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Abstract: These days, power consumption and energy related issues are very hot topics of research
especially for machine tooling process industries because of the strict environmental regulations and
policies. Hence, the present paper discusses the application of such an advanced machining process
i.e., ultrasonic assisted turning (UAT) process with the collaboration of nature inspired algorithms to
determine the ideal solution. The cutting speed, feed rate, depth of cut and frequency of cutting tool
were considered as input variables and the machining performance of Nimonic-90 alloy in terms of
surface roughness and power consumption has been investigated. Then, the experimentation was
conducted as per the Taguchi L9 orthogonal array and the mono as well as bi-objective optimizations
were performed with standard particle swarm and hybrid particle swarm with simplex methods
(PSO-SM). Further, the statistical analysis was performed with well-known analysis of variance
(ANOVA) test. After that, the regression equation along with selected boundary conditions was
used for creation of fitness function in the subjected algorithms. The results showed that the UAT
process was more preferable for the Nimconic-90 alloy as compared with conventional turning
process. In addition, the hybrid PSO-SM gave the best results for obtaining the minimized values of
selected responses.

Keywords: ultrasonically assisted turning; Nimonic-90; surface roughness; power consumption;
optimization; nature inspired hybrid algorithm

1. Introduction

In this growing industrial world, the trend of modern materials, especially nickel based alloys,
are prevalent in various sectors such as automobile, aerospace, marine etc. [1]. They are altogether
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expected in these manufacturing sectors because of their eminent characteristics such as high resistance
to corrosion and excellent mechanical properties etc. [2]. These characteristics, however, result in
enormous challenges in terms of high tool wear, low finishing, excessive forces etc. in machining
of advanced materials [2,3]. Furthermore, the strict environmental policies and concerns are other
challenges which must be addressed during the machining of advanced materials. For instance,
Japan has established the basic “Energy Policy” which primarily focuses on energy related issues in
manufacturing sectors. Similarly, the USA have introduced the special program on “Superior Energy
Performance (SEP)” that provides a track in the field of sustainability development for manufacturing
sectors. Likewise, the European countries have developed the ISO standards i.e., 5001 for regularization
of energy standards in manufacturing sectors [4].

In order to follow the environmental concerns and ISO 5001 standards, the new technologies
i.e., hybrid machining processes are considered as main drivers to support the working aspects
of sustainability i.e., social, economic and environmental [5,6]. In a hybrid machining process,
the material removal mechanism is totally different as compared with conventional machining
processes. For instance, in the hybrid machining process, the material is removed with the main
machining process while a secondary technique “assists” the material removal by improving the
conditions of machining. In recent years, the ultrasonic assisted turning (UAT) process has been termed
as one such hybrid process that uses ultrasonic vibrations for the cutting action [5]. In this hybrid
process, the interaction of the cutting tool and the workpiece directly takes place and the material is
removed under the action of micro chipping [6]. Furthermore, the vibrations of the tool produce some
surface texturing effect on the workpiece [7] and thereby good surface finishing, dimensional accuracy
and low tool wear are obtained during machining [8]. The efficiency of UAT has been noted by various
former researchers. Some of their works are presented here. In the first study of Maurotto et al., it has
been seen that the cutting forces produced in the UAT process are significantly less as compared with
the conventional dry turning (CT) of Ti-15333 and Ni-625 alloys [9]. In another similar work, the cutting
forces were analyzed by Ahmed et al. during machining of Inconel-718 [10]. It was found that the
cutting forces induced during CT were 130–140 N whereas; in UAT process were 60–95 N. In the same
work, Maurotto et al. showed that the tangential as well as radial cutting forces were reduced up to
70%–80% while machining of Ti-15333 and Ni-625 which was claimed to be possibly due to ultrasonic
softening in the base alloys in UAT [11]. It was also determined by the same authors that the cutting
speed is the major factor in UAT process that effects the cutting forces when compared to CT [12].
Silberschmidt et al. analyzed the surface roughness values in machining of Inconel-718 and Ti-15333.
The comparison was also made between UAT and CT process [13]. Similarly, Zhong and Lin found
that the surface roughness improves by 15% with high amplitude as compared to lower amplitude
with UAT because of the ironing effect in aluminum metal matrix composites [14]. Moreover, Nath and
Rahman [15] studied the effect of frequencies, amplitude and cutting speed on cutting forces values.
They concluded that the cutting force generated during the UAT is dependent on tool–workpiece
contact ratio (TWCR). In the same context, Vivekananda et al. [16] implemented the Taguchi design of
experiment process to optimize the cutting force and surface roughness values in the UAT process.

From the comprehensive state of art review, it has been interestingly noticed that UAT is a very
tremendous technology in the modern arena of manufacturing sectors. However, its application
is only limited to the cutting forces and tool life while machining of other nickel-based alloys i.e.,
Inconel 718, whilst surface roughness and power consumption are overlooked. Moreover, the study
of UAT of Nimonic-90 has never been performed to the best of the authors’ knowledge. Although
previous investigations have shown that UAT improves the machinability of Inconel 718 alloy, these
results cannot be directly extended to Nimonic-90 alloy. Thus, to bridge this gap, a series of UAT
experiments were conducted and the surface roughness and power consumption were investigated
and analyzed for Nimonic-90 alloy. In addition, the literature reveals that the performance of UAT
is highly dependent upon its process parameters because a large number of process parameters are
involved in the ultrasonic assisted turning process. Therefore, the best parameters settings are required
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to enhance the machining performance of the UAT process. Various types of optimization methods
i.e., conventional and advanced methods, are currently available in the literature that improve the
process efficiency by changing the input and output settings [17–19]. In the conventional methods
Taguchi, signal to noise (S/N) ratio, analysis of variance, regression, desirability analysis etc. have
been introduced to solve the optimization issues [20–22]. However, the conventional methods are
subjected to some issues, such as the lack of targeting the global optimal solution with these methods,
which may result in low accuracy and non-robustness of the results. With these limitations, they are
still used in the machining of different materials. For instance, Shokrani et al. [23] used the Taguchi
method to optimize the process parameter in cryogenic milling of Ti64 titanium alloy. Islam et al. [24]
compared the traditional and Taguchi method in terms of efficiency to analyze the surface roughness
values. Ezilarasan et al. [25] used the Taguchi method to discuss the effect of input variables on surface
roughness values while machining Nimonic C-263 alloy. Makadia and Ashvin [26] minimized the
surface roughness values in machining AISI 410 steel by using the response surface methodology (RSM)
method. Bhushan [27] optimized the parameters for minimum power consumption and improve
the tool life during machining of 7075 Al alloy SiC particle composites with the help of response
surface methodology.

Apart from these optimization methods, the various types of advanced methods such as
evolutionary algorithms, nature inspired hybrid algorithms and intelligent methods are well
implemented in literature to solve optimization problems [17–19]. The major benefits of these
advanced methods are that they accurately achieve the global optimal solution with a small interval of
time [17,28]. They are generally presented in the MATLAB code and the objective or fitness function is
required to run the program. Moreover, the single or multi-objective problems can be easily tackled
with these advanced optimization methods. Numerous studies have been available in the literature
that clearly represent the application of advanced optimization algorithms in the machining sector.
In the first study, Singh et al. used the two algorithms i.e., particle swarm and bacterial foraging
for optimization of cutting parameters in minimum quantity lubrication (MQL) assisted milling of
commercially available Inconel-718 alloy [19]. Likewise, Sahu and Andhare used the three advanced
algorithms i.e., teaching learning based optimization (TLBO), Jaya algorithm and genetic algorithm
(GA) and one conventional method (RSM) to solve the optimization problem of Ti–6Al–4V alloy [29].
They suggested that the performance of the TLBO and Jaya algorithms is better than GA. In another
optimization study, Sathish applied the hybrid bee colony cuckoo search (BCCS) and RSM approach in
non-conventional machining of Nimonic-263 alloy [30]. In similar work, Gupta et al. implemented the
particle swarm optimization (PSO) and bacterial foraging optimization (BFO) while turning titanium
(grade-2) alloy under nano-fluid cutting conditions [17]. The performance was also compared with
the traditional optimization method i.e., RSM. It has been noted that the PSO and BFO work more
efficiently than the RSM methods and significantly enhance the process performance. Furthermore,
Rao and Venkaiah used the PSO and RSM to optimize the machining parameters of Nimonic-263
alloy [2].

Thus, as per the availability of current research survey, it has been clearly noted that the machining
performance of any material is highly improved with the implementation of advanced algorithms.
For instance, Sahu and Andhare, Sathish, Singh et al. and Gupta et al also presented similar findings
in machining of Inconel, titanium and Nimonic-based alloys [15,16,26,27]. Still, with all these hard
efforts, no research work is available in the literature which shows the application of advanced
algorithms in ultrasonic assisted turning of Nimonic-90 alloy for power optimization. Therefore,
this research work firstly reported the application of nature inspired hybrid algorithm i.e., particle
swarm optimization (PSO) method hybridized with the simplex method (SM) during ultrasonic
assisted turning of Nimonic-90 alloy. The input parameters considered were cutting speed, feed
rate, depth-of-cut and frequency of the cutting tool used. A Taguchi L9 orthogonal array with three
repetitions were used as an experimental design and the power consumption and surface roughness
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values were optimized with these implemented algorithms. The complete detail of this experimental
work complemented with the optimization details are presented in the subsequent sections.

2. Materials and Methods

2.1. Ultrasonic Assisted Turning (UAT) Process

The simplified view of the UAT process is exhibited in Figure 1. The main components of the UAT
machine were the frequency generator, piezoelectric transducer and the horn. The frequency generator
created the electrical signal which was then converted into a mechanical signal by a piezoelectric
transducer. Then, these mechanical signals propagated through the ultrasonic horn to the cutting tool.

Materials 2019, 12, 3418 4 of 20 

 

roughness values were optimized with these implemented algorithms. The complete detail of this 
experimental work complemented with the optimization details are presented in the subsequent 
sections. 

2. Materials and Methods 

2.1. Ultrasonic Assisted Turning (UAT) Process 

The simplified view of the UAT process is exhibited in Figure 1. The main components of the 
UAT machine were the frequency generator, piezoelectric transducer and the horn. The frequency 
generator created the electrical signal which was then converted into a mechanical signal by a 
piezoelectric transducer. Then, these mechanical signals propagated through the ultrasonic horn to 
the cutting tool. 

The major aim of this ultrasonic horn was to amplify the vibrations to reasonable magnitudes. 
Well-known analytical relations exist which are used to facilitate the horn design. For example, the 
length of stepped horn (L) is determined using 𝐿 = ଶ. Here, f is frequency and c is the speed of sound 

in the medium (horn material) which depends on the modulus of elasticity (E) and density (ρ) of the 

material as shown in  𝑐 = ටாఘ . Titanium, aluminum, mild-steel etc. are popular choices for horn 

material. In our study, mild steel was used to manufacture the horn [31]. 

 
Figure 1. Schematic of ultrasonically assisted turning set-up. 

2.2. Workpiece and Tool Material 

The workpiece materials used were Nimonic-90 alloy. They were precipitation strengthened 
nickel base super alloys of extra high mechanical properties with corrosion resistance. Nimonic-90 is 
typically used in extreme stress applications such as turbine blades, hot working tools, exhaust re-
heater, disc and high-temperature springs. The chemical composition of Nimonic-90 alloy is shown 
in Table 1. 

Table 1. Chemical composition of Nimonic-90. 

Elements C Si Mg Cr Ni Ti Al Co Fe 
% Weight 0.08 0.13 0.018 18.1 58 2.4 1.09 18.5 0.82 

Similarly, for performing the turning experiments, chemical vapour deposition (CVD) coated 
carbide inserts with a layer of TiC, Al2O3 and TiN were used. The technical specification of the tool is 

Figure 1. Schematic of ultrasonically assisted turning set-up.

The major aim of this ultrasonic horn was to amplify the vibrations to reasonable magnitudes.
Well-known analytical relations exist which are used to facilitate the horn design. For example, the
length of stepped horn (L) is determined using L = c

2 f . Here, f is frequency and c is the speed of sound
in the medium (horn material) which depends on the modulus of elasticity (E) and density (ρ) of

the material as shown in c =
√

E
ρ . Titanium, aluminum, mild-steel etc. are popular choices for horn

material. In our study, mild steel was used to manufacture the horn [31].

2.2. Workpiece and Tool Material

The workpiece materials used were Nimonic-90 alloy. They were precipitation strengthened
nickel base super alloys of extra high mechanical properties with corrosion resistance. Nimonic-90
is typically used in extreme stress applications such as turbine blades, hot working tools, exhaust
re-heater, disc and high-temperature springs. The chemical composition of Nimonic-90 alloy is shown
in Table 1.

Table 1. Chemical composition of Nimonic-90.

Elements C Si Mg Cr Ni Ti Al Co Fe

% Weight 0.08 0.13 0.018 18.1 58 2.4 1.09 18.5 0.82

Similarly, for performing the turning experiments, chemical vapour deposition (CVD) coated
carbide inserts with a layer of TiC, Al2O3 and TiN were used. The technical specification of the tool is
presented in Table 2. Note that the length of cut used was 50 mm and for each cut a fresh cutting edge
was used.
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Table 2. Cutting insert specifications.

Insert Part Number CNMG 120408CQ

Rake angle 5◦

Relief angle 0◦

Nose radius 0.8 mm
Lead angle 45◦

Point angle 80◦

2.3. Process Parameters

The selection of input parameters was based on the experience of local small and medium-sized
enterprises (SMEs), specially involved in machining of Nimonic-90. The selected reposes i.e., cutting
speed (V), feed rate (F), depth of cut (DOC) and frequencies ( f ) chosen for the experimental study are
shown in Table 3. Note that for the UAT process, Vc = 2πa f > V = πDN should be satisfied where a is
amplitude, f is frequency, D is diameter of the workpiece, and N is rotating speed (rpm) of the spindle.
If the cutting velocity V, exceeds the critical cutting velocity, Vc, the UAT process effectively reduces to
a conventional machining process.

Table 3. Range and levels of process parameters.

Parameters
Range

Level 1 Level 2 Level 3

Cutting speed (m/min) 27.14 40.77 61.14
Feed rate (mm/rev) 0.11 0.22 0.33
Depth of cut (mm) 0.1 0.2 0.3
Frequency (kHz) 20 18 0 (conventional)
Amplitude (µm) 10

2.4. Design of Experiment

The turning tests were carried out by considering a Taguchi L9 orthogonal array (as presented in
Table 4). According to this design, a total of nine experiments with three repetitions were conducted.
Then after, the analysis of variance (ANOVA) test (using the Minitab 18 software, State College, PA,
USA) was implemented on the experimental results. The experimental procedure with complete details
is exhibited in Figure 2.

Table 4. Design and experimental results of the L9 orthogonal array.

Sr. No.
Control Variables Average Responses

V (m/min) F (mm/rev) DOC (mm) f (kHz) Ra (µm) P (W)

1 27.14 0.11 0.1 20 0.37 288.67
2 27.14 0.22 0.2 18 1.56 337.33
3 27.14 0.33 0.3 0 2.21 308.33
4 40.77 0.11 0.2 0 1.06 302.67
5 40.77 0.22 0.3 20 0.9 335.67
6 40.77 0.33 0.1 18 1.14 312.67
7 61.14 0.11 0.3 18 0.64 413.67
8 61.14 0.22 0.1 0 0.67 349.67
9 61.14 0.33 0.2 20 1.26 335.00
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2.5. Measurement of Responses

In this study, two important machining indices i.e., the average surface roughness (Ra) and
power consumption (P) were measured after each experiment. For measurement of surface roughness
values, the Taylor Hobson Surface roughness tester (AMETEK, Leicester, UK) was used. The power
consumption (P) after each cut was measured with fluke power analyzer 435 series.

3. Nature-Inspired Algorithms

This section describes the overview of implemented algorithms i.e., particle swarm optimization,
simplex method and hybrid PSO-SM, respectively. The working principle and procedure are discussed
as per the following.

3.1. Particle Swarm Optimization (PSO)

PSO is categorized as the nature inspired-optimization algorithm in which the problem of linear
and non-linear programming has been successfully solved [32]. Two paramount terms i.e., particles
position as well as velocity has been recognized in the status of PSO method [18]. The ith particle
position and its velocity in the d-dimensional search space are well described with the following
Equations (1) and (2), respectively.

Xi =
[
xi,1,xi,2, . . . . . . . . . xi,d

]
, (1)

Vi =
[
vi,1,vi,2, . . . . . . . . . vi,d

]
, (2)

where, Xi and xi up to the dth terms are integral values related to the position of particles, Vi, vi,1, . . .
vi,d are the velocity values of particles.
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In the PSO method, every particle consists of an ideal position (pbest) also known as location with
respect to the individual ideal values at particle interval of time, t. The pbest (Pbi) is calculated with the
help of Equation (3).

Pbi =
[
pbi,1,pbi,2, . . . . . . . . . pbi,d

]
. (3)

Similarly, the global ideal value (gbest) of each particle is termed by Pbg that generally shows the
best or ideal particle at time, t. After that, the Equation (4) is used to evaluate the updated velocity of
every particle [33,34].

vi, j(t + 1) = wvi, j(t) + c1r1
(
pbi, j − xi, j(t)

)
+ c2r2

(
pbg,i − xi, j(t)

)
, j = 1, 2, . . . d, (4)

where, vi,j(t + 1), xi,j(t) are function values, c1 and c2 represent coefficient values, inertia factor is
denoted by w, r1 and r2 are termed as random variables having values of (0, 1). Therefore, Equation (5)
is used to update the position of every particle.

xi, j(t + 1) = xi, j(t) + vi, j(t + 1), j = 1, 2, . . . d. (5)

In general, the vi, j in the Equation (4) of every component is expressed in terms of −vmax to vmax.
These values are used to control the tremendous routing of external particles during the search space.
Then, the particles follow Equation (5) and the positions of particles are updated towards a newer
position [35]. Hence, the process is worked again and again until a global optimal solution is achieved.

3.2. Simplex Method (SM)

In this paper, the simplex method modified by Nelder and Mead, in 1965, was used to tackle the
constrained and unconstrained optimization problems [35]. In this method, firstly the n input values at
the polyhedron phase is considered and further the n + 1 points with Rn series are applied to establish
the mathematical model. After that, the initial simplex changes its position i.e., moves, contracts and
expands because of their series of primary geometric transformations, respectively. Then, the lower
which also knows as the worst point (Xw) at every iteration is calculated by ordering and classifying
the vertices values as X1, X2, . . . , Xn, Xn+1, so that the solution is f (X1) < f (X2) < . . . f (Xn) < f (Xn+1).

The value of objective function in the simplex method is decided as per the user requirements
i.e., whether to minimize it or maximize it. For minimization, the variable with the largest objective
value is used for a new reflection and the ideal point value has been placed approximately in the
negative gradient direction [36]. For instance, X1 represents the ideal point, Xn+1 is termed as the
worst or lowest point, Xn describes another worst point and so on. Moreover, the centroid point
(Xc) of the n ideal solutions excluding Xn+1 is calculated. In the end, the lowest or worst point is
reflected in Equation (6) and latest point (Xr) is obtained. In addition, at this point, if the function i.e.,
f (X1) ≤ f (Xr) < f (Xn) and boundary conditions are not desecrated, then the reflection takes place at
an ideal region of search space and the replacement of the lower or worst point Xn+1 is made with (Xr),
hence the iteration stops working. Similarly, the other behavior i.e., expansion, contraction, shrinkage,
movement of variables are calculated by Equations (7)–(10). Note that, the objective or fitness function
is computed at each point of the method and the complete process is processed again and again until
the final solution has been achieved.

Xr = Xc + ρ(Xc −Xn+1), (6)

Xe = Xc + γ(Xr −Xc), (7)

Xcont1 = Xc − γ(Xc −Xn+1), (8)

Xcont2 = Xc + γ(Xr −Xc), (9)
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Pi = X1 + σ(Xi −X1), i = 2, . . . , n + 1, (10)

where, (Xi, Pi, . . . , Pn+1) reflects the new vertices, Xe, Xr, Xcont1 and Xcont2 shows the behavior at
expansion, contraction and stretching.

3.3. Hybrid PSO-SM

PSO is known as the nature inspired algorithm, whereas the simplex method is referred to as an
intelligent strategy that is effectively used to solve linear and non-linear problems [36,37]. The main aim
of hybridization is to merge the advantages of both methods [38,39]. In addition, the searching of PSO
is performed as per the Equations (1) and (2) and integrating PSO with simplex method may enhance
the capacity to search the space towards the global optimal solution [36,37]. For instance, Equations
(6)–(10) are used to show the behavior i.e., Xe, Xr, Xcont1 and Xcont2 and they are further divided by the
swarm characteristics with their vector values i.e., Xi(Ni, xi, C1i, C2i), upto i = 1, . . . , n + 1, where n
is referred to the PSO parameters and Ni is an integer value.

The hybridization is performed in two ways: (1) the staged pipelining type in which each
population size of PSO is processed by the stochastic optimization method and the simplex search is
used for the improvement. Similarly, (2) the additional-operator type hybrid method in which the
simplex search is directly applied to the population values and the probability of improvement is
targeted by the user [36,37]. Therefore, in the paper, the hybridization of both methods is made by the
staged pipelining method. The complete process is described below:

1. Initialization Step: The ideal positions of initials particles, generations of random N particles are
selected and evaluated.

2. Repairing Step: The particles have been repaired that affects the boundary conditions by expressing
the worst solution towards the ideal solutions. Moreover, terminate the damaged particles.

3. Searching Step: Equation (2) is used to search the individual position of each particle. The step is
to select the better or ideal position and evaluate them.

4. Ranking: The obtained solution has been ranked according to their best fitness values, from the
Equations (1) and (2).

5. Selection Step: Equation (2) is used to select the better position of each particle and the generation
of ideal solution has been obtained.

6. Generation Step: Further, the D + 1 points have been selected from the population based ranking
solution and the initial simplex is well generated.

7. Simplex Method: It is applied on the highest N + 1 particles and (N + 1)th has been updated.
8. Step 6 is replaced with Step 7 i.e., simplex method, so the best solution has been memorized, until

the final solution has been achieved.

4. Results and Discussion

This section represents the prominent part of the paper. The statistical analysis was performed
with the ANOVA test followed by influence of process parameters and estimation of optimum quality
characteristics. The details of these analyses are discussed below:

4.1. Statistical Testing

In this analysis, the relationship between input variables and responses were made from the
experimental results. The individual results of selected responses are shown in Table 4. The present
statistical analysis was performed at 95% confidence interval (CI), which means at α = 0.05 significance
level. Further, the F-tests and p-value tests (less than 0.05) at 95% CI were performed on experimental
values and are displayed in Tables 5 and 6, respectively. These tests were used to represent the effect of
process parameters on responses. For instance, if the F-tests had high values, the more an effect was
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shown on the process variable. Moreover, the total effect was calculated by the percentage contribution
values in respective tables.

Table 5. Analysis of variance of means for surface roughness.

Source DF Adj SS Adj MS F-Value p-Value %C

Cutting speed 2 1.26423 0.63211 134.6 0.001 17.051
Feed 2 3.26703 1.63351 347.83 0.002 44.065

Depth of cut 2 1.79147 0.89574 190.73 0.002 24.163
Frequency 2 1.00732 0.50366 107.25 0.000 13.586

Error 18 0.08453 0.0047
Total 26 7.41459

Table 6. Analysis of variance of means for and power consumption.

Source DF Adj SS Adj MS F-Value p-Value %C

Cutting speed 2 15,407 7703.4 20.86 0.000 39.798
Feed 2 2733 1366.3 3.7 0.045 7.0596

Depth of cut 2 6445 3222.3 8.73 0.002 16.648
Frequency 2 7483 3741.6 10.13 0.001 19.32

Error 18 6646 369.2
Total 26 38,713

Further, Table 5 shows the experimental results during ultra-sonic assisted turning of Nimonic-90
alloy under different cutting conditions. From the surface roughness analysis, i.e., the F-test showed
that the maximum value i.e., 347.83 was for feed rate which meant the feed rate had the highest effect or
highest contribution of 44.065% on surface roughness values followed by depth of cut (24.163%), cutting
speed (17.051%) and frequency values (13.586%). A similar trend is observed by Reference [15] in
machining of titanium alloy. Similarly, from power consumption analysis, the cutting speed (39.798%)
had highest effect on power consumption followed by frequency (19.32%), depth of cut (16.648%) and
feed rate (7.05%), respectively. In addition, the p-value test showed that the developed models were
statistically significant for selected responses.

4.2. Influence of Process Parameters

Surface roughness: The contour effect plots were drawn to demonstrate the influence of different
machining conditions on surface roughness values. From the previous statistical analysis, it was clearly
noticed that the feed rate highly affected the surface roughness values. This statement is purely justified
with the following Equation (11) which shows that the surface roughness is directly proportional to the
square of feed rate as per the basic relation.

Ra =
f 2

8r
(11)

where, Ra is arithmetic roughness, f defines as a feed rate in mm/rev, r represents the nose radius in mm.
Therefore, the contour effect plots showing maximum effect of feed rate on surface roughness

values were used in this work (as depicted in Figure 3a–c). Figure 3a claims that the surface roughness
was minimum at lower values of cutting speed and feed rate. However, it swelled with the rise in feed
rate, whereas it dwindled with the change in cutting speed values. The trends of these results were
verified with the mechanism given in the Equation (11). Further, the increase in cutting speed lowered
the formation of built-up edges at the tool surface. As a consequence, the low surface roughness values
were achieved at higher values of cutting speed. Practically, these results may not fulfill the favorable
conditions because high surface roughness values are not recommended to achieve the sound machining
characteristics. The similar findings were reported by Reference [6]. Similarly, Figure 3b demonstrates



Materials 2019, 12, 3418 10 of 20

the contour effect plot of depth of cut vs. feed rate. The observation results of these plots claim that
the lower values of surface roughness were achieved at low depth of cut values and once the depth
of cut was changed i.e., from minimum to maximum, undesirable machining surface characteristics
were achieved. This is a very interesting fact as the tool area had a higher amount of contact with the
subjected workpiece at higher depth of cut values and thereby more frictional heat was produced at
the cutting zone. Besides, the heat was not dissipated in the proper manner from the cutting zone
because of the intrinsic characteristics i.e., poor thermal conductivity of Nimonic-90 alloy. This high
temperature resulted in high affinity to tool materials which may cause the welding of micro-particles of
the workpiece to the cutting tool and consequently, reduces the surface finishing values [5].
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Lastly, Figure 3c depicts the contour effect plot of frequency vs. feed rate. This plot exhibits that
the lower value of surface roughness was achieved at the higher frequency of cutting tool i.e., at 20 kHz
frequency. Moreover, this plot shows that the conventional machining process produced a higher value
of surface roughness and it decreased with the change in frequency of cutting tool i.e., 20 < 18 < 0,
respectively. This is generally related with the fact that the chips produced in the UAT process are
smooth, thinner and shorter when compared to those obtained from conventional turning process
(as shown in Figure 4). These smooth and short chips do not stick to the workpiece material and hence
reduce the surface roughness values. Moreover, in the conventional turning process, longer chips are
produced and these longer chips are undesirable which lead to entanglement of chips with the cutting
tool and produces the rough surface. Further, the concept of smooth, thinner and shorter chips are
directly related with shear angle and in the case of UAT it is increased. Hence, this increase in shear
angle resulted in the decrease in chip thickness and as a consequence a good surface was produced with
the increase in frequency of cutting tool (see Figure 5). In addition, the micrographs of chips during
UAT and CT processes are presented in Figure 4. From this micro-graph analysis, it was interestingly
seen that chips produced during the UAT process were regular while those produced from CT showed
irregularities which manifested the poor surface quality of the machined surface. This is subjected to
reason that when high frequency vibrations are exposed on cutting tool inserts, the removal of chips
takes place because of the effect of vibrations and impact [40]. Moreover, the velocity of the stress
wave, because of vibration of the cutting tool, produced a great impact on cutting velocity and hence,
the inner stress broke the chips into small segments, and as a result soft, small and smooth chips were
produced in the UAT process. Further, the tool work contact ratio was decreased with the increase
in frequency of the tool. As a result, the temperature was reduced in the cutting zone because of the
aerodynamic lubrication effect and hence the surface finishing was improved in the UAT process [5].

Materials 2019, 12, 3418 11 of 20 

 

20 < 18 < 0, respectively. This is generally related with the fact that the chips produced in the UAT 
process are smooth, thinner and shorter when compared to those obtained from conventional turning 
process (as shown in Figure 4). These smooth and short chips do not stick to the workpiece material 
and hence reduce the surface roughness values. Moreover, in the conventional turning process, 
longer chips are produced and these longer chips are undesirable which lead to entanglement of 
chips with the cutting tool and produces the rough surface. Further, the concept of smooth, thinner 
and shorter chips are directly related with shear angle and in the case of UAT it is increased. Hence, 
this increase in shear angle resulted in the decrease in chip thickness and as a consequence a good 
surface was produced with the increase in frequency of cutting tool (see Figure 5). In addition, the 
micrographs of chips during UAT and CT processes are presented in Figure 4. From this micro-graph 
analysis, it was interestingly seen that chips produced during the UAT process were regular while 
those produced from CT showed irregularities which manifested the poor surface quality of the 
machined surface. This is subjected to reason that when high frequency vibrations are exposed on 
cutting tool inserts, the removal of chips takes place because of the effect of vibrations and impact 
[40]. Moreover, the velocity of the stress wave, because of vibration of the cutting tool, produced a 
great impact on cutting velocity and hence, the inner stress broke the chips into small segments, and 
as a result soft, small and smooth chips were produced in the UAT process. Further, the tool work 
contact ratio was decreased with the increase in frequency of the tool. As a result, the temperature 
was reduced in the cutting zone because of the aerodynamic lubrication effect and hence the surface 
finishing was improved in the UAT process [5]. 

 
(a) Vc = 27.14 m/min, 𝐹 = 0.11 mm/rev, 𝐷𝑂𝐶 = 0.1 mm, 𝑓 = 20 kHz 

 
(b) Vc = 27.14 m/min, 𝐹 = 0.33 mm/rev, 𝐷𝑂𝐶 = 0.3 mm, 𝑓 = 0 (conventional) 

Figure 4. Macrographs and chip formed during machining of Nimonic-90 alloy under different 
conditions, (a) smooth and short chips, (b) longer chips. 
Figure 4. Macrographs and chip formed during machining of Nimonic-90 alloy under different
conditions, (a) smooth and short chips, (b) longer chips.



Materials 2019, 12, 3418 12 of 20Materials 2019, 12, 3418 12 of 20 

 

 
Figure 5. Effect of small (Øଵ) and large (Øଶ) shear angle on chip thickness (𝑡) and length of shear 
plane for a given tool and un-deformed chip thickness (𝑡) [26]. 

Power consumption: The power consumption is a very prominent aspect, especially during 
machining of hard-to-machine materials. It is also more important from a sustainable or environment 
point of view as it is directly related to the cutting forces, machine deformation and efficiency etc. 
Theoretically, it is a multiplication of main cutting force with the cutting speed values. Equation (12) 
is used to calculate the power consumption during each cut. 𝑝 = ி×, (12) 

where, 𝑝 = power consumption in watts, 𝐹 =  𝑘 × 𝑎 × 𝑓 is main cutting force in Newton and 𝑉 
is the cutting speed in m/min, 𝑎𝑒 is the depth of cut in mm, 𝑓 is the feed rate in mm/rev and 𝑘 
represents as a specific cutting energy coefficient, respectively. Therefore, the power consumption is 
modified with the following Equation (13). This combination directly states that the power 
consumption has the direct effect on cutting speed, feed rate and depth of cut. Hence, all these 
subjected parameters were considered during the power consumption analysis [40]. 𝑝 = ××× . (13) 

Figures 6a–c depict the contour effect plots (a) cutting speed vs. feed rate, (b) cutting speed vs. 
depth of cut and (c) cutting speed vs. frequency. Figure 6a states that the combination of high cutting 
speed and low feed rate values are responsible for the high-power consumption. Equation (12) 
already justifies this statement. 

 
(a) 

Cutting Speed (m/min)

Fe
ed

 R
at

e 
(m

m
/r

ev
)

60555045403530

0.30

0.25

0.20

0.15

>  –  –  –  –  –  <  300300 320320 340340 360360 380380 400400

consumption
Power

Figure 5. Effect of small (Ø1) and large (Ø2 ) shear angle on chip thickness (tc ) and length of shear
plane for a given tool and un-deformed chip thickness (t ) [26].

Power consumption: The power consumption is a very prominent aspect, especially during
machining of hard-to-machine materials. It is also more important from a sustainable or environment
point of view as it is directly related to the cutting forces, machine deformation and efficiency etc.
Theoretically, it is a multiplication of main cutting force with the cutting speed values. Equation (12) is
used to calculate the power consumption during each cut.

p =
Fc ×Vc

60000
, (12)

where, p = power consumption in watts, Fc = kc × ae × f is main cutting force in Newton and Vc is the
cutting speed in m/min, ae is the depth of cut in mm, f is the feed rate in mm/rev and kc represents
as a specific cutting energy coefficient, respectively. Therefore, the power consumption is modified
with the following Equation (13). This combination directly states that the power consumption has the
direct effect on cutting speed, feed rate and depth of cut. Hence, all these subjected parameters were
considered during the power consumption analysis [40].

p =
kc × ae × f ×Vc

60000
. (13)

Figure 6a–c depict the contour effect plots (a) cutting speed vs. feed rate, (b) cutting speed vs.
depth of cut and (c) cutting speed vs. frequency. Figure 6a states that the combination of high cutting
speed and low feed rate values are responsible for the high-power consumption. Equation (12) already
justifies this statement.

This is a true fact that describes the enhancement of power consumption values with the increase
in cutting speed because the values of power consumptions were totally dependent on the spindle’s
rotation per minute (RPM) and the increased in spindle speed consumed more power from the motor.
Similarly, the increase in the feed rate value demonstrated the lower power consumption values. This
is the general machining fact that high feed rate values lead to low machining time and with this
low machining time the tool engagement time is reduced with the workpiece. Hence, low power is
consumed during higher feed rates as compared with lower feed rate values.

After that the effect of depth of cut along with the cutting speed is presented in Figure 6b. From
this analysis, it has been interestingly noted that the values of power consumption were slightly
increased with the depth of cut. In addition, the value of power consumption decreased with the
increase in frequency of cutting tool, as depicted in Figure 6c. In the UAT process, as the frequency
increased the tool vibration period decreased and tool vibration period for the higher frequency was
lower than tool vibration period for lower frequency. Consequently, the tool workpiece contact ratio
for higher frequency was lower than tool workpiece contact ratio for lower frequencies and with this a
low tool workpiece contact ratio the tool engagement time was reduced with the workpiece. Hence,
the slightly low power was consumed during higher frequency as compared with lower frequency
values. Another possible reason for this behavior was the increase in shear angle during machining
with higher frequency which led to a decrease in cutting forces and consequently power consumption.
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Figure 6. Influence of machining parameters on power consumption values (a) Feed rate vs. cutting
speed, (b) depth of cut vs. cutting speed and (c) frequency vs. cutting speed.

4.3. Estimation of Optimum Quality Characteristics for Mono and Bi-Objective Optimization

The implemented algorithms were applied in two ways: (1) mono-objective (2) bi-objective.
In mono-objective optimization, the process variables area was individually optimized in terms of
input variables as well as responses. For this, the regression equations were directly used in the fitness
function of algorithms. Whereas, in bi-objective optimization, one compromised or combined solution
was derived for optimization of process parameters. The details of parameters initialization step
followed by mono, bi-objective and algorithms confirmation are discussed below:
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4.3.1. Basic Parameters: Learning Parametric Setting for PSO and hybrid particle
swarm-simplex (HPSO-SM)

The nature-inspired algorithms have some specific parameters i.e., maximum and minimum
weight, constants (Wmax, Wmin, C1, C2 and H) that explore its performance up to certain extent.
In general, the role of these algorithm parameters is to decide the effectiveness of algorithm. The basic
parameters used for PSO algorithm are shown in Tables 7 and 8. These parameters are selected based
upon the user’s experience and literature survey. For instance, in previously published work [41],
the value of x is introduced in the range of 0–1.4, C1 and C2 are 2 and H is in the range of 5–10.
Therefore, to effectively preserve the balance between local and global solution, the value of H is
selected as 5. Besides, we have noticed that the selected parameters worked in a very efficient manner
and significantly improved the efficiency of PSO. Moreover, the simplex method was also coupled
with the PSO method and with this integration the performance characteristics with respect to the
searching capability of these initial parameters were improved.

Table 7. Initial parameters of PSO.

Input Parameters Value of Parameters

S, number of agent particles 50
Number of iterations 100
Maximum permissible inertia weight 1.4
Minimum permissible inertia weight 0.5
Maximum defined learning rate, C1max = C2max 2
Minimum defined learning rate, C1min = C2min 1.5
H 5

Table 8. Initial parameters of HPSO-SM.

Input Parameters Value of Parameters

S, number of agent particles 50
Number of iterations 100
Maximum permissible inertia weight 1.156
Minimum permissible inertia weight 1.143
Maximum defined learning rate, C1max = C2max 1.345
Minimum defined learning rate, C1min = C2min 1.845
H 5

4.3.2. Mono-Objective Optimization

In this section, the main aim was to determine the individual optimum parametric setting which
showed the minimum values of responses. For this, initially the regression equations for individual
parameter in terms of variables were developed and these equations were further used as a fitness
function in the MATLAB code of algorithms. The boundary conditions (ranges of input parameters)
and objective functions (in terms of regression equations) used in the MATLAB code are discussed
below. Boundary conditions: cutting speed: 27.14 ≤ Vc ≤ 61.14, feed rate: 0.11 ≤ f ≤ 0.33, depth of cut:
0.1 ≤ ae ≤ 0.3 and frequency: 0 ≤ frequency ≤ 20.

Objective functions:

Ra = 0.595 − 0.01487 Vc + 3.85 f + 2.62 ae − 0.0186 f requency (14)

P = 231.0 + 1.671 Vc − 74 f + 178 ae + 0.74 f requency (15)

Based upon these boundary conditions and objective functions, the optimization by using the
general PSO and hybrid PSO-SM method have been performed. The optimized values selected for
surface roughness and power consumption are presented in Table 9. Similarly, the convergence
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characteristics graph of each factor is shown in Figure 7. From the generated results, the selected values
were: V61.14, F0.11, DOC0.1 and f20 for minimum surface roughness values (0.35 µm) and V27.14 , F0.33,
DOC0.1 and f20 for minimum power consumption values (270 Watt), where the subscript represents
the value of the respective cutting parameter, respectively.
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Table 9. Control variables and their selected values (for optimal response variables).

Control Variables

Optimal Values for Response Variables

Surface Roughness
(µm)

Power Consumption
(Watts) Combined Values

PSO HPSO-SM PSO HPSO-SM PSO HPSO-SM

Cutting speed (m/min) 61.14 61.14 27.14 27.14 40.77 40.77
Feed (mm/rev) 0.11 0.11 0.33 0.33 0.11 0.11

Depth of cut (mm) 0.1 0.1 0.1 0.1 0.2 0.2
Frequency (kHz) 20 20 20 20 20 20

Best solution <0.35 >0.35 <270 >270 <0.8452 >0.8452
Mean solution 0.353 0.350 272.33 270.52 0.8572 0.8456

Standard deviation 0.458 0.352 0.583 0.383 0.522 0.324
Average time (s) 15 6 15 6 15 6

Success rate 80 90 80 90 80 80
Percentage error 5.34 1.24 6.3 1.5 6.34 1.4
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4.3.3. Bi-Objective Optimization

In this section, the multi-objective optimization (in which more than a single factor is involved)
with respect to the subjected process parameters was performed. The bi-objective optimization
was performed in three manners: (1) maximization of responses, (2) minimization of responses and
(3) grouping of minimization and maximization. In this work, the objective was to minimize the
surface roughness and power consumption values. Hence, the minimization function was used
as a fitness function in this work. The fitness function is initially developed by converting the all
responses into single function and then the optimization is performed on this single objective function.
The conversions of responses are made by using Equation (16):

Xmin =
W1 ×X1

X1min
+

W2 ×X2

X2min
(16)

where, X1min =minimum value of surface roughness, X2min is minimum value of power consumption,
W1 and W2 are the weights assigned to the responses, i.e., 0.50 for each response. This combined
function Xmin was used as an objective function in MATLAB program and the optimization was
performed by considering the same boundary conditions and initial learning parameters, respectively.
From the generated results in Table 9, the optimum values selected were: V40.77 , F0.11, DOC0.2 and
f 20 for simultaneously minimizing (i.e., 0.8452) both the responses i.e., surface roughness and power
consumption values. The convergence characteristics graph is shown in Figure 8.Materials 2019, 12, 3418 17 of 20 
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4.3.4. Algorithms Confirmation

To ensure the efficiency of PSO and the hybrid PSO-SM method, comparative analysis in terms of
percentage error, standard deviation, success rate and running time etc. was performed. The success
rate, ideal values and running time were directly achieved from the MATLAB code, whereas the
percentage error and standard deviation were calculated by Equations (17) and (18):

%error =

∣∣∣∣∣∣#Experimental − #Thoeretical

#Thoeretical

∣∣∣∣∣∣× 100 (17)

s =

√∑N
i=1 (xi − x)2

N − 1
(18)

where, {x1, x2, . . . , xn} are the observed values, x is the mean value of these observations, N is the
number of observations.
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After that, the 100 iterations were run at optimal conditions and the average data were calculated.
From the given optimized results and comparative analysis (Table 9), it was noticed that the hybrid
PSO-SM method performed better than the standard PSO method in mono as well as bi-objective
optimization of the UAT process parameters. The success rate was 90% and running time wass
only 6 s in the case of hybrid PSO-SM algorithm. Besides, the low values of percentage error and
standard deviation of hybrid PSO-SM proved the high reliability and stability of algorithm towards
the global optimal solution. Similarly, the results of the standard PSO showed that the success rate
was 80%, running time was 15 s, percentage error and standard deviation were high for achieving
the optimal solution. The performance of the hybrid PSO-SM method was high because the initial
learning parameters of PSO were improved with the simplex method which was not in the case
of the standard PSO. Another relevant aspect is that the independent swarm of PSO method i.e.,
vector Xi (Ni, xi, C1i, C2i) i = 1, . . . , n + 1, where n is the number of PSO parameters and Ni is an
integer number computed with the steps of simplex method i.e., reflection, contraction, expansion
and shrinkage and with these integration steps the searching capability of swarms are increased, and
as a result swarms rapidly move towards the global optimal solution. Lastly, it is worth noting that
the high stability, reliability and confidence of the hybrid PSO-SM method confirmed its effectiveness
during optimization of the UAT process.

5. Conclusions

In this work, a robust technique in determining the optimal control parameters in UAT of
Nimonic-90 alloy was presented with the goal of obtaining the lowest surface roughness and power
consumption values. The optimization was performed in two ways: (1) mono-objective and (2)
bi-objective by using a standard PSO and a hybrid PSO-SM, respectively. Further, in-depth analysis of
the process mechanism by using contour plots was performed in the Results and Discussion section.
From this work, the following conclusions may be drawn:

1. The performance of the hybrid PSO-SM was better in terms of lowering the running time, error
and standard deviation as compared with the standard PSO method. The fact is that the initial
learning parameters of PSO were improved with the simplex method and they may have increased
the performance as compared with the standard PSO.

2. The results of the mono-objective optimization method showed that the cutting speed of
61.14 m/min, feed rate of 0.11 mm/rev, depth of cut of 0.1 mm and frequency of 20 kHz were ideal
parameters for surface roughness values. Similarly, the cutting speed of 27.14 m/min, a higher
value of feed rate of 0.33 mm/rev, lower value of depth of cut of 0.1 mm and frequency of 20 kHz
were the optimum parameters for lowering the power consumption.

3. Likewise, the results of bi-objective optimization show that the medium value of cutting speed of
40.77 m/min, a lower feed rate of 0.11 mm/rev, a medium depth of cut of 0.2 mm and frequency of
20 kHz were the best settings for simultaneously lowering the responses.

4. From the statistical analysis, it has been noticed that the feed rate was the major factor affecting
the surface roughness values, whereas the cutting speed claimed the most significant terms for
power consumption.

5. The contour effect plots showed that the ultrasonic assisted turning process reduced the surface
roughness and power consumption values as compared with the conventional turning process.
This was due to the basic reason that the ultrasonic vibration produced the micro-chipping effect
and thereby resulted in low surface roughness as well as power consumption values. Besides, the
chips formed during the UAT processes were regular and fragmented when compared to those
obtained from the CT process.

6. With the ultrasonic assisted machining, the surface roughness was improved by 5%–10%
and the power consumption was reduced from 8%–10% when we compared the results with
ordinary turning.
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