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INTRODUCTION

The importance of the gastrointestinal (GI) tract in human disease was first raised by 

Hippocrates m more than 2000 years ago. His statement, that “all disease begins in the gut,” 

however, has only recently garnered significant interest. Although GI dysfunction has been 

reported to accompany an increasing number of central nervous system (CNS) disorders, 

there is emerging evidence to suggest that intestinal dysfunction may occur before the CNS 

manifestations and/or be a contributing factor to CNS disease.

The relationship between the brain and the intestine, termed the “brain–gut axis,” begins 

during development and persists throughout life. It is what is thought to specifically link the 

emotional and cognitive centers of the brain with intestinal functions.1–3

This axis regulates homeostatic functions that were classically thought to be exclusively gut-

centric or brain-centric. In the intestine, these functions include sensation and motility. In the 

CNS, these roles evolve around the control of behavior, cognition, and mental health. Thus, 

when either system is abnormal disease states emerge that can affect both systems.

In this article, we provide an overarching review of what is currently known about the 

physiology of the brain–gut axis in both health and disease and how these concepts apply to 

irritable bowel syndrome (IBS), the most researched gut–brain axis condition in 

neurogastroenterology.

THE PHYSIOLOGY OF BRAIN–GUT AXIS COMMUNICATION

The autonomic nervous system is the portion of the peripheral nervous system that is largely 

responsible for the body’s reflexive, physiologic control. The autonomic nervous system is 

divided into the sympathetic, parasympathetic, and enteric nervous systems (ENS). The ENS 

is the subdivision of the autonomic nervous system that directly controls the GI tract.4 The 

ENS consists of more than 100 million neurons that are organized into highly complex 
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microcircuits that can function independent from the CNS and spinal cord.5 Although the 

ENS has the ability to act autonomously, it does not usually do so. ENS communication with 

the CNS is continuous and bidirectional (Fig. 1). This communication normally occurs 

through the peripheral nervous system and sympathetic nervous system, via the vagus nerve 

and prevertebral ganglia, respectively.4

Abnormalities in brain–gut communication are one way that brain–gut axis disease may 

arise. There is also evidence to suggest that they may arise from common defects in 

developmental pathways of the CNS and ENS. In fact, the ENS is described as a second 

brain because of its many similarities with the CNS. Virtually every class of 

neurotransmitter found in the CNS is also detected in the ENS.5 Further, the development of 

the ENS shows numerous parallels with that of the CNS.6 Environmental and/ or genetic 

influences on CNS development and function might, therefore, also affect these parameters 

in the ENS. Of these factors, serotonin (5-hydroxytryptamine [5-HT]) has been 

demonstrated to play important roles in development and function of the CNS and ENS and, 

as discussed elsewhere in this article, may modulate critical factors contributing to the 

development of brain–gut axis conditions like IBS.

An additional group of mediators that facilitate brain–gut interactions originate from the 

hypothalamic–pituitary–adrenal (HPA) axis (Fig. 2). The HPA axis is part of the limbic 

system, which is a brain area predominantly involved in emotional responses. HPA axis 

activation can be initiated by stressors and/or systemic proinflammatory cytokines that 

induce secretion of corticotropin-releasing factor (CRF) from the hypothalamus. CRF 

secretion stimulates adrenocorticotropic hormone secretion from the pituitary gland that, in 

turn, leads to cortisol release from the adrenal glands. Cortisol is key in the stress response 

and may play an important role in IBS physiology.7

THE BRAIN–GUT AXIS IS MODULATED IN PART BY THE ENTERIC 

MICROBIOTA

The more than 1 billion organisms that inhabit the intestine influence human ENS and CNS 

development8,9 and functions, including GI motility,10–12 mood,13 cognition, and learning.14 

This microbial population communicates directly with the CNS and ENS by way of the 

vagus nerve,9,14–17 and/or by the production of active metabolites that directly influence 

enteric function. The microbiota can also act indirectly on the CNS by the production of 

metabolites that are carried in the blood and cross the blood–brain barrier.18

Enteric microbial manipulation may be a novel way to establish optimal neurodevelopment; 

evidence supports the idea that an infant’s initial microbiome is influenced by its mother 

throughout the perinatal and breastfeeding periods and that it is this initial inoculation and 

subsequent development in early life that is crucial for healthy neurodevelopment.1,19–21 

The initiation of symbiosis during adolescence also seems to be a crucial step for optimal 

brain development and long-term mental health.1,22,23
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SEROTONIN AS A CRITICAL MODULATOR OF THE BRAIN–GUT–

MICROBIOME AXIS

There is significant evidence to suggest that serotonin may be an important link in the brain–

gut axis. Serotonin and its primary inactivator, the serotonin reuptake transporter, are present 

in both the CNS and the ENS where they are critical mediators of development and function. 

During CNS development, serotonin is neurogenic and plays critical roles in cell division, 

migration, and differentiation.16,17,24 CNS functions modulated by serotonin include mood 

(eg, depression and anxiety) and cognition.19

Despite its critical roles in CNS development and function, only approximately 3% of the 

body’s serotonin is located in the CNS. The vast majority of serotonin (approximately 95%) 

is found in the intestine, where it is a multifunctional signaling molecule during fetal and 

throughout adult life.25 Approximately 90% of enteric serotonin is located in the intestinal 

epithelium, in enterochromaffin cells, with the remainder located in neurons of the ENS. 

Two different isoforms of the same rate-limiting biosynthetic enzyme, tryptophan 

hydroxylase, are responsible for serotonin production in enterochromaffin cells and the 

ENS; tryptophan hydroxylase 1 is responsible for serotonin production in enterochromaffin 

cells and tryptophan hydroxylase 2 is in the ENS. Although it constitutes the minority of 

enteric serotonin, tryptophan hydroxylase 2-derived serotonin is most critical for ENS 

development, intestinal motility, permeability, and enteric epithelial growth and 

differentiation.26–29

There is evidence of interaction between serotonin and the enteric microbiome. Enteric 

bacteria and bacterial products, such as indigenous spore-forming bacteria and short chain 

fatty acids, have been demonstrated to modulate serotonin production.12,17

Based on its interactions with the CNS, ENS, and microbiome, serotonin may be a common 

node connecting the brain–gut–microbiome axis. In accordance with this notion, there are 

numerous links between the enteric microbiome, serotonin production, and changes in CNS 

and ENS function, demonstrated in both preclinical and clinical settings.1,30–35

THE BRAIN–GUT AXIS IN CLINICAL DISEASE: FOCUS ON IRRITABLE 

BOWEL DISEASE

The diagnosis of IBS relies on symptom-based criteria and is classified as constipation-

predominant IBS or diarrhea-predominant IBS, mixed pattern, or unsubtyped.36 Although 

individuals are diagnosed according to abdominal pain and bowel patterns, up to 50% of 

individuals also present with mood, anxiety, and/or somatoform disorders.37,38 Further, it is 

this subset of individuals who often have a worse prognosis.39

Little is known regarding how and when brain–gut dysfunction originates in IBS. For many, 

abdominal pain begins in childhood and reflects learned illness behaviors.40 Other childhood 

instances are triggered by CNS-based precipitants such as trauma, stress, abuse, or maternal 

neglect.41 Patients with history of early adverse life events not only have increased odds of 

having IBS, but also experience an increase in disease severity.42 The increased susceptibly 
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may result from brain remodeling; exposure to childhood adversity resulting in alterations in 

emotional regulation and salience regions in the CNS, as detected by functional MRI 

(fMRI).43 The CNS, however, is not always the precipitating factor; 50% of patients present 

after an intestinal trigger (eg, acute gastroenteritis and abdominal surgery).44,45

The gut-brain connection in IBS is further manifest in the abdominal pain sensation that is 

critical to its diagnosis. Some individuals with IBS demonstrate increased engagement of 

endogenous pain faciliatory mechanisms and decreased levels of endogenous pain inhibitory 

mechanism in brain regions associated with visceral afferent processing and emotional 

arousal, including the left dorsal anterior cingulate gyrus and the bilateral anterior insulae.46 

A metaanalysis of adult studies that evaluated brain response to rectal balloon distension by 

fMRI reported differences between healthy control subjects and patients with IBS in these 

brain regions47 and a more consistent activation in regions associated with stress and arousal 

circuits and endogenous pain modulation.48 In a separate study, patients with IBS with a 

history of abuse reported increased pain and anxiety with rectal distension accompanied by 

similar fMRI changes.49 Interestingly, the stress and arousal circuit demonstrated in human 

subjects by fMRI share significant homology with the stress circuit related to CRF-CRF1 

receptor signaling in rodents, potentially implicating the HPA axis as a facilitator of brain–

gut axis communication.50

Findings in pediatric studies have largely mirrored those in adults.51–53 Children exhibit an 

increased activation in perceptual brain regions during pain,54 a high rate of psychiatric 

comorbidities,51 and a significant association between psychiatric comorbidity and worse 

outcomes.52

As a mediator of gut-brain development and function, serotonin may play important roles in 

the brain and intestinal manifestations of IBS.55 Serotonin modulates all GI functions 

implicated in IBS pathology, including motility, secretion, and visceral hypersensitivity.56 

Further, alterations in enteric mucosal and blood serotonin signaling have been demonstrated 

in children with IBS.57 Serotonin regulates GI motility, at least in part, by binding to the 

serotonin 4 receptor (5-HT4), which is located on both enteric neurons and intestinal 

epithelial cells.25 Serotonin can affect pain pathways by binding to serotonin 3 (5-HT3) 

receptors on intrinsic primary afferent neurons.58

Irritable Bowel Syndrome: Therapeutic Targets

Pharmacologic therapies targeted to the brain–gut axis in IBS have focused on the HPA axis, 

the microbiome and the serotonergic system. Nonpharmacologic holistic therapies are 

targeted toward diet, neurostimulation, cognitive–behavioral therapy, and hypnosis.

Pharmacologic therapies for irritable bowel syndrome

Serotonergic agents—The physiology involved in the generation of IBS symptoms is 

thought to include modulation of 5-HT4 and/or 5-HT3.56 By enhancing intestinal secretion, 

peristalsis, and GI transit, 5-HT4 agonists have been most successful in treating constipation-

predominant IBS.25,56 The initial class of 5-HT4 agonists (eg, cisapride) bound to cardiac 

potassium channels independent of their prokinetic activities, resulting in adverse events, 
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including death. The more recently developed 5-HT4 agonists (eg, prucalopride, velusetrag) 

demonstrate greater GI specificity and are successful in treating symptoms in constipation-

predominant IBS without evidence of cardiac injury.59These newer agonists, however, are 

either not currently available in the United States or are in clinical trials. The 5HT4 agonists 

have also been suggested as an effective target for depression.60

The 5-HT3 antagonists decrease intestinal pain sensation and slow transit.56 The selective 5-

HT3 antagonist, alosetron, showed efficacy for IBS-D,61 although instances of severe 

constipation and ischemic colitis62 led to its restriction for women with severe IBS-D who 

have not responded to conventional therapies.63 Other 5-HT3 antagonists have not been 

introduced in the United States for similar safety concerns.

Antidepressants—Antidepressants (tricyclic antidepressants [TCAs] and selective 

serotonin reuptake inhibitors) were introduced for IBS management based on the recognition 

that depression and anxiety were frequent comorbidities.37 Accordingly, studies suggest that 

these agents relieve visceral pain and stabilize mood.

TCAs are associated with a decrease in IBS symptoms compared with placebo in adults.61 A 

double-blind, placebo-controlled study in adolescents with IBS showed that patients 

receiving amitriptyline had an improvement in overall quality of life and were more likely to 

experience a decrease in abdominal pain and diarrhea.64 Unfortunately, another pediatric 

double-blind, placebo-controlled, randomized, controlled trial examining amitriptyline 

efficacy in children with IBS, functional abdominal pain, and functional dyspepsia did not 

support these findings.65 Further, TCAs have dose-limiting anticholinergic side effects. 

Selective serotonin reuptake inhibitors have been found in some adult randomized, 

controlled trials to be associated with a reduction in IBS symptoms compared with placebo 

with a number needed to treat that is similar to TCAs.66,67 Unfortunately, these findings 

have not been replicated in children with functional abdominal pain.68

BRAIN–GUT–MICROBIOME AXIS: ROLE OF PROBIOTICS AND DIET

Enteric microbial imbalance has been suggested to underlie the pathophysiology of IBS and 

comorbid psychiatric conditions.69 Controlled clinical trials on IBS with coexistent mental 

health conditions report symptom improvement following enteric microbial manipulation.
70–72 Microbial manipulation has been attempted by use of probiotics, antibiotics and the 

low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols 

(FODMAPs) diet.

Probiotics

Bacterial species that have been shown to improve, symptom severity in adults and children 

with IBS include strains of Bifidobacterium and/or Lactobacillus73–79 and VSL#3.80,81 

Probiotics may impact pain pathways by influencing brain signaling; Bifidobacterium 
longum NCC3001 was shown to reduce depressive symptoms in adults with IBS while 

decreasing responses to negative emotional stimuli in IBS-associated brain areas, including 

the amygdala and frontolimbic regions.72
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Low Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols Diet

A low FODMAP diet may result in decreased microbial fermentation, and decreased 

production of gas and osmotically active metabolites leading to improvement in bloating, 

flatulence, and pain.82 Randomized controlled trails in children and adults demonstrate that 

the low FODMAP diet improves IBS symptoms, regardless of subtype.83,84 Further, this diet 

is also associated with improvements in health-related quality of life, anxiety, and activity 

impairment for adults with IBS-D.85

NONPHARMACOLOGIC BRAIN–GUT THERAPIES FOR IRRITABLE BOWEL 

SYNDROME

Psychological Therapies

In a metaanalysis including 32 adult trials and more than 2000 patients, psychological 

therapies were more effective than control treatments (placebo, supportive therapy, 

physician’s “usual management”) for alleviating chronic abdominal pain in adults and 

children, with the most beneficial outcomes reported for cognitive behavioral therapy, 

hypnotherapy, multicomponent therapy, and dynamic psychotherapy.86 Cognitive-behavioral 

therapy, hypnotherapy, and guided imagery are also beneficial in decreasing GI and 

psychiatric symptoms in pediatric IBS.87 Although the precise mechanisms are largely 

unknown, psychotherapy may enhance inhibition of hyperactive stress and arousal circuits, 

thus repairing ineffective cortico–limbic–pontine pain modulation mechanisms observed in 

individuals with chronic abdominal pain.88

Neuromodulation

The external ear contains branches of 4 cranial nerves (V, VII, IX, and X) that project to 

brainstem nuclei, particularly the nucleus tractus solitarius, a “relay station” to brain 

structures involved in autonomic control and pain.89 The percutaneous electrical nerve field 

stimulator has recently been approved by the US Food and Drug Administration as a 

noninvasive central pain pathway modulator; percutaneous electrical nerve field stimulator is 

thought to provide analgesia by providing electrical stimulation of the peripheral cranial 

neurovascular bundles in the external ear that modulate central pain pathways. In a 

randomized, controlled study, adolescents with abdominal pain-related functional 

gastrointestinal disorder who received percutaneous electrical nerve field stimulator 

experienced a greater reduction in pain with sustained effect.90

Placebo

A high proportion of adults and children with IBS respond to placebo.91,92 It is likely that a 

multitude of mechanisms contribute to the placebo effects, including expectancy of 

treatment success93 and involvement of endogenous opioids.94

SUMMARY AND FUTURE DIRECTIONS

Although considerable progress has been made in the understanding of the brain–gut axis in 

health and disease, the precise mechanisms underlying both normal brain–gut homeostasis 
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and the pathophysiology in conditions like functional gastrointestinal disorders remain 

incompletely understood. This lack of understanding has limited the development of holistic 

therapies. Several targets are evolving based on current research; targets for somatostatin, 

opioid and neurokinin receptors95 present in both the CNS and intestine, as well as CRF1 

receptors, that target the HPA axis96 have been developed but most have not been trialed in 

clinical studies and those that have did not demonstrate efficacy.97,98 Pharmacologic 

therapies may not be necessary in all cases; the strong association of IBS with childhood 

trauma may provide a role for preventative psychotherapy in this subset of patients. A more 

comprehensive understanding of how serotonin affects the interplay between the 

components of the brain–gut–microbiome axis is needed to decipher novel therapies and is 

an area of active investigation. It is critical, however, that research focused on brain–gut 

physiology be undertaken to develop novel therapies for IBS and other brain–gut axis 

disorders.
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Abbreviations

CNS Central nervous system

CRF Corticotropin-releasing factor

ENS Enteric nervous system

fMRI Functional MRI

FODMAP Fermentable oligosaccharides, disaccharides, monosaccharides and 

polyols

GI Gastrointestinal

HPA Hypothalamic–pituitary–adrenal

5-HT3 Serotonin 4

5-HT4 Serotonin 4

IBS Irritable bowel syndrome

IBS-D Diarrhea-predominant irritable bowel syndrome

TCAs Tricyclic antidepressants
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KEY POINTS

• The brain–gut axis is a complex, bidirectional network consisting of reflex 

loops that ensure homeostatic control of gastrointestinal function and is 

impacted by the enteric microbiome.

• Serotonin is a critical mediator of the gut–brain development, which impacts 

the enteric microbiome, and may be a common node linking the brain–gut–

microbiome axis.

• Irritable bowel syndrome is diagnosed by gastrointestinal symptomatology, 

and is often accompanied by mood, anxiety and/or somatoform disorders.

• Therapies targeting serotonin receptors have been shown to be useful in some 

cases of irritable bowel syndrome.

• Novel approaches to irritable bowel syndrome and other brain–gut axis 

conditions should consider holistic treatment of the central nervous system 

and the intestine and may involve modulation of serotonergic signaling.
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Fig. 1. 
Communication between the enteric nervous system (ENS) and central nervous system 

(CNS, brain and spinal cord) is bidirectional and continuous. The gut and the brain 

communicate via the parasympathetic nervous system through afferent sensory pathways of 

the vagus nerve and via the sympathetic nervous system through efferent motor pathways of 

the prevertebral ganglia. The brain–gut axis is also modulated by the enteric microbiota. The 

microbiota can modulate the CNS directly via the vagus nerve and/or indirectly by 

influencing the ENS and by production of metabolites that cross the blood brain barrier. 

Serotonin (5-HT) is important for brain–gut communication as both a neurotransmitter in the 

ENS and CNS, as well as a hormone present throughout the circulation. 5-HT is synthesized 

by tryptophan hydroxylase 1 (TPH1) in enterochromaffin (EC) cells, TPH2 in neurons, and 

is inactivated after reuptake primarily by the serotonin reuptake transporter (SERT). 5-

HIAA, 5-hydroxyindoleacetic acid; 5-HT, 5-hydroxytryptamine; MAO, monoamine oxidase; 

TPH, tryptophan hydroxylase; Trp, tryptophan.
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Fig. 2. 
The hypothalamic–pituitary–adrenal (HPA) axis influences the brain–gut axis. Stress can 

elicit an emotional response and hypothalamic activation. Activation of the hypothalamus 

induces the secretion of corticotropin-releasing factor (CRF). CRF activates the pituitary 

gland, and in response, adrenocorticotropic hormone is secreted. Adrenocorticotropic 

hormone (ACTH) acts on the adrenal gland to induce the secretion of cortisol. The increase 

in cortisol, a key hormone in stress response, acts on the gut to alter GI tract function, 

autonomic tone, visceral perception, and behavior, which all relate to irritable bowel 

syndrome (IBS).
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