental and observational studies makes folate and one-carbon 

metabolic cycle a good target to probe as a biomarker in CRC development, the exact role 

that folate plays is complicated with evidence of a dual role in colorectal carcinogenesis-

protection prior to development of neoplastic lesions but promotion of growth after tumor 

development) (Kim, 2003). Furthermore, Mason et al. documented a significant trend toward 

increasing CRC incidence in the US and Canada coinciding with the fortification of grain 

products with folic acid (Mason et al., 2007). Moreover, some recent human studies, 

including randomized clinical trials, suggest risks for colon, breast or prostate cancers may 

be increased in those taking high doses of folic acid from supplements (Charles, Ness, 

Campbell, Davey Smith, & Hall, 2004; Cole et al., 2007; Figueiredo et al., 2009; Hirsch et 

al., 2009; Stolzenberg-Solomon et al., 2006) in the context of a folic acid fortified diet. 

Notably, a randomized clinical trial of colorectal adenoma suggested the risk of recurrent 

advanced colorectal adenoma or multiple adenomas increased with excessive levels of folate 

(Rees et al., 2017). Several other trials reported no such effect (Logan, Grainge, Shepherd, 

Armitage, & Muir, 2008; Song et al., 2012; Wu et al., 2009), although they had shorter 

follow-up periods.
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The ability to combine genomics and metabolism data is a powerful tool to quantify and 

identify potential mechanisms within the biological system in question (Fiehn, 2002; 

Nicholson, Lindon, & Holmes, 1999). It has been extensively used in biomarker discovery to 

facilitate disease diagnosis (Madsen, Lundstedt, & Trygg, 2010) and mechanistic dissection 

of disease pathophysiology (Li et al., 2008). Targeted metabolomics is commonly 

considered to facilitate the accurate measure of selected endogenous metabolites in the 

biological samples. With the emergence of liquid chromatography mass spectrometry 

(LCMS)-based metabolomics, it is possible to profile and even quantify the analytes found 

in a particular pathway. In this study, we combined genome-wide genotype data with 

targeted metabolomics to profile the baseline relationships in the FOCM pathway among 

individuals disease-free of CRC. The goal of this study is to improve our understanding of 

the genetic contribution to the FOCM pathway in order to better elucidate its role in 

colorectal carcinogenesis.

Materials and Methods

Study participants.

The study population consisted of disease-free controls (i.e. individuals without CRC) 

enrolled in the Colon Cancer Family Registry (CCFR) (Newcomb et al., 2007). The CCFR is 

an international consortium of six study centers, including Sinai Health System (Ontario), 

Fred Hutchinson Cancer Research Center (FHCRC), Mayo Clinic, University of Hawaii 

(UHI, not included in this study), University of Southern California/Cedars-Sinai Medical 

Center (USC/CSMC) consortium, and the University of Melbourne (Australia). Details of 

the study design have been reported previously (Newcomb et al., 2007). Briefly, CCFR 

Phase I (1998–2002) focused on recruitment of CRC cases identified from population-based 

cancer registries and/or clinical centers. Disease-free controls were either age-and sex-

matched population-based (Australia, FHCRC, Ontario), CRC case spouses (Mayo) or 

same-generation (sibling or cousin) family-based (USC/CSMC) consortium participants. 

CCFR Phase II (2002–2007) focused on recruitment of either CRC cases diagnosed under 

50 years of age or clinically identified multi-case families. CCFR Phase II controls were 

age-and sex-matched from the general population (FHCRC) or case spouses (Mayo) and had 

no personal history of CRC. The study population had previously participated in a previous 

genome-wide association study (GWAS) of CRC (Schmit et al., 2018; Schumacher et al., 

2015). All controls self-reported as non-Hispanic White. From the available controls with 

genotyping data, a total of 1,788 disease-free controls were included in the measurement of 

plasma FOCM and contributed to the analysis. Participants provided written informed 

consent, and the Institutional Review Boards at each center approved the study.

Genotyping and imputation.

Details of sample collection, genotyping, quality control (QC) and imputation have been 

reported elsewhere (Schmit et al., 2018). In brief, genotype data was generated from 

germline DNA on the Affymetrix Axiom, Illumina 1M/1M-Duo, Omni1 and OncoArray. 

Standard QC filters were applied to the high-density genotype array data at both the 

individual participant and SNP levels. Quality-controlled genotype data was imputed to the 

1,000 Genomes Project (1KGP) Phase 1 multiethnic reference panel (March 2012 release, 
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N=1,092) using SHAPE-IT/IMPUTE2 (Affymetrix Axiom; Illumina 1M/1M-Duo, and 

Omni1) (Eyre et al., 2012; Howie, Donnelly, & Marchini, 2009) or the 1KGP Phase 3 

reference panel (Illumina OncoArray) (Amos et al., 2017). Imputation quality (info score> 

0.3) and minor allele frequency filters (MAF ≥ 1%) were imposed on variants prior to the 

analysis phase. Approximately 44.4% (N=794) of the participants were run on Illumina 

1M/1M-Duo while 12.1% (N=217) were on Illumina OncoArray; Affymetrix Axiom and 

Illumina Omni1 contributed similar proportions (20.5% (N=366) and 23.0% (N=411), 

respectively).

Biomarker measurement.

Blood samples were collected from participants at study entry to quantify circulating FOCM 

biomarkers (N=12), including folate (5-methyltetrahydrofolate), vitamin B2 (flavin 

mononucleotide and riboflavin), vitamin B6 (4-Pyridoxic acid, pyridoxal and 

pyridoxamine), total homocysteine (tHCY), methionine (MET), S-adenosylmethionine 

(SAM), S-adenosylhomocysteine (SAH), cystathionine (CYSTA), and creatinine. Detailed 

information regarding biomarker measurement, including QC is included in Supplementary 

Materials. We used internal standardization with controls to remove any batch effect.

Statistical analysis.

SNPs with allele frequency < 5% were excluded from the analysis. We only considered a 

SNP if it was identified in at least three arrays. Principal components (PCs) were calculated 

with EIGENSTRAT 6.1.4 (version) (Price et al., 2006) and used for ancestral adjustment in 

analyses. The percentage of samples returning below detection limit (BDL) measurements 

varied across the biomarkers (0.1%-47%). For biomarkers with a BDL <10%, including 

creatinine, MET, tHCY, SAH, SAM and CYSTA, we excluded samples with levels falling 

below the detection limit. We performed a sensitivity analysis replacing all the values falling 

below the detection limit with the minimal detectable values and results remained similar for 

biomarkers with a BDL <10% (data not shown). Biomarkers with BDL <10% were analyzed 

as continuous to achieve optimal power. Biomarkers with a BDL >10%, including FMN, 5-

MTHF, pyridoxamine, pyridoxal, 4-pyridoxic acid and riboflavin, were dichotomized as 

high vs. low using median values as cutoffs. Due to skewed distributions, all the biomarkers 

were log-transformed except creatinine. Because the ratio of SAM to SAH is considered to 

reflect methylation potential, including histone methylation (Mentch et al., 2015), we also 

evaluated the ratio of SAM to SAH in this study. Furthermore, three additional ratios that are 

involved in FOCM, including the ratios of SAH to tHCY, tHCY to MET, and tHCY to 

CYSTA (Pacana et al., 2015; Stabler et al., 2013; Yi et al., 2000) were also assessed. The 

four ratios were dichotomized by median values.

As there is the potential for differential coverage and imputation quality by array, we first 

estimated genotype array-specific associations followed by a fixed-effect meta-analysis of 

the four arrays. Associations between imputed genetic dosage and plasma biomarkers were 

performed for each individual biomarker. Linear (for biomarkers treated as continuous) or 

logistic (for biomarkers treated as binary) regression models, adjusting for age, sex, centers 

and PCs of ancestry were used to obtain array-specific association estimates (regression 

coefficients and standard errors). All the biomarkers except creatinine were further adjusted 
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for estimated Glomerular filtration rate (GFR) which was inferred from creatinine levels, 

age, sex and race using the Chronic Kidney Disease Epidemiology Collaboration equation 

(Levey et al., 2009) because GFR is associated with circulating one-carbon metabolite 

levels, particularly for tHCY (Francis, Eggers, Hostetter, & Briggs, 2004). An array-wide 

meta-analysis using fixed-effect models with inverse variance weighting was implemented in 

METAL (Willer, Li, & Abecasis, 2010).

Because the biomarkers were moderately correlated in this study (Supplementary Figure 1), 

we further evaluated biomarkers (those with BDL <15%, including creatinine, tHCY, MET, 

SAH, SAM, FMN and CYSTA) using principal component analysis (PCA) to derive patterns 

that best explained the maximal variation in these one-carbon metabolites. Since biomarker 

levels varied by study centers (Table 1 and Supplementary Table 2), for the PCA we first 

regressed each individual biomarker on variables known to be correlated with the biomarker 

levels (i.e. age, sex, current alcohol consumption status, current cigarette smoking status and 

body mass index [BMI]) in each study center and extracted the residuals from the multiple 

linear regression models. PCA was then performed on the residuals pooled from all study 

centers and principal components of the biomarkers were derived. We then evaluated the 

association between imputed genetic dosage and the biomarker principal components using 

similar analysis as we did for individual biomarker. We conducted analysis for the top four 

biomarker components accounting for approximately 70% of the variance in biomarker 

levels (20.3%, 18.5%, 15.6% and 14.7% respectively), respectively.

Finally, as there are candidate genes known to play important roles in FOCM, we selected 

24 genes (Supplementary Table 1) involved in FOCM according to prior studies (Cheng et 

al., 2015; Figueiredo, Levine, Crott, Baurley, & Haile, 2013; Levine et al., 2010; Ose et al., 

2018). We used the ANNOVAR software to characterize the SNPs with gene-based 

annotation (K. Wang, Li, & Hakonarson, 2010) and included coding exonic, intronic and 

non-coding variants (Supplementary Table 1). A total of 1,316 SNPs associated with the 24 

FOCM-related genes were identified and included in the analysis. For all the SNPs within a 

single gene, P values for SNPs were adjusted for multiple testing using Pact which takes into 

account the correlation among SNPs within a gene (Conneely & Boehnke, 2007). For a test 

within a single gene, an α-level of 0.05 after implementing Pact was used to determine 

statistical significance; across all 33 genes tested, a Bonferroni corrected α-level of 0.002 

(0.05/33) was considered as the threshold.

For the identified genome-wide significant variants, we used ANNOVAR (K. Wang et al., 

2010), HaploReg v4.1 (Ward & Kellis, 2012) and RegulomeDB (Boyle et al., 2012) to 

annotate the functional aspects of the variants. All statistical analysis was performed using R 

software (version 3.3.3).

Results

A total of 1,788 participants who had both imputed genetic data and biomarker 

measurements contributed to the analysis. We compared participants’ characteristics and 

plasma biomarker levels across the four arrays (Table 1 and Supplementary Table 2). The 

distributions of sex, BMI and current smoking status were similar across arrays while age, 
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current alcohol consumption status, a history of adenomas and study center were 

significantly different by array. For instance, participants genotyped using Illumina 1M/1M-

Duo array were older than those genotyped on the other three arrays and more likely to be 

current alcohol drinkers than those genotyped on Omni1 or OncoArray (Supplementary 

Table 2). This difference reflects study center differences – for example the Affymetrix 

Axiom included participants from all 5 participating study centers in this study while the 

OncoArray data for this investigation had participants from the Seattle center only. Plasma 

levels of all the biomarkers as well as the ratios of individual metabolites were significantly 

different across arrays, although the levels were similar between Illumina 1M/1M-Duo and 

Omni1. Small to moderate correlations were observed among seven one-carbon metabolites 

(Supplementary Figure 1). The strongest correlation was observed between SAH and MET 

(Spearman r = 0.31; P < 0.05). Plasma tHCY was significantly inversely correlated with 

MET (Spearman r = −0.25) and one of the vitamin B2 co-factors (i.e. FMN, Spearman r = 

−0.2), and positively correlated with SAM (Spearman r = 0.19).

Several genome-wide significant associations were identified with plasma tHCY, CYSTA 

and SAH in the meta-analysis of the four arrays. Variant rs35976024, located at 2p11.2 and 

intronic of ATOH8, was associated with tHCY levels: the A allele was linked to an 

approximately 10% decrease in tHCY levels (P = 4.89E-08; Table 2, Supplementary Table 3 

and Figure 1). The inverse association was found in participants tested in all four arrays with 

similar effect estimates (Pheterogeneity = 0.91). Six variants, located at Chr15, were found 

significantly associated with CYSTA levels. Variant rs28391580 was the most significant (P 
= 2.82E-08; Table 2 and Figure 1) and was highly correlated with the other 5 SNPs (r2: 0.86 

– 1.0; the highest correlation with rs28416399: r2 = 1.0). rs28391580 maps to 15q14 with 

the nearest gene TMCO5A (approximately 200kb away; Supplementary Table 3 and 

Supplementary Figure 2). In the meta-analysis, the effect estimates of all the 6 SNPs for 

plasma CYSTA were very similar (the effect allele was associated with approximately 20% 

decreased CYSTA levels). Two variants (moderately correlated in this study, r2 = 0.57), 

located at chr14, were identified as significantly associated with SAH levels in the meta-

analysis of three of the arrays except the OncoArray (SNPs excluded due to poor quality). 

The stronger association was seen with variant rs139435405, which maps to 14q13 with two 

nearest genes being PTCSC3 and MBIP (approximately 5kb and 112kb away, respectively; 

Supplementary Table 3 and Supplementary Figure 2). The effect alleles of both SNPs (i.e. T 

and C for variants rs139435405 and rs149119426, respectively) was associated with about 

26% increased SAH levels. Regional association plots for the genome-wide significant 

variants in Supplementary Figure 2 depict the meta-analysis of GWAS results in the context 

of their surrounding linkage disequilibrium (LD) structures and nearby genes. When 

assessing the four ratios (i.e. SAM to SAH, SAH to tHCY, tHCY to MET and tHCY to 

CYSTA) which were treated as high vs. low, we did not find genome-wide significant 

variants that were associated with any of the four ratios (Supplementary Figure 3).

When the seven metabolites (i.e. creatinine, MET, SAH, SAM, tHCY, CYSTA and FMN) 

were analyzed as principal components, the first PC correlated positively with all seven 

biomarkers. The strongest correlation was with tHCY (eigenvector = 0.63), followed by 

creatinine, SAM and SAH (eigenvector = 0.49, 0.38 and 0.32, respectively) (Supplementary 

Table 4). The G allele of variant rs12665366, located at 6p25.3 and intronic of EXOC2, was 
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inversely associated with PC1 (P = 2.33E-08; Table 2 and Figure 1). No significant 

heterogeneity in array-specific associations was observed except the effect estimate from the 

OncoArray was stronger (Pheterogeneity = 0.18).

We further evaluated the 1,316 SNPs in 24 genes that are known to play important roles in 

FOCM according to prior studies (Cheng et al., 2015; Levine et al., 2010; Ose et al., 2018). 

Out of the 1,316 SNPs, 39 were mapped to coding exonic variants and the rest (1,277) were 

intronic or non-coding variants (Supplementary Table 1). After taking into account multiple 

comparisons, we observed several SNPs within a single gene that were significantly (Pact < 

0.05) associated with a specific one-carbon metabolite (Table 3a and 3b). For instance, six 

SNPs of MTHFR, including one of the well-studied SNP (rs1801131, located at 1p36.3 and 

exonic of MTHFR), were associated with plasma tHCY levels. The A allele of variant 

rs1801131 was associated with approximately 7% increased tHCY levels in the meta-

analysis and similar positive associations were observed across the four arrays.

Finally, since several SNPs have been found significantly associated with circulating HCY, 

vitamin B12 and vitamin B6 levels in prior GWA studies (Hazra et al., 2009; Hazra et al., 

2008; Tanaka et al., 2009), we assessed those variants in this study. We were only able to 

assess prior identified SNPs for plasma tHCY because vitamin B12 was not evaluated in our 

study and different metabolites of vitamin B6 were assessed in our study compared to 

previous ones (Hazra et al., 2009; Tanaka et al., 2009). However, we did not observe 

significant associations between previously identified SNPs and plasma tHCY levels 

(Supplementary Table 5).

Discussion

Genetic factors have long been hypothesized to influence circulating levels of folate and 

associated metabolites (Hustad et al., 2007; Nilsson, Read, Berg, & Johansson, 2009; Siva et 

al., 2007; Thuesen et al., 2010), however, only a few studies conducted genome-wide 

assessment of the genetic determinants of biomarkers involved in FOCM (Hazra et al., 2009; 

Hazra et al., 2008; Tanaka et al., 2009). Furthermore, none of the prior studies evaluated 

genetic determinants for metabolites other than B vitamins involved in FOCM, including 

MET, CYSTA and SAM. Circulating concentrations of several those metabolites, such as 

MET, have been found to be associated with CRC risk, individually (Myte et al., 2016) or 

together with folate levels (Nitter et al., 2014). Thus, we performed a GWAS to identify 

common genetic variants that influence plasma levels of 12 FOCM biomarkers among 1,788 

unaffected (free of cancer) participants. We identified variant rs35976024 (located at 2p11.2 

and intronic of ATOH8), 6 variants on chromosome 15q14 and 2 variants on chromosome 

14q13 which demonstrated significant (P < 5 × 10−8) associations with tHCY, CYSTA and 

SAH, respectively. Additionally, when assessing principal components derived from 7 

individual metabolites, we found that variant rs12665366 (located at 6p25.3 and intronic of 

EXOC2) was significantly associated with the first principal component, a component 

characterized with a strong positive correlation with plasma tHCY and moderate correlation 

with SAM, SAH, CYSTA and creatinine.
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The locus (rs35976024) which was found to be significantly associated with plasma tHCY is 

located at chromosome 2 (2p11.2) and intronic of ATOH8. The variant rs35976024 overlaps 

with an enhancer (i.e. H3K4me1) detected in colon tissue and is likely to affect transcription 

factor binding site and result in the binding motif changes (Supplementary Table 3). ATOH8 
basic-helix-loop-helix transcription factor involved in embryogenesis (B. Wang, 

Balakrishnan-Renuka, Napirei, Theiss, & Brand-Saberi, 2015) and the development of 

multiple tissues (Fang et al., 2014; Guttsches et al., 2015; Inoue et al., 2001; Lynn, Sanchez, 

Gomis, German, & Gasa, 2008). It has been reported to be associated with tumor 

progression in several types of cancer, including CRC (Ye et al., 2017). ATOH8 expression 

measured by immunohistochemistry in CRC tumor tissue was significantly higher than that 

in tumor-adjacent normal tissue and was associated with a worse overall survival (Ye et al., 

2017). Copy number amplification of ATOH8 was found in glioblastoma tissue (Freire et al., 

2008). On the other hand, ATOH8 mRNA expression was found substantially lower in tumor 

tissue than in tumor-adjacent normal tissue in other types of cancer, including hepatocellular 

carcinoma (Song et al., 2015) and Nasopharyngeal carcinoma (Z. Wang et al., 2016). In 

addition, the decreased expression of ATOH8 in hepatocellular carcinoma was associated 

with a significant reduction in disease-free survival (Song et al., 2015). However, despite the 

apparent role of the ATOH8 gene in tumor progression, whether it is involved in FOCM 

remains largely unknown. Variants identified for plasma CYSTA or SAH are intergenic. A 

group (N=6) of highly correlated SNPs at chromosome 15 (15q14) were found to be 

associated with circulating CYSTA levels. Although it is likely that this specific region may 

influence CYSTA levels, the functional analysis of this region is largely unknown. These 6 

variants appeared not to influence regulatory elements, such as enhancer or promoter 

elements, although some of them may lead to binding motif changes (Supplementary Table 

3). The nearest gene to the 6 variants is TMCO5A which is approximately 200kb upstream 

of them. For plasma SAH, although the strongest SNP (rs139435405) is also intergenic, it is 

located approximately 5kb downstream of PTCSC3 which is a thyroid-specific long non-

coding RNA. PTCSC3 is substantially down-regulated in papillary thyroid carcinoma (PTC) 

and appears to act as a tumor suppressor gene (Fan et al., 2013; Jendrzejewski et al., 2012). 

Despite no apparent association between folate status and thyroid cancer, the C677T 

polymorphism in MTHFR gene (rs1801133), a known SNP that affects folate metabolism, 

has been reported to be associated with thyroid cancer risk (Vu-Phan & Koenig, 2014). 

However, this variant rs139435405 does not appear to alter regulatory elements 

(Supplementary Table 3).

Given the correlation between metabolites involved in FOCM, we assessed 7 markers (i.e. 

those with BDL <15%, including creatinine, tHCY, MET, SAH, SAM, FMN and CYSTA) 

using PCA to derive patterns that best capture the maximal variation in these metabolites. 

We identified a SNP rs12665366, located at chromosome 6 (6p25.3) and intronic of EXOC2, 
that was significantly associated with the first PC. However, no evidence has shown that the 

variant rs12665366 may substantially affect regulatory elements (e.g. enhancer or promoter; 

Supplementary Table 3). The first PC accounts approximately 20.3% variation of the 7 

metabolites and was positively correlated most strongly with tHCY. A SNP rs1540771, 

located at the same 6p25.3 region and lying between IRF4 and EXOC2, was identified in 

prior GWAS to be significantly associated with the presence of freckles in Europeans 
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(Sulem et al., 2007), but it is not correlated with rs12665366 (r2 < 0.01; ~76kb away from 

it). Furthermore, another intronic variant in EXOC2 (rs9328342) which was approximately 

192kb away from, but again not correlated with rs12665366 (r2 < 0.01), has been reported to 

be associated with serum 25-hydroxyvitamin D levels (Saternus et al., 2015). Therefore, if 

the association of rs12665366 with biomarkers of FOCM, particularly tHCY, is replicated in 

future studies, it suggests that 6p25.3 region may be biologically-relevant to metabolism of 

multiple nutrients.

Of the 12 one-carbon metabolites assessed individually or using principal component 

analysis, we identified genome-wide significant variants that are associated with plasma 

tHCY, CYSTA or SAH. Results from our study suggest that genetic factors may play an 

important role in HCY metabolism. HCY is metabolized through two major pathways: re-

methylation and transsulfuration (Selhub, 1999). In re-methylation, HCY acquires a methyl 

group from 5-MTHF and vitamin B12 folate to form MET. Alternatively, it acquires the 

methyl group from betaine to form MET, independent of vitamin B12. In transsulfuration, 

HCY condenses with serine to irreversibly form CYSTA, which requires pyridoxal-5’-

phosphate (the active form of vitamin B6). A substantial proportion of MET is activated to 

form SAM, the universal methyl group carrier. SAH which is generated by demethylation of 

SAM is then hydrolyzed to form HCY, which becomes available for a new cycle of methyl 

group transfer. In addition, changes in MET levels can lead to changes in SAM/SAH ratio 

(Mentch et al., 2015) that has a profound impact on methylation reactions. HCY which is 

not re-methylated to MET or transsulfurated to CYSTA is quickly exported to circulation. 

Thus, our findings generally support that genetic variants may influence pathways related to 

HCY metabolism. Furthermore, our results are consistent with findings of relatively high 

heritability of circulating levels of tHCY in previous studies. Heritability calculated from 

utilizing monozygotic (MZ) and dizygotic (DZ) twins is estimated to be more than 50% for 

circulating folate (Nilsson et al., 2009) and approximately 60% for circulating tHCY 

(Nilsson et al., 2009; Siva et al., 2007). Previous studies focusing on key genes involved in 

FOCM found a variant in MTHFR (i.e. C677T, rs1801133) to be associated with circulating 

folate and tHCY levels (Hustad et al., 2007; Thuesen et al., 2010). Thus, if replicated in 

future studies, our results provide new insights in the genetic influence on folate-mediated 

metabolism, particularly HCY metabolism. This is interesting given that high tHCY levels 

have been reported to be associated with CRC risk (Miller et al., 2013).

A major strength of this study is the genome-wide assessment of genetic determinants not 

only for B vitamins (i.e. folate, vitamin B2, vitamin B6) but also other components involved 

in FOCM, while previous studies focused mostly on B vitamins. Another major strength is 

the use of a single laboratory for the measurement of all the biomarkers despite participants 

in this study being recruited from multiple sites. Furthermore, we (Louie and Asante) have 

developed a validated and more sensitive and precise assay to quantify blood B vitamins. 

This validated multi-analyte LC-MS method can simultaneously measure the endogenous 

plasma levels of metabolites involved in FOCM (Asante et al., 2018). However, our study 

also has several limitations. A major limitation is the lack of validation of the identified 

GWAS SNPs in our studies. However, to our best knowledge, there seem no existing studies 

which conducted GWA analysis on biomarkers involved in one-carbon metabolism in 

addition to B vitamins. Another limitation was that participants were genotyped on 4 
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different arrays with a very small number of overlapping SNPs (N=26,797). However, we 

conducted a rigorous QC on genotyped SNPs and thus were able to generate accurately 

imputed SNP data. Furthermore, although this is a large study for the measurement of 

biomarkers, the sample size is small for a GWAS, possibly contributing to the lack of 

variants identified to have associations with plasma B vitamins. Other limitations include 

lack of racial/ethnic diversity (i.e. European ancestry only) in the study population and lack 

of information on dietary folic and methionine intake. FOCM-related dietary intake may 

modify the association of FOCM-related genetic variants with colon cancer risk (Liu et al., 

2013); however, we were not able to perform the G-E interaction tests in this study (e.g. 

assess whether dietary folic and/or methionine intake may modify the SNP -FOCM 

biomarker association). This may be warranted further investigation in future larger-scale 

studies with information on FOCM-related dietary intake.

In conclusion, in this genome-wide association analysis of biomarkers involved in FOCM, 

some of which were assessed for the first time to our knowledge, we identified several 

genetic variants or regions which are associated with circulating tHCY, SAH and CYSTA. 

As these biomarkers are specifically involved in the pathway of HCY metabolism, if 

replicated in future studies, results from our study provides support that common gene 

variants may play an important role in FOCM, particularly HCY.
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Figure 1. 
Meta-analysis of three or more arrays for circulating folate one-carbon metabolites. 

Manhattan plots for a) total Homocysteine, b) Cystathionine and c) S-adenosylhomocysteine 

and d) biomarker PC1.
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