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Abstract: Lubricants such as engine oil play an important role in preventing machine wear and
damage. Monitoring the deterioration of lubricating oils is a significant technical issue in machine
maintenance. In this study, a sensor for monitoring engine oil viscosity was developed using
a metal-core piezoelectric fiber/aluminum composite. This composite is a piezoelectric ceramic
that is reinforced by a metal matrix; it is expected to be utilized in harsh environments such as
the inside of an engine. An active type measurement method was employed to monitor variations
in the viscosity of glycerin solution as a model liquid. In this method, a self-generated vibration is
correlated to the viscosity of a liquid by measuring the damped vibration amplitude and the variation
in the resonance frequency. The results showed that the vibration had a high sensitivity to the liquid
viscosity; further, it was observed that the shift in resonance frequency correlated to a wider
range of measurable viscosity. Both measured parameters indicate that the metal-core piezoelectric
fiber/aluminum composite is a viable sensor for engine oil monitoring.

Keywords: viscosity; smart materials; piezoelectric composite; metal matrix composite; active sensor

1. Introduction

In recent years, the requirement for engine oil performance has increased with the improved
performance of engines and better operating conditions [1,2]. Engine oil protects the engine from any
energy losses due to the friction generated from parts in the engine, heat generation, and friction on
the contact surface [3,4]. In terms of operating conditions, engine oil differs significantly from industrial
lubricating oil because it is strongly influenced by external contaminants [5]. Engine oil is used under
high temperature and high pressure in an environment contaminated by sludge; this environment
comprises of carbon as an incomplete combustion product of the engine oil itself, and fuel gas,
as well as debris, entering from gaps of the air filter and the part under friction. It is considered that
the deterioration of oil is promoted by the mixing of these sludge components. Oxidation naturally
occurs with usage, and the temperature of the oil subsequently increases. When the oil loses its
ability to detoxify the contaminants and prevent its own deterioration, an oil change is required.
This quality and the time when the engine oil should be changed is difficult to judge, except via general
inspection [6] of the engine oil. This is because engine oil deteriorates according to the different wear
resistances of engine parts owing to their difference in structure or material. Therefore, it is difficult
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to judge that engine oil has deteriorated under the same engine oil and same operating conditions [7].
These factors hinder the prediction of engine oil degradation and render its detection more difficult
and complex.

Various methods have been developed to rapidly analyze and detect the deterioration of lubricating
oils such as engine oils on site in recent years. For example, oil degradation was evaluated by measuring
the relative dielectric constant of oil. This degradation increases with the disappearance of molecularly
broken additives in the oil [8–10]; further, it increases within the passing rate or absorption rate
of infrared rays [11–13] and the increase in the viscosity of the oil [14–16]. Although these methods
have merits and demerits, the engine oil measurement system should be robust and compatible with
the harsh environment of the engine; it should also be compact for easy mounting on the vehicle.
Further, these methods are compared, and it is observed that the vibration type sensor size is small,
which is advantageous in mountability.

There are two popular methods for viscosity measurement. One involves measuring the time
for which a liquid passes through a fixed capillary-type flow path to obtain the dynamic viscosity [17],
and the other involves measuring the rotational torque generated in the liquid, such as the Brookfield
type [18]. However, in recent years, the demand for measuring and managing viscosity data online
is increasing for ease and accuracy. There is also an increasing demand for measuring the viscosity
as an inherent characteristic of the liquid in the state of minimal interference with the measurement
system; this measurement is calculated without applying a large energy load such as a center of gravity
movement or rotational force on the liquid to be measured. In order to meet these requirements,
the vibrational viscosity measurement has been proposed as a new measurement method [19].

In this study, a vibration viscosity measuring sensor capable of measuring the viscosity of engine
oil was used for monitoring the deterioration of the oil using a metal-core piezoelectric fiber/aluminum
composite [20,21]. This composite embeds a metal-core piezoelectric fiber [22,23] in the aluminum
matrix. Consequently, the strength and durability of the piezoelectric ceramics are improved; moreover,
it has a high resistance to external noise, and can be used in harsh environments [24]. There are some
studies of measuring viscosity with vibrators using piezoelectric materials [25,26]. Conventionally,
it is necessary that a process is known for fabricating relatively complicatedly shaped electrodes on
the surface of piezoelectric ceramics for the purpose of using ceramics simultaneously as sensors and
actuators. However, in this composite, the electrode formation process is achieved by embedding
the fibers; thus, the electrode formation process is unnecessary. In addition, since the piezoelectric
ceramics are exposed to the measurement liquid, it is expected that these will be easily damaged
in a harsh environment. An active sensor is in development that overcomes these problems by
using a composite in which two piezoelectric fibers are embedded in aluminum. Since the two
fibers can be used independently, the sensor uses one fiber for vibrational excitation, and another
for measuring the value of the vibration depending on the viscosity of the liquid, such as the amplitude,
the resonance frequency. Using this method, it is possible to monitor oil viscosity of an engine in situ.
A glycerin aqueous solution was used as the viscosity measurement liquid in this study. This is because
the maximum and minimum viscosities defined by the current engine oil standard SAE-J300 [27] can be
achieved by changing the concentration of glycerin [28] such that each grade of oil will not be required.

2. Materials and Methods

2.1. Viscosity Sensor Fabrication

Figure 1 shows the schematic of the fabrication procedure of the viscosity sensor. First, 0.2 mm
and 0.8 mm thick aluminum plates and 0.01 mm thick copper foil were cut to a length of 30 mm and
width of 30 mm. This was followed by sanding with #600 water-resistant abrasive paper to remove
the oxide film and cause degreasing by acetone. The copper foil is stacked on the top of the 0.8 mm
thick aluminum plate. Two U-grooves with a pitch of 1 mm were formed by pressing stainless
steel wires (SUS304, diameter: 0.25 mm) to the copper foil and aluminum plate with a pressure
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of 98 MPa under holding time of 0.18 ks. The metal-core piezoelectric fibers (Outer diameter:
0.2 mm. core diameter: 0.05 mm, length: 35 mm, properties are shown in Table 1 [29]) were arranged
in the formed U-groove, an aluminum plate of thickness 0.2 mm was stacked on them. Subsequently,
the piezoelectric fibers were embedded in the aluminum plate by hot pressing at a temperature
of 873 K, pressure of 2.2 MPa, holding time of 2.4 ks, and degree of vacuum of 0.1 kPa. By using
copper as the insert material, eutectic reaction between copper and aluminum occurs during hot
pressing; only the fiber periphery becomes the liquid phase. The resulting liquid phase reduces
the pressure on the piezoelectric ceramics during the process and prevents the piezoelectric ceramics
from being fractured. Subsequently, as the diffusion of copper in aluminum progresses, the liquid phase
is isothermally solidified; further, the composite of the piezoelectric fiber in aluminum disappears.
This method is called interphase forming/bonding (IF/B) method, and it is a method developed
for compounding fragile functional materials in metal [30].
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Figure 1. Schematic of fabrication procedure of viscosity sensor. It is possible to embed a piezoelectric
fiber in aluminum without damage by interphase forming/bonding method.

Table 1. Properties of metal-core piezoelectric fiber [29].

Young’s
Modulus/GPa Density/g·cm−3 Electromechanical

Coupling Coefficient, Kp

Piezoelectric
Constant, d33/pm·V−1

Curie
Temperature/K

30–50 7.7 0.68 480 558

After hot pressing, the specimen was processed using a wire discharge machine and polished
to the shape shown in Figure 2. The platinum wires were exposed by removing the piezoelectric ceramic
layer from the fiber that protruded from the end of the specimen. Subsequently, the exposed platinum
wire and copper foil were attached to each other by silver paste (DOTITE 510, Fujikura Kasei Co., Ltd.,
Tokyo, Japan), and electrodes were coated with an epoxy resin (# 16051, Konishi Co., Ltd., Osaka-shi, Japan).
Each fiber was poled by applying a DC voltage of 300 V for 1.8 ks between the electrode and aluminum
matrix by a high-voltage power supply (A100603, Kepco, Inc., New York City, NY, USA.
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Figure 2. Schematic of fabricated sensor, (a) general appearance and (b) cross-section of sensor part.
The fiber is eccentric with respect to the cross section and bending vibration of the cantilever occurs
due to the expansion and contraction of the fiber.

Figure 3 shows the appearance of the prepared sensor. This sensor is designed to generate bending
vibrations when the fiber is expanded or contracted by offsetting the fiber 0.1 mm from the center
in the thickness direction.

Materials 2019, 12, x FOR PEER REVIEW 4 of 13 

 

 
Figure 2. Schematic of fabricated sensor, (a) general appearance and (b) cross-section of sensor part. 
The fiber is eccentric with respect to the cross section and bending vibration of the cantilever occurs 
due to the expansion and contraction of the fiber. 

Figure 3 shows the appearance of the prepared sensor. This sensor is designed to generate 
bending vibrations when the fiber is expanded or contracted by offsetting the fiber 0.1 mm from the 
center in the thickness direction. 

 
Figure 3. Photograph of fabricated sensor and jig. The sensor is fixed to the brass jig. 

2.2. Vibration Characterization of the Sensor 

Using the piezoelectric fiber at the center of the sensor as the actuator and the other as the 
detector, it was confirmed that the specimen functions as an actuator as well as a sensor. Figure 4 
shows the test system. The sensor was fixed by the jig and vibrated by the piezoelectric fiber at the 
center of the sensor by using a function generator (WF1944, NF Corp., Yokohama-shi, Japan) and a 
power amplifier (HSA4051, NF Corp., Yokohama-shi, Japan). The output voltage generated from the 
other piezoelectric fiber was measured using an oscilloscope (DL1740, Yokogawa Electric 
Corporation, Musashino-shi, Japan). The displacement of the sensor under the driving voltage 
measured using a laser displacement meter (LC-2450, Keyence Corp., Osaka-shi, Japan) was 
positioned 1 mm from the tip of the sensor. The voltage applied to the piezoelectric fiber placed at 
the center was 15 V at a range of 810 to 830 Hz in the air. 

4

30

25
(s

en
so

r p
ar

t)

4

0.
65

11

a) General appearance b) Cross section of sensor part

(in mm)

Epoxy resin

Electrode
Electric wire
(to drive actuator)

Electric wire
(to obtain sensor signal)

Actuator fiber
Sensor fiber

Hole to fix jig
(φ 2.5)

0.
5

Figure 3. Photograph of fabricated sensor and jig. The sensor is fixed to the brass jig.

2.2. Vibration Characterization of the Sensor

Using the piezoelectric fiber at the center of the sensor as the actuator and the other as the detector,
it was confirmed that the specimen functions as an actuator as well as a sensor. Figure 4 shows the test
system. The sensor was fixed by the jig and vibrated by the piezoelectric fiber at the center of the
sensor by using a function generator (WF1944, NF Corp., Yokohama-shi, Japan) and a power amplifier
(HSA4051, NF Corp., Yokohama-shi, Japan). The output voltage generated from the other piezoelectric
fiber was measured using an oscilloscope (DL1740, Yokogawa Electric Corporation, Musashino-shi,
Japan). The displacement of the sensor under the driving voltage measured using a laser displacement
meter (LC-2450, Keyence Corp., Osaka-shi, Japan) was positioned 1 mm from the tip of the sensor.
The voltage applied to the piezoelectric fiber placed at the center was 15 V at a range of 810 to 830 Hz
in the air.
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Figure 4. Schematic of test system to evaluate the vibration characteristics of the sensor in the air.
The vibration characteristics were evaluated by measuring the displacement at point of 1 mm from
the tip of the cantilever.

2.3. Active Viscosity Measurement

First, active viscosity measurement was conducted using two embedded piezoelectric fibers.
The fiber placed at the center of the sensor vibrated the sensor, while the other generated the output
voltage. Using this method, the viscosity can be measured via the relationship between the resonance
frequency or maximum output voltage of the sensor and viscosity.

The vibration of the sensor at this time is a damped forced vibration, because it occurs in the liquid.
The equation of motion is as follows [31],

m
..
x + c

.
x + kx = F sin

f
2π

t (1)

where, m is the mass, c is the damping coefficient, k is the elastic constant, F is the amplitude of the
applied force, f is the frequency, and t is the time. The damped resonance frequency f d is given by
Equation (2) [31] and the amplitude ratio M is given by Equation (3) [31].

fd =
1

2π

√
k
m

√
1− 2ζ2 (2)

M =
1√(

1− ( f / fn)
2
)2
+ 4ζ2( f / fn)

2
(3)

Here,

fn =
1

2π

√
k
m

(4)

ζ =
c

2
√

mk
(5)

when considering the viscous drag, the drag consists of two components; one is viscous resistance
inherent to the vibration system, the other is the viscous drag that the sensor receives from
the liquid [32]. Therefore,

c = Rm + A
√
π fρµ (6)

where, A is the sensor area, ρ is the density of liquid and µ is the viscosity of liquid.
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Substituting Equation (6) into Equations (2) and (3), the resonance frequency and amplitude ratio
are as follows.

fd =
1

2π

√
k
m

√
1−

(
Rm + A

√
π fρµ

)2

2mk
(7)

M =
1√(

1− ( f / fn)
2
)2
+

(
Rm+A

√
π fρµ

)2

mk ( f / fn)
2

(8)

Thus, the physical quantity that can be measured in this method is the “static viscosity”, which is
the product of density ρ and viscosity µ. In addition, the driving frequency is equal to the resonance
frequency fd (f = fd) because the value at resonance is used in the measurement of the active measurement;
therefore, Equation (8) becomes,

M =
1

2ζ
√

1− ζ2
=

1

Rm+A
√
π fdρµ

√
mk

√
1−

(
Rm+A

√
π fdρµ

)2

2mk

(9)

It is evident that the resonance frequency and amplitude ratio as described depend on the static
viscosity, and it would be possible to measure the static viscosity by determining these parameters.
It is noteworthy that the measurable range is limited to critical damping or less.

The test system is shown in Figure 5. The sample was fixed such that a 20 mm part from the tip
was immersed in the aqueous solution.
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Figure 5. Schematic of active style viscosity measurement system. The effect of changes in static
viscosity on resonance frequency and output voltage was evaluated using this system.

The drive-side piezoelectric fiber placed in the center was connected to the function generator
through the power amplifier. The applied voltage was maintained constant at 10.2 V, and the frequency
was changed continuously from 350 Hz to 550 Hz to produce vibrations in the sensor.

At that juncture, the output voltage of the piezoelectric fiber on the detection side was measured
by a lock-in amplifier. The frequency at which the output voltage was the highest was considered
the resonance frequency, and its relationship with the viscosity of the aqueous solution was determined.

Pure water and an aqueous solution of glycerin were used as model solutions for viscosity
measurement. The relationship between the concentration and static viscosity of an aqueous glycerol
solution is shown in Figure 6 [28], in which the concentration of the aqueous glycerol solution D
to be measured was adjusted to 30%, 40%, 50%, 60%, 70%, 80%, and 85%. The static viscosity at
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these concentrations was used as a model solution to meet the minimum and maximum values
(minimum: less than 0.95 Pa·s·g·cm−3, maximum: 51 Pa·s·g·cm−3) of engine oil standard SAE-J300 [27].
The static viscosity of glycerin aqueous solution is 0.01 (D = 0, pure water) to about 93 Pa·s·g/cm3

(D = 85%); this range is in accordance with the viscosity range of engine oil that specified by the standard.
The standard SAE-J300 specifies kinematic viscosity and viscosity of each grade of oils, therefore,
the static viscosity is calculated from these values and their densities [33].
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Figure 6. Effect of glycerin concentration of glycerin solution on the static viscosity [28]. Viscosity of
several grades of engine oil can be reproduced by changing the concentration.

After the viscosity measurement, cross-sectional observation was performed to evaluate
the microstructure of the sensor material. In the observation, the center of the cantilever part of the
sensor was cut in the direction perpendicular to the piezoelectric fiber; the observation was performed
with a scanning electron microscope (SEM).

3. Results and Discussion

3.1. Evaluation of Vibration Characteristics of the Sensor

Figure 7a,b show the influence of the driving frequency on the displacement of the sample and
the output voltage.
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The output voltage generated by the sensor is maximum at 64.6 mV when the frequency is
819.1 Hz, and the displacement of the sample is maximum at 4.6 m when the frequency is 819.2 Hz;
both frequencies are in good agreement.

Therefore, it is understood that there is a correlation between the displacement of the sensor due
to the vibration generated by one of the composited fibers and the output voltage generated from
the other fiber. This result is based on the fact that the output voltage obtained from the metal-core
piezoelectric fiber is proportional to the given strain, as clarified in the previous studies [20,24],
thus, this sensor can measure the strain owing its vibration. Here, as the sensor is cantilever-shaped,
the first-order resonance frequency can be obtained by the following equation [31],

fn =
1

2π

(1.875
l

)2
√

EI
ρcAc

(10)

where l is the length of the cantilever, E is Young’s modulus, I is the moment of inertia of area, ρc is
the density of cantilever material, and Ac is the area of cross-section of the cantilever. Substituting each
value for the fabricated sensor showed as Table 2 into Equation (10), it was found that the resonance
frequency at free vibration of the sensor in the air is 828 Hz. This value is very close to the frequency
of 819 Hz when the maximum voltage occurs in the experiment. Thus, it is clear that this frequency
is the primary resonance frequency in the air of this sensor, and the resonance of this sensor can
be measured by measuring the output voltage generated from this sensor. Hence, it was possible
to identify the frequency.

Table 2. Composite dimension and physical properties to calculate resonance frequency.

Length, l/m Width, b/m Thickness, h/m Young’s Modulus, E/GPa Density, ρc/g·cm−3

0.0256 0.004 0.00065 69 2.7

3.2. Viscosity Measurement by Active Sensor Style

From the output voltage measurements of the sensor for the glycerin aqueous solutions
of various viscosities, the resonance frequency was confirmed in the same manner as discussed
above. Figure 8 shows the results of the active viscosity measurement when the concentration
of aqueous glycerin solution was varied from 0% to 85%.
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of glycerin solution D from 0% to 85%. As the concentration increases, the peak height decreases and
the width increases.
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From the figure, it can be observed that the output voltage obtained from this sensor decreases as
the concentration of the solution to be measured increases. Further, it can be seen that the frequency
for the maximum output voltage is generated shifts at the same time. It is also clear that the critical
attenuation has not been reached because a clear peak is seen for the frequency.

Figure 9 shows the relationship between the static viscosity of the aqueous solution of glycerin
and resonance frequency and the maximum output voltage of the sensor. From the figure, it can be seen
that the resonant frequency and maximum output voltage of the sensor decrease and monotonically
decrease as the static viscosity of the solution increases. The amount of change is larger in the low
static viscosity region and decreases as the static viscosity increases. Comparison of the two results
shows that the change in resonant frequency is small (Resonance frequency change: 516 Hz to 445 Hz,
13.7% change, output voltage change: 0.36 mV to 0.075 mV, 79.2% change).
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Figure 9. Effect of static viscosity on (a) resonance frequency and (b) maximum output voltage by
measuring active style. In the high viscosity region, the change in output voltage becomes gradual.

This relationship is clear when comparing Equations (2) and (3). This is because the term
that the static viscosity effects in Equation (2) is

√
1− ζ2, where in Equation (3) it is 1/2ζ

√
1− ζ2.

Figure 10 shows the effect of the frequency ratio f /fn on amplitude ratio based on Equation (3),
and Figure 11 shows the effect of the damping factor ζ on the resonance frequency ratio fd/fn and
amplitude ratio at resonance Mr from the results shown in Figure 10.
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Figure 10. Effect of frequency ratio on amplitude ratio based on Equation (3). (The amplitude ratio diverges
infinitely when ζ= 0). As the damping factor increases, the resonance frequency and amplitude decrease.
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Figure 11. Effect of damping factor on amplitude ratio at resonance and resonance frequency ratio fd/fn
based on Equation (3). The amplitude ratio decreases rapidly with increasing damping factor (ζ < 0.05)
and does not change much thereafter. On the other hand, the change of the resonance frequency
gradually decreases as the damping factor increases.

From these figures, it can be seen that in amplitude measurements using Equation (3), the changes
are extremely sensitive when ζ is small; i.e., the sensitivity is high. In the measurement within the region
where the ζ is large, i.e., in the high-viscosity region, the amplitude ratio hardly changes; this indicates
that the measurement by output voltage is not suitable for the high-viscosity region. Conversely,
the change in resonance frequency is mild, which indicates that it is suitable for the measurement
in a wide viscosity range. Moreover, in Equation (6), the mechanical attenuation component that
is unique to the sensor and the area of the sensor vibration of both the surfaces affect the damping
coefficient; therefore, it is expected that the sensitivity can be changed by designing the sensor shape
to change these value. In addition, it is important to improve the piezoelectric performance of this
composite in order to improve the sensitivity as a viscosity measurement sensor. This is because
the improvement of the piezoelectric performance provides a larger vibration amplitude and signal level.
The microstructure improvement of this composite is effective for improving piezoelectric performance.

Figure 12 shows the image of the microstructure of the sensor observed by SEM. It can be seen
that the two fibers can be embedded in the aluminum matrix without cracking. However, the voids
and the retention of eutectic alloy that formed by the IF/B method were confirmed, and the previous
study has shown that void and eutectic alloy residue reduce the piezoelectric performance of the
composite [34].
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Figure 12. Backscattered electron composition image of cross section of cantilever part of fabricated
viscosity sensor. Eutectic alloys and voids cause the sensitivity of the sensor to decrease [34].
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This is because there is no contact between the matrix and the piezoelectric ceramic at the place
where the void is present, so no stress is generated in the piezoelectric ceramic at that portion,
and the output is reduced as a result. Even in the case of the eutectic alloy remain, the eutectic alloy
has a high Young’s modulus (the eutectic alloy is a mixture of α phase which is the solid solution
of aluminum and CuAl2 that has Young’s modulus 110 GPa [35]); therefore, stress transfer between
matrix and piezoelectric ceramics Is inhibited, and the output decreases.

Thus, viscosity measurement with this sensor is possible at any resonance frequency and maximum
output voltage. It was, therefore, suggested that using the resonance frequency might be suitable
for measuring a wide range of static viscosity, and high accuracy measurement is possible in the low
static viscosity range using the maximum output voltage. In addition, viscosity measurement using
the change of resonance frequency can be measured even by natural vibration excited by external
energy. Examples include the impact that occurs when the vehicle drives, thus, it should be expected
to be applied to passive viscosity measurement.

4. Conclusions

The following findings were obtained from the investigation of the viscosity sensor
for engine oil using metal-core piezoelectric fiber/aluminum composite and evaluation of viscosity
measurement characteristics.

(1) The sensor device fabricated in this study can monitor the vibration generated by the drive
side fiber with the detection side fiber, and the sensor’s resonant frequency can be identified by
the maximum value of the output voltage.

(2) The resonance frequency and maximum output voltage of this sensor monotonously decrease
with increasing viscosity of the glycerin solution; thus, this device can be used as a viscosity sensor.
Moreover, it was found from the analysis of the equation of motion that the method using the shift
of resonance frequency is suitable for the measurement in the high viscosity region and that using
the change in output voltage is suitable for the measurement in the low viscosity region.

(3) The sensor sensitivity depends on the area and microstructure of the sensor; therefore,
it is suggested that the sensitivity can be improved by optimizing these parameters.

Author Contributions: Conceptualization, T.Y., H.S., K.M. and H.A.; Data curation, T.Y. and H.S.; Formal analysis,
T.Y.; Investigation, T.Y., H.S. and H.A.; Methodology, T.Y. and H.S.; Project administration, H.A.; Supervision, I.K.,
K.M. and H.A.; Validation, H.S.; Writing—Original draft, T.Y.; Writing—Review & editing, I.K., K.M. and H.A.

Funding: This research was funded by JSPS KAKENHI Grant-in-Aid for Scientific Research (B) (Grant No. 17H03141).
The APC was funded by Kogakuin University.

Acknowledgments: The authors thank Tomohiro Suzuki for his technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stone, A. From ILSAC GF-5 to GF-6: Bridging the Gap. Fuels Lubes Int. 2017, 23, 22–25.
2. Van Rensselar, J. PC-11 and GF-6: New engines drive change in oil specs. Tribol. Lubr. Technol. 2013, 69, 30.
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