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Abstract: Bioceramics have frequent use in functional restoration of hard tissues to improve human
well-being. Additive manufacturing (AM) also known as 3D printing is an innovative material
processing technique extensively applied to produce bioceramic parts or scaffolds in a layered
perspicacious manner. Moreover, the applications of additive manufacturing in bioceramics have the
capability to reliably fabricate the commercialized scaffolds tailored for practical clinical applications,
and the potential to survive in the new era of effective hard tissue fabrication. The similarity of the
materials with human bone histomorphometry makes them conducive to use in hard tissue engineering
scheme. The key objective of this manuscript is to explore the applications of bioceramics-based AM
in bone tissue engineering. Furthermore, the article comprehensively and categorically summarizes
some novel bioceramics based AM techniques for the restoration of bones. At prior stages of this
article, different ceramics processing AM techniques have been categorized, subsequently, processing
of frequently used materials for bone implants and complexities associated with these materials have
been elaborated. At the end, some novel applications of bioceramics in orthopedic implants and
some future directions are also highlighted to explore it further. This review article will help the new
researchers to understand the basic mechanism and current challenges in neophyte techniques and
the applications of bioceramics in the orthopedic prosthesis.
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1. Introduction

Additive manufacturing or 3D printing has got attention in scaffold design and manufacturing
for tissue engineering applications. Initially, this technique was developed by Sachs et al., to create the
ink-jet freestyle printing towards the latter part of the 20th century [1]. Later on, it was extended in
tailoring the perfect scaffolds on its user-friendly capabilities, which considered the transformation of
computer aided design (CAD) information to a rapid and reliable production line of constructs with
the coveted material, porosity, and measurements [2,3]. Moreover, it showed a time and cost-efficient
potential coupled with interconnected structures, specifically hard tissue deformity regeneration.

Recently, clinical preliminaries and contextual analyses revealed its resounding accomplishments
in the field of orthopedic bioengineering. While this procedure has shown significant potential, specific
difficulties tend to enhance patient-particular scaffolds for standard acknowledgment in regenerative
medicine [4–6].

During the past few decades, many advanced biomaterials were introduced in the biomedical
field including different ceramic materials for the skeletal repair and reconstruction. These materials
in the field of medical implants are often referred to as “bioceramics” [7]. Bioceramics are peculiar
in nature due to their exceptional biological and osteoinduction properties. These materials are
specific for scaffolds due to capability to create propagation, self-adhesion, distinction and bone
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tissues regeneration [8]. Furthermore, excellent chemical and mechanical properties such as better
osteoconductivity, superior wear resistant and biocompatibility enabled them as a substitute for bone
restoration, [9,10]. It can anticipate that bioceramics have a future due to increasing bone replacement
operation per year due to increasing aging population [11].

The clinical importance of AM ceramic scaffold design and implantation envelops an invaluable
method for quick and reliable production of hard tissue substitution replica of the biological context of
natural bone [12]. In view of the way that customized scaffold can be prepared that suits an individual
patient’s skeletal imperfection, layer-by-layer sintering is regarded as a lucrative discipline for the
utilization of ceramic-based bone substitutes in regenerative medicine [13]. Besides, utilizing AM
ceramic scaffolds as medication conveyance systems, it is becoming more attractive and relevant to the
bioengineering environment [14–16].

This article is divided into six sections; Section 1 details the bioceramics potential, Section 2 offers
an overview of the AM techniques used to fabricate ceramic parts. Section 3 presents achievements
in the production of hydroxyapatite (HA); Section 4 depicts about tricalcium phosphate (TCP) and
Section 5 describes about bioactive glass (BG) using different AM techniques. Section 6 concludes some
important findings with some current challenges and future opportunities in this field.

2. Additive Manufacturing Technologies to Produce Ceramic Parts

Additive manufacturing has been classified into two major classes such as acellular and cellular
techniques for biomaterials. The cellular category includes the printing of live cells, while the acellular
category does not consider any type of live cells in printing. Figure 1 shows different acellular AM
techniques for biomaterials that have been classified as per recommendations of American Society for
Testing of Materials (ASTM) [17]. The major AM techniques employed in the processing of bioceramics
have been discussed in the following section.
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2.1. Binder Jetting

Binder jetting technique was developed in the early 1990s at Massachusetts Institute of Technology
(MIT) [18]. Figure 2 depicts the schematic of binder jetting. In this technique, the binder is selectively
used from powder bed to create 3D objects. Binder jetting is a valuable technique for printing powder
materials [19,20]. The particle size of the powder has a key influence on powder flowability in
binder jetting.
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Figure 2. Schematic diagram of binder jetting mechanism [18].

For dry binder jetting, large size particles are preferred due to its outstanding flowability and
less surface area. The powder size not only affects the flowability but also significantly affects the
quality of the final product. Numerous researchers have reported less surface roughness using fine
powder in the binder jetting. The effect of the powder shape is less, as compared to the powder size.
However, spherical shape powders have better flowability and lesser friction compared to faceted
powders [21–23].

2.2. Direct Energy Deposition (DED)

Direct energy deposition-based AM techniques uses energy into a small region to simultaneously
deposit, melt and solidify the material such as wire or powder [24]. The direct energy source can be
electrical, or laser beam can be used to melt the metal, ceramics or composite materials. Laser assisted
Direct Deposition techniques such as laser cladding, laser engineered net shaping (LENS™), and laser
melt injection are common examples of this technique.

In ceramic Direct Energy Deposition (DED), the printing head of the apparatus contains a nozzle
that feeds ceramic powder particles to the focal point of the laser beam. The ceramic powder melts and
solidifies in layer-wise fashion on a substrate [25]. Figure 3 is the schematic illustration of LENS [26].

The major advantages of DED are better compatibility with a wide range of biomaterial viscosities,
higher resolution and greater cell density that provide higher control of cell-to-cell adhesions [27].
Besides these advantages, DED has many challenges such as, low speed, cost, high complexity and
limited capability to manufacture heterogeneous tissue parts [28]. Due to these challenges, the usage
of DED is very limited as compared to other AM techniques particularly in bone tissue engineering.
The DED technology needs more research to enhance its productivity.
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2.3. Material Extrusion and Jetting

Extrusion assisted additive manufacturing deposits a continuous layer by layer deposition of
ceramic loaded paste to create 3D objects. Various terms are used to refer to this technology for instance,
Fused Deposition of Ceramics (FDC), Robocasting, Extrusion Freeform Fabrication (EFF), Direct Ink
Writing (DIW), Slurry Deposition, and Dispense Plotting [29].

In Fused Deposition, dense ceramic particles (up to 60 vol%) are spread into a wax or thermoplastic
filament after which the flexible filament is partly melted and extruded from a moving deposition
head onto a fixed worktable layer-by-layer. However, in robocasting, ceramic slurry is ejected from a
precise nozzle to form a filament that is directly deposited in a designed pattern to create complex 3D
objects in a layer-by-layer fashion [30].

In another research work, an indirect Fused Deposition Modeling (FDM) method was applied
to prepare ceramic parts. At the preliminary stage, FDM was used to prepare a honeycomb shaped
polymer structural mold. Secondly, the ceramic slurry was permeated into the polymer mold-sintering
to remove the mold. The porous ceramics made a correct pore size and porosity through this
technique [31].

Another technique named Extrusion-based bioprinting has also a greater potential in perspective
of deposition and printing speed compared to other AM techniques. This technique is also beneficial to
achieve better scalability in a shorter time [32], wide range flexibility of bioinks selection [33]. This is
because developing new bioinks is a critical procedure for quick, sustainable and safe delivery of
cells in a biomimetic microenvironment [32]. Besides many advantages, some complexities are also
associated with this technology such as low resolution and shear stress effect on cells. The schematic of
the process with part microstructure was shown in Figure 4.

The material jetting techniques are the “AM processes in which droplets of build material are
selectively deposited” [17], that can be used to manufacture different kinds of ceramic parts. Inkjet
3D printing technology was among the first material jetting AM techniques that were employed for
additive manufacturing of ceramic parts. It was developed by Sachs et al. in 1992 at MIT and defined
as a process for the manufacturing of ceramic casting cores and shells using inkjet 3D printing [1].
Figure 5 shows the Schematic of ink-jet 3D printing [34].
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2.4. Powder Bed Fusion

Powder bed fusion (PBF) technologies are among pioneer commercially used AM techniques
created by the University of Texas USA. Selective laser sintering (SLS) based PBF technique [18], which
melts the ceramic powder by laser energy source. The laser sintered the powder nearly to the melting



Materials 2019, 12, 3361 6 of 26

point of the material to make each layer according to the given 3D design. The laser beam scans each
new single layer of free-packed powder particles and consolidates them by sintering this process
and proceeds in a layer-wise fashion to complete the final 3D object [35–37]. SLS is a powder bed
fusion process have numerous applications in the bioengineering field such as to prepare customized
products, biomedical implants as well as orthopedic implants [38]. The major disadvantage of SLS is
the usage of higher temperatures that limits the insertion of biomaterial and cells into SLS scaffolds
during the manufacturing process [39]. A schematic diagram illustrates the underlying operating
system [40] of the powder bed fusion provided in Figure 6. While SLS technology is amended, the PBF
method to increase machine efficiency.Materials 2019, 12, x FOR PEER REVIEW 7 of 29 
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2.5. Vat Polymerization (SLA)

Vat Polymerization also known as stereolithography (SLA) is a promising AM technique to fabricate
tissue scaffolds in the field of regenerative medicine. The SLA technique has exceptional control
over porosity of scaffolds, pore sizes, design flexibility, and interconnectivity [41]. Despite excellent
advantages, numerous researchers have highlighted several challenges in scaffold manufacturing such
as, difficult in creating micron-sized scaffold due to over curing and layer thickness. In addition, some
of the frequently used biomaterials in bone tissue engineering have shown compatibility with SLA due
to limitations in viscosity, refractive index and stability [42].

Some other problems such as some SLA processes light pixels restrict in-plane microstructure
construction. Although indirect SLA have overcome this problem, it is a costly, time and material
consuming process [43]. Li et al. have used indirect stereolithography to manufacture microporous
β-TCP. The resin molds were prepared through this technique and filled with filled with aqueous
thermosetting ceramic suspension for ceramic gel casting. The heat treatment process was used to
remove the molds. Results have concluded that TCP scaffolds after sintering have shown desired
porosity, shape and higher strength were obtained [44].

Some other researchers have mentioned preparation of 3D objects by photo-curing a liquid resin
through ultraviolet (UV) laser in a layerwise fashion [45,46]. The major advantage of this process
includes better surface finish and accuracy [47]. A schematic of three different light sources used in
stereolithography provided in Figure 7 [18]. Table 1 summarizing some basic bioprinting techniques
for bone tissue engineering.
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Table 1. Summary of major 3D-bioprinting techniques for bone tissue engineering.

Technique Principle Advantages Drawbacks

Inkjet

A liquid binding
material is selectively

deposited in layer-wise
fashion into the powder

bed to create three
dimensional objects.

Ability to print
biomaterials with low

viscosity, high resolution,
fast manufacturing

speed, low cast

Intrinsic inability to
deliver a continuous

flow, low cell densities,
lack of functionality for

vertical objects

Extrusion

This process involves
extruding the material in
viscous form to create 3D

objects

Capability to print
variety of biomaterials,

Capable of printing high
cell densities

Applicable to viscous
liquids only

Laser-assisted

In this technique, a laser
beam stimulates a

specified area of target to
fabricate 3D objects

High resolution, capable
of printing both solid

and liquid phase
biomaterials

High cost, low speed,
high complexity, thermal

damage due laser
irritation

Stereolithography (SLA)

In this method an
ultraviolet (UV) laser

beam selectively hardens
the photo-polymer resin
to construct 3D models

in layer-wise fashion

Nozzle free method, high
cell viability, high

accuracy, Printing time
independent of

complexity, high cell
viability, high accuracy

UV light can cause
toxicity to cells, during

photo curing damage to
cells, Applicable to

photopolymers only
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3. Additive Manufacturing of Bioceramics

In the last few decades, bioceramics have frequently been used in the restoration and replacements
of injured tissues due to numerous advantages such as precise chemical composition, which has a
vital role in the integration of hard and soft tissues [48,49]. Hydroxyapatite (HA) Ca10(PO4) 6(OH)2 is
one bioceramic to have frequently been employed as a scaffold material for bone tissue engineering
owing to its exceptional biocompatibility and resemblance to natural bone material [50–52]. It is often
combined with a biopolymer or bioceramics to enhance binding interaction and mechanical properties
of the material during the AM process [53,54].

Beta tri-calcium phosphate (β-TCP) is a suitable material for craniofacial defects owing to its
excellent biodegradability, wear resistance and chemical bonding with the bone tissues under all load
bearing conditions [55,56]. The critical challenge for β-TCP is to maintain the sintering temperature of
1100 ◦C. Above this temperature, beta tri-calcium phosphate (β-TCP) transforms to alpha tri-calcium
phosphate (α-TCP) that is soluble and chemically unstable, as compared to β-TCP [57,58].

In addition, bioglasses are also extensively used in hard tissue implants due to their excellent
bonding capability with hard and soft both tissues. Bioglasess are also extremely helpful in upregulating
the osteogenesis, however, their application in load bearing bone defects are very limited due to their
high brittleness, low fracture toughness and mechanical strength [59–61]. Properties of some frequently
used ceramic material for bone tissue engineering illustrated in Table 2.

Table 2. A brief review of ceramic materials and its properties used in 3D printing of Scaffolds.

Materials Precursors Properties

Hydroxyapatite (HA)
Poly (acrylic acid), photo-curable

resin, polycaprolactone, poly
(lactic acid) etc.

Higher biocompatibility,
differentiation and proliferation, better

cell adhesion

Tricalcium Phosphate (TCP)
Hydroxypropyl methylcellulose,

polyethylenimine,
polymethacrylate, etc.

In physiological environment better
biocompatibility and degradation,

lower compressive strength

Bioactive glasses alkali-free
bioactive glass, 45S5 BG,13-93

bioactive glass, 6P53B glass

Polycaprolactone, methylcellulose,
poly (lactic acid)

Improved bioactivity in vitro and
in vivo for the bone tissue growth

The key factor affecting the performance of bioceramics is Ca to P ratio that affects the dissolution
property. Calcium phosphates with lower Ca to P ratio (β-TCP) have higher solubility and acidic
nature as compared to calcium-phosphate having high Ca to P ratio (HA) [62]. Table 3 shows that
lower the Ca/P ratio higher the CaP dissolution [63]. Different bioceramics have been discussed in the
following section such as hydroxyapatite, beta tri-calcium phosphate (β-TCP) and bioactive glass (BG)
using different AM techniques. Figure 8 [64] shows complete process of bone tissue engineering.

Table 3. Characteristics of main CaPs used as bone substitutes and cements [63].

Name Formula Ca/P Ratio Water Solubility at 25 ◦C, g/L

Monocalcium Phosphate
Monohydrate (MCPM) Ca(H2PO4)2, H2O 0.50 ∼18

Anhydrous (MCPA) Ca(H2PO4)2 ∼17

Dicalcium phosphate
Dihydrate (DCPD) CaHPO4, H2O 1.00 ∼0.088
Anhydrous (DCPA) CaHP4 ∼0.048

Tricalcium Phosphate
Alpha α-TCP (α) Ca3(PO4)2 1.50 ∼0.0025
Beta β-TCP (β) Ca3(PO4)2 ∼0.0005

Hydroxyapatite (HA) Ca5(PO4)3OH 1.67 ∼0.0003
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3.1. Hydroxyapatite (HA)

Hydroxyapatite (HA) portrayed as Ca10(PO4) 6(OH)2, encompasses almost 65% of the entire bone
mass. It is less toxic and more stable, as compared to other calcium-phosphate due to their desirable
Ca to P ratio of 1.67. The hydroxyapatite has major inorganic part of human bone and teeth to develop
the properties and novel applications of bioceramics for hard tissue replacements [65–68]. Numerous
researchers have reported HA scaffolds in the bone and teeth transplants [69–77].

Laser Stereolithography has been identified as one of the most effective and frequently used
AM techniques to produce complex HA parts. Barry et al. have prepared HA-based oligocarbonate
dimethacrylate (OCM-2) composite scaffolds using helium-cadmium (HeCd) based laser technology.
The outcomes referred the laser-based HA scaffolds provided fortified cell attachment inside the
scaffold. Through laser machining, toxic leftovers were removed effectively through supercritical
carbon dioxide (scCO2) to make scaffolds biocompatible. The HA based composite materials treated
by scCO2 showed better attachment of cells in both vivo and vitro studies [78]. In a very recent
study, a bio-ink was prepared for 3D printing by dispersing two different types of hydroxyapatites,
nano hydroxyapatite (nHA) and deproteinized bovine bone (DBB) into collagen. Thereby, a porous
structure was created by 3D printing. The chemical and physical properties of the materials, including
biocompatibility and effect on the osteogenic differentiation of the human bone marrow-derived
mesenchyme stem cells (hBMSCs) were investigated. Both nHA/CoL and DBB/CoL Bio-inks were used
to print biomimic 3D scaffolds effectively. The outcomes from this study showed that the two types
of hydroxyapatite composites which help hBMSCs proliferation and differentiation proved to be a
promising candidate for a 3D scaffold bio-ink [79].

Woeszn et al. fabricated microporous HA scaffolds having a pore size of 450 µm through
stereolithography coupled with ceramic gelcating. A photosensitive liquid resin filled with water
based thermosetting slurry was used in the mold. The mold resin and sintering were burnt to achieve
the desired features. The final Scaffolds were seeded on MC3T3-E1 cells for 14 days under deep
penetration of cells to achieve outstanding osteogenesis as shown in Figure 9 [80].
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optimum sintering temperature. The hydroxyapatite slurry was prepared by mixing 40–50 vol.% of 
HA powder in distilled water, 1.5 wt% of Darvan C dispersant, ( ~ 7 mg/mL of solution) 
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Figure 9. (a) Computer aided design (CAD) designed virtual structure of casting mold; (b) Resin
casting molds manufactured by stereolithography and sintered hydroxyapatite (HA) structures; (c) SEM
image of HA scaffold after culturing with MC3T3-E1 cells for 2 weeks, scaffold is visible in (dark grey)
and cells (blue); (d) SEM image of strut of HA scaffold (grey), entirely attached with cells (blue/pink);
(e) SEM image of microstructure of a crack between two struts, which was totally covered by MC3T3
cells (blue) and matrix created by the cells(pink); (f) SEM images of collagen produced by the cells (the
microtome sectioning eliminates the mineral scaffold) [80].

The AM based extrusion process is also very common to manufacture HA scaffolds. The robocasting
based extrusion process contains ceramic ink in the form of water-based viscous slurry deposited on a
robotic nozzle in layer-wise fashion based on computer-aided design. The process contains high loading
of HA particles to minimize the cracks and distortion during sintering. Saiz et al. have fabricated
HA scaffolds with controlled pore sizes through robocasting extrusion to find the optimum sintering
temperature. The hydroxyapatite slurry was prepared by mixing 40–50 vol.% of HA powder in distilled
water, 1.5 wt% of Darvan C dispersant, (∼7 mg/mL of solution) hydroxypropyl methylcellulose, an
adequate amoqunt of polyethyleneimine (PEI) and at the end HNO3 or HN4OH to balance the pH
level of the slurry. Results concluded that porous HA scaffolds manufactured with robocasting showed
the sintering temperature should remain between 1100 ◦C∼1200 ◦C and no phase change was observed
for firing 1300 ◦C for 3 h. The characteristics of printed scaffolds through this technique have been
presented in Figure 10 [81].

Keriquel et al. have successfully printed the nano-HA scaffold in the mouse calvaria defect
model in vivo using laser-assisted additive manufacturing. The printed cells showed the existence of
vivacious blood vessels after bone defect treatment. The outcomes of this study demonstrated that
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laser-assisted bioprinting have perfectly treated bone defects. Through literature numerous authors
have mentioned potential of this technology could offer new perspectives to additive manufacturing
for the practical applications of bone tissue engineering [82].Materials 2019, 12, x FOR PEER REVIEW 12 of 29 
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3.2. Tricalcium Phosphate (TCP)

Since the last two decades, beta tri-calcium phosphate (β-TCP) ceramic-based scaffolds
have clinically accepted the bone graft replacement materials in several orthopedic and dental
applications [83–89]. The TCP contains α, α′ and β′ phases and Ca to P ratio is about 1.5. Cao et al.
manufactured sphingosine 1-phosphate (S1P) coated β-TCP scaffold. Immunoregulation capability
was tested on macrophages and rat bone marrow stromal cells of the coated scaffold was used to test
osteogenic capability. The scaffold exhibit improved osteogenesis, better cell compatibility and also
helpful to regulate the immune response as compared to traditionally manufactured scaffold. Figure 11
is the representation of 3D printed scaffold and its cell viability [90].

Bian et al. introduced a novel stereolithographic method to produce osteochondral beta-tricalcium
phosphate/collagen scaffold. This bio-inspired scaffold manufactured by a combination of ceramic
stereolithography (CSL) and gel casting using (β-TCP) and type-I collagen. Histological examination
was performed to investigate the morphological properties between cartilage and bone. The obtained
information from this examination were used to design biomimetic biphasic scaffolds. The pores size
of β-TCP scaffolds varied between 700–900 µm with 50–65% porosity and compressive strength of
12 MPa. Physical locking formed by biomimetic transitional structure was used to achieve an adequate
binding force among cartilage phase and a ceramic phase. The results concluded that CSL performed
well in comparison with traditional techniques to get an ideal scaffold for bone tissue engineering
applications [91].
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mechanical properties of 3D printed β-TCP scaffold in a rat distal-femur for the period of 4, 8 and 12 
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Figure 11. (a–c) Illustrates the schematic of 3D printed scaffold. (d) showing that there is no noticeable
difference on viability of bone marrow-derived mesenchyme stem cells (BMSC) cells on additively
manufactured scaffolds coated with S1P among the control group (S1P 0 mM) and other groups after
3 days. (e) S1P 0 mM group, (f) S1P 0.05 mM group, (g) S1P 0.5 mM group. Dyed blue area representing
the cell nuclei and green area showing cytoskeletons. Edge of filaments showed by dotted lines [90].

In a recent study, Bose et al. have investigated the effect of Fe3+ and Si4+ dopants on the
bio-mechanical properties of 3D printed β-TCP scaffold in a rat distal-femur for the period of 4, 8 and
12 weeks. The scaffold was fabricated by binder jetting technique using synthesized β-TCP powder.
The outcomes from this analysis demonstrated that the addition of Fe3+ to TCP scaffold speed up the
early stage bone restoration boosting type I collagen production. Si4+ doped TCP scaffold showed
neovascularization after 12 weeks as shown in Figure 12. The finding from this study proved that
ceramic powder-based scaffolds with improved chemistry has a promising future in bone defect
restoration [92]. Tarafder et al. manufactured β-TCP scaffolds with 27%, 35% and 41% designed
macroporosity with pore sizes of 500 µm, 75 µm and 1000 µm, respectively by 3D printing method.
After that the scaffolds were sintered at the temperature of 1150 ◦C to 1200 ◦C in conventional and
microwave furnaces to achieve mechanical strength. Microwave sintering heated scaffolds showed
higher mechanical strength, as compared to conventional sintering.
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Figure 12. (a) Osteoid formation in pure and doped tricalcium phosphate (TCP) scaffolds after Modified
Masson-Goldner trichrome staining after 4, 8, and 12 weeks. Black: prosthesis, orange and red:
osteoid, bluish green: mineralized bone. Reddish-orange colors indicated by arrows showing new
bone formation. Fe doping showed more bone mineralization as compared to others. (b) Histomorphic
analysis showed Fe-Si doped TCP boosted initial stage osteoid formation for the period of 8 weeks and
Fe doped TCP shows better mineralization of bone for 12 weeks of implantation [92].
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The pore size was examined by Human osteoblast cells. This study showed that a decline in
pore size from 1000 to 750 and 500 µm has increased the cell density. Histomorphology tests in
femoral defects of Sprague-Dawley rats revealed that the existence of both micro and macro pores
accelerated the new bone construction. It was concluded that additive manufactured TCP scaffolds
have outstanding potential in hard tissue engineering applications [93].

3.3. Bioactive Glass (BG)

Bioactive glasses (BG) are the type of bioceramics that exist in both nonporous and solid forms.
The bio glass contains silicon dioxide, sodium oxide, calcium oxide and phosphorous. Different types
of bioglass have been created by varying the vol.% of these components [94]. Silicate part plays have
an essential role in the biocompatibility of bioactive glasses. The bio glass with 45–52 vol.% silicate has
ideal bone-graft bonding [95]. The 45S5-bioglass is a well-known commercially available extensively
used in bone replacement [96]. However, bioglasses have also some limitations due to poor mechanical
properties and brittleness that makes them unsuitable for load-bearing applications, internally brittle
and deficient mechanical strength. However, several researchers have reported different additives,
such as metal, polymer and ceramic to enhance the mechanical properties [97–101].

Recently, Nommeots-Nomn et al. robocasted bioglass scaffolds with a 150 µm interconnected pore
size (41–43% porosity) and measured compressive strengths were 32–48 MPa. The network connectivity
(NC) of these scaffolds is like the 45S5 bioglass. In this process, ICIE16 and PSrBG compositions were
used comprising < 50 mol% SiO2 to maintain the amorphous structure and to achieve the required NC
closer to 45S5 bioglass. The manufactured scaffolds were compared with 13–93 vol.% composition
bioglass. The comparison highlighted that 3D porous scaffolds have similar NC values with 45S5
bioglass using two low silica contents. In addition, Pluronic F-127 binder could be accepted as a
universal binder for bioactive glasses regardless of their composition and reactivity. Results also
showed that ICIE16 and PSrBG based scaffolds are highly reactive and significantly enhanced the bone
regeneration speed [102].

Padilla et al. used calcined bioglass suspension to fabricate porous scaffolds through integrating the
stereolithography and gel-casting method. A polymeric negative mold was used via stereolithography
to cast bioglass suspension with Darvan-811 (sodium polyacrylate) as a dispersant. The slurry
containing 50 vol% was heated at 1100 ◦C for 55 s and later it was polymerized. The negative mold was
removed by heat treatment. The scaffolds containing interconnected 3D channels of 400–470 µm length
and 1.4 µm of pore diameter. The results illustrated that the entire interconnected porous scaffold was
created by this method [103].

Westhauser et al. inspected the osteo-inductive properties of different polymer coated 3D-45S5
bioglass scaffolds. These scaffolds are seeded with human mesenchymal stem cells (hMSC) implanted
into immunodeficient mice. The gelatin, cross-linked gelatin, and poly (3-hydroxybutyrate-co-3-
hydroxyvalerate) type coatings were used. histomorphometry and micro-computed topography
analysis were performed to evaluate the new formation after eight weeks of implantation. Although,
every bioglass scaffolds showed noticeable bone regeneration. However, gelatin-coated bioglass
scaffolds showed highest cell formation in comparison with other coated-bioglasses, as shown in
Figure 13 [104]. Some latest researches on 3D printing of bioceramics have been compiled in Table 4.
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Table 4. Overview of 3D printed bioceramics for bone tissue engineering.

Material Process In Vivo/In Vitro Model Key Findings Ref.

HA + liquid sodium
polyacrylate +
photopolymer

A ball crusher was used to
milled all the materials for 12
h to make a slurry with solid
content of 10~60 wt%. The

ceramic scaffold was
fabricated by using digital

light processing (DLP)
technique

Mouse osteoblast precursor
cells (MC3T3.E1) were

cultured in the condition of
α-MEM (10% fetal bovine

serum 4%
penicillin-streptomycin)

3D printed scaffold
showed better

biocompatibility,
adhesion, differentiation
and also able to promote
osteoblast proliferation

[105]

Biphasic calcium
phosphate (HA/β-TCP =

60:40) + HMPC+
polyethylenimine +

ZrO2

Extruded at pressure of 600
kPa with printing speed of
100 mm/min. Constructs
were sintered at 1100 ◦C

Investigated on osteoblast
like sarcoma cells for
cytotoxicity and for

differentiation potential of
the scaffolds hMSCs cells

were used

Better mechanical
properties of scaffolds at
10% (w/w) of ZrO2 was

observed with improved
BMP-2 expression.

[106]

β−TCP/polycaprolactone

β-TCP powder with 550 nm
particle size were used to
fabricate 350 µm pore size

cylindrical scaffolds.

Composite scaffolds were
tested using human fetal

osteoblast cells (hFOB) for 3,
7 and 11 days of incubation

period

Enhanced early bone
formation and effective

for controlled
alendronate release

[107]

β−TCP/sphingosine
1-phosphate (SIP)

The scaffolds were printed in
four layers and in different

sizes to fit in 6-well and
12-well plates. Printed

scaffolds were sintered at
1100 ◦C for 3 h.

Immunoregulation capability
was investigated on

macrophages and the
osteogenic capability was
tested on rat bone marrow
stromal cells of the coated

scaffolds.

Good biocompatibility,
improved bone

regeneration process
[90]

Bioactive glass/alginate

Composite scaffolds of type
13-93 bioactive glass (13-93
BG) and sodium alginate
(SA) were prepared with

mass ratio of 0:4, 1:4, 2:4 and
4:4 under mild conditions for

bone regeneration.

The apatite mineralization
abilities of the 13-93 BG/SA

scaffolds were tested by
soaking scaffolds in

simulated body fluid (SBF),
using 200 mL g−1 of scaffold
mass, at 37 ◦C for 0 and 10

days.

Improved porosity and
reduced shrinkage ratios [108]

Bioglass
(BG)/gelatin/cross

linked-gelatin/ploy
(3-hydroxybutyrate-co-

3-hydroxyvalerate)

Three different types of
3D-polymer coated BG

(45S5-type) scaffolds were
fabricated by the

well-established foam replica
method and coated with the

biopolymers.

Osteo-inductive properties of
3D-45S5 bioglass scaffolds

were investigated by seeding
human mesenchymal stem

cells (hMSC) implanted into
immunodeficient mice for

the period of 8 weeks.

Under standard
conditions biopolymer

coated 3D 45S5 BG
scaffolds have ability to
induce bone formation.

Gelation coated scaffolds
showed the best results.

[104]
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4. Application of Bioceramics in Orthopedic Implants

Natural bone has self-repair capability after the damage. The smaller fractures heal itself correctly,
however segmental bone defects (SBDs) lead to permanent paralysis [109,110]. SBDs fractures treated
with autologous bone graft technique requires harvesting of non-vital bone, such as, the iliac crest.

However, some complexities are also associated with bone grafting such as bone availability,
the mismatch between harvested bone and affected site, morbidity of donor site results in poor
integration [111]. Over the past three decades, a variety of synthetic materials have been
introduced to overcome the complexities such as calcium phosphates (bioactive glasses) and
hybrid bioceramics-polymer materials [112–115]. Table 5 showing different materials for bone
tissue engineering.

Table 5. Additive manufacturing (AM) materials for bone prostheses.

Material Binder Layer Thickness References

TCP Aqueous based 20 µm [93]

HA - 100 µm [116]

α/β-TCP modified with 5 wt%
hydroxypropymethylcellulose Water 100 µm [117]

β-TCP, SiO2-ZnO-dope
β-TCP Water based binder

20 µm (β-TCP)
30 µm (SiO2-ZnO-doped

β-TCP)
[118]

HA α-n-butyl cyanoacrylate
(NBCA) - [119]

TCP 20% (v/v)
phosphoric acid 125 µm [120]

TTCP/β-TCP 25% citric acid 100 µm [121]

α-TCP 10 wt.% phosphoric acid 50 µm [122]

HA/Maltrodextrin Water based 175 µm [123]

HA & Maltrodextrin/
apatite-wollastonite glass Water based 100 µm [124]

Roohani-Esfahani et al. fabricated glass-ceramic scaffolds with hexagonal pore structure via
extrusion-based AM method shown in Figure 14. The fabricated scaffolds have 150 times greater
strength compared to polymeric-composite scaffolds and five times greater than ceramic-glass scaffolds
having same porosity. The study has shown that these scaffolds have excellent capability to load-bearing
and segmental bone defects treatment [125].

Fierz et al. prepared HA based cylindrical scaffolds ranging from nanometer to millimeter
with straight channels and micro-pores through n-HA granules, ink-jet 3D printing AM technique.
The structure of 3D-printed scaffolds is almost similar to human cortical and cancellous bone. The
histological analysis has confirmed that osteogenic-stimulated progenitor-based 3D-printed scaffolds
are suitable for clinical use [126].

In another study, a robocasting technique was utilized to transport bone morphogenic protein
2 (BMP-2). HA slurry and polymethylmethacrylate (PMMA) microspheres were mixed together to
achieve controlled microporosity. Resins were eliminated by sintering the scaffolds at 1300 ◦C for 2 h.
Thereafter, 10 µg of bone morphogenic protein 2 was added to the microporous scaffolds in goat bone
for in vivo characterization for 4 and 8 weeks. Outcomes from this study showed great potential for
manufacturing HA scaffolds containing interconnected porosity. Furthermore, the existence of bone
morphogenic protein 2 and micro porosity upgraded scaffold osteogenesis ability as illustrated in
Figure 15 [127].
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Figure 15. (A) Scaffold fabricated by directed deposition method. (B) The image of HA scaffold 
implantation in the metacarpal bone of goat. (C) BMP-2 and microporosity on cortical bone. (D) Image 
of BMP scaffold after 8 weeks representing the remodeling of the host bone, indicated by arrows. (E-
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staining of the microporous scaffolds at (a) low magnification and at (b) high magnification. Arrows 
indicate (1) stained and (2) unstained and (3) regions where staining extends into the scaffold [127]. 

Fielding et al. introduced (SiOଶ/ZnO) doped three-dimensional composite TCP scaffolds with a 
pore size of 300 µm using binder jetting technique. The pure and (SiOଶ/ZnO) doped 3D-printed TCP 
scaffolds implanted into a rat femur bone for the period of 6, 8 and 12 weeks to analyze the 
histomorphometry and Immunohistochemistry. Results have proved that combining Si Oଶ -ZnO 
dopants in TCP are best alternative to achieve osteoinductive properties of calcium phosphates 
(CaPs) for the clinical application of bone implants as shown in Figure 16 [118]. 

Figure 15. (A) Scaffold fabricated by directed deposition method. (B) The image of HA scaffold
implantation in the metacarpal bone of goat. (C) BMP-2 and microporosity on cortical bone. (D) Image
of BMP scaffold after 8 weeks representing the remodeling of the host bone, indicated by arrows. (E-a)
and (E-b) are the images of histological section of micro hindlimb after 4 weeks indicating the staining
of the microporous scaffolds at (a) low magnification and at (b) high magnification. Arrows indicate
(1) stained and (2) unstained and (3) regions where staining extends into the scaffold [127].
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Fielding et al. introduced (SiO2/ZnO) doped three-dimensional composite TCP scaffolds with
a pore size of 300 µm using binder jetting technique. The pure and (SiO2/ZnO) doped 3D-printed
TCP scaffolds implanted into a rat femur bone for the period of 6, 8 and 12 weeks to analyze the
histomorphometry and Immunohistochemistry. Results have proved that combining SiO2-ZnO
dopants in TCP are best alternative to achieve osteoinductive properties of calcium phosphates (CaPs)
for the clinical application of bone implants as shown in Figure 16 [118].Materials 2019, 12, x FOR PEER REVIEW 21 of 29 
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Figure 16. (a) CAD design used for 3D printing of porous scaffolds; (b) Schematic diagram illustration
of 3D printing process (binder jetting); (c) Real 3D printed scaffolds, numbers indicating the pore
size of scaffolds; (d) Staining of implant section via Goldner’s trichrome. Gray/brown color shows
CaP implants, blue is mineralized implants and osteoid formation can be seen by orange color.
Histomorphometry has done on trichrome sections (P < 0.1, where n = 3); (e) Confocal micrographs
of collagen I formation (green) over the period of 16 weeks; (f) Confocal micrographs of osteocalcin
(green). While blue color indicates counterstain for cell nuclei; (g) Light micrographs showing vWF
staining (the dark red spots) [118].

5. Challenges and Future Perspective

Despite all the achievements made in the past in 3D printing of tissue engineering, several
challenges still exist. Challenges can be divided into two major categories: (1) 3D printing of
biomaterials including live cells and (2) Post-implantation integration and functionality in vivo model.
One of the most common problems during manufacturing is nozzle clogging in nozzle-based 3D
printing techniques. To overcome nozzle clogging, printing precursor should have proper viscosity
and need to be homogenous. Another problem is that the 3D printed constructs need to be adequately
stable and mechanically stiff to ensure effective prosthesis. For instance, in hard tissue transplant, the
scaffolds elastic modulus should be high enough to sustain its designed porosity and structure to help
natural cell growth [128].

3D printed constructs for bone tissue engineering, being eventually implanted in a body, so these
constructs also need to support vascularization to deliver sufficient amount of oxygen and nutrition to
the cells in vivo to enhance the growth of newly implanted bone [129]. Vascularization plays a pivotal
role in a successful bone tissue implant. However, it remains a daunting challenge in bone tissue
engineering, particularly, in clinical application of large bone defects. Development of vascularized and



Materials 2019, 12, 3361 19 of 26

clinically applicable bone substitutes with adequate blood supply, capable of inducing angiogenesis
and sustaining implant viability remains a critical challenge. Since oxygen is only accessible to those
cells through diffusion that are 100–200 µm from blood vessels, bioprinted constructs thicker than
400 µm face oxygenation problem. Therefore, it is a critical task to provide ideal conditions to help
vascularization in implanted bone constructs. There is a need for some extensive research to completely
understand the mechanism of the biological system of bone. Thus, manufacturing a biomimetic
vascularized bone that mimics the native bone can be helpful to overcome these hurdles. Due to
the ability of bioprinters utilizing several print-heads loaded with different cell types, introducing
vasculature was made possible to a 3D printed construct [130–132].

Recently, nozzle-based 3D-printers enabled the printing of endothelial cells using multiple bioinks
for the development of thick vascularized [133,134]. Especially, digital light processing (DLP) based
3D bioprinting can offer extraordinary speed, scalability and resolution for printing complex 3D
structures with micrometer resolution [135,136]. For instance, Zhu et al. printed well-designed
vascular channels without using perfusion or sacrificial materials by utilizing a rapid microscale
continuous optical bioprinter (µCOB). In this method, glycidyl methacrylate-hyaluronic acid (GM-HA)
and GelMA-cell laden bioinks were used to create channels and channel adjacent regions. From the
outcomes of this study, researchers were able to demonstrate the progressive formation of endothelial
network and formation of the lumen-like structures in vivo/vitro model. Anastomosis between the
bioprinted endothelial network and circulation was observed with functional blood vessels featuring
red blood cells [137]. Moreover, hypoxia is also having an important role in vascularization and
bone regeneration process. Hypoxia belongs to the family of Hypoxia-Inducible Transcription Factors
(HIFs) [138]. Kuss et al. utilized short-term hypoxic conditions to endorse vascularization in a hybrid
3D printed scaffold of polycaprolactone/hydroxyapatite (PCL/HAp) and stromal vascular fraction
(SVF) derived cell laden bioink [139].

Another type of challenge is regulatory hurdles, customized 3D printing technology entails series
of difficulties in the regulatory approval field. Though, it is urgent for the managing authorities to
establish appropriate laws and regulations to ensure sustainable progress of 3D printing technology.
At present, 3D-printed scaffolds and tissues are used for evaluation and screening purposes in
animal models.

6. Conclusions

In summary, this review outlined the latest researches on development of 3D printing of bioceramics
for bone tissue engineering, current state of the art is also discussed. Extensive amount of research on
3D bioprinting over the past 10 years highlighted its wide range of applications and potentials in bone
tissue engineering. Although, plethora of goals have been accomplished in 3D printing of bioceramics,
but it is still in its emerging stage.

However, to deal with challenges such as vascularization, and printing related problems, further
research on development of bioinks, integration of different 3D bioprinting technologies, improvement
of the mechanical properties of existing bioceramics, development of composites with excellent
biocompatibility and better understanding of bonding mechanism between bone mineral and collagen
are some primary areas of concern that can help to improve the applications of 3D printing in bone
tissue engineering.

Recently, a very limited number of bio-printed products have been commercially available. Due to
the rapid expansion of this industry in the last few years, it is foreseeable that more bio-printed
constructs will ultimately become commercially available to help wide range of patients suffering
from different kind of diseases. The technical problems related to clinical requirements and materials
selection are mentioned above, multidisciplinary research will be required to tackle those problems
and to comprehensively understand the potential of bioprinting in bone tissue engineering.
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