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SUMMARY
Here we elucidate the effect of Alzheimer disease (AD)-predisposing genetic backgrounds, APOE4, PSEN1DE9, and APPswe, on function-

ality of humanmicroglia-like cells (iMGLs).We present a physiologically relevant high-yield protocol for producing iMGLs from induced

pluripotent stem cells. Differentiation is directed with small molecules through primitive erythromyeloid progenitors to re-create

microglial ontogeny from yolk sac. The iMGLs express microglial signature genes and respond to ADP with intracellular Ca2+ release

distinguishing them from macrophages. Using 16 iPSC lines from healthy donors, AD patients and isogenic controls, we reveal that

the APOE4 genotype has a profound impact on several aspects of microglial functionality, whereas PSEN1DE9 and APPswe mutations

trigger minor alterations. The APOE4 genotype impairs phagocytosis, migration, and metabolic activity of iMGLs but exacerbates their

cytokine secretion. This indicates that APOE4 iMGLs are fundamentally unable to mount normal microglial functionality in AD.
INTRODUCTION

Alzheimer disease (AD) is a progressive neurodegenerative

disorder and the most common cause of dementia (Weuve

et al., 2014). AD pathology begins decades before the onset

of clinical symptoms and neuroinflammation is strongly

indicated in its progression (Shi and Holtzman, 2018).

Neuroinflammation is mediated by microglia, the innate

immune cells of the CNS.Microglia originate from erythro-

myeloid progenitor cells (EMPs) in the embryonic yolk sac

(Ginhoux et al., 2013) and play pivotal roles in CNS devel-

opment, as well as in tissue maintenance, injury response,

and pathogen defense (Colonna and Butovsky, 2017). In

AD, microglia are aberrantly activated and their normal

functions are compromised (Saijo and Glass, 2011).

The major genetic risk factor for multifactorial late-onset

AD (LOAD) (Liu et al., 2013) is a gene variant apolipopro-

tein E4 (APOE4), whereas inherited genetic mutations in
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presenilin 1 (PSEN1), presenilin 2 (PSEN2), or amyloid pre-

cursor protein (APP) genes (Selkoe, 1998) cause rarer early-

onset familial AD (FAD) (Bagyinszky et al., 2014). Human

APOE is primarily expressed in three variants, the most

abundantAPOE3 being neutral, and the rarestAPOE2 being

protective in AD. All forms are involved in transport and

elimination of lipids, but a common mode of action in

the brain remains largely unexplored. APOE is highly ex-

pressed in microglia, and APOE4 is shown to promote the

neurodegeneration-associated inflammatory phenotype

ofmousemicroglia (Krasemann et al., 2017) and alter func-

tions of human microglia-like cells (iMGLs) (Lin et al.,

2018). However, the precise role of APOE4 in the develop-

ment of AD remains elusive. PSEN1 and APP participate

in the production of neurotoxic amyloid-beta (Ab) peptide,

the main component of the amyloid plaques found in the

brains of AD patients. The expression of APP and PSEN1 in

microglia is shown to increase upon brain insults (Banati
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et al., 1993; Nadler et al., 2008) and these genes are impli-

cated in inflammatory processes (Manocha et al., 2016;

Zhao et al., 2017), but it is unclear whether they contribute

to AD through microglial functions.

Given the central role of microglia in AD and the lack of

knowledge of FAD mutations or APOE4 in human micro-

glia, we established a method to generate iMGLs from

induced pluripotent stem cells (iPSCs) carrying APOE4

genotype or PSEN1DE9 or APPswe mutations. iMGLs have

a robust microglial phenotype and resemble recently pub-

lished iPSC-derived microglia (Abud et al., 2017; Douvaras

et al., 2017; McQuade et al., 2018). We conclude that

APOE4 genotype has a substantial impact on the function

of iMGLs, whereas the FAD mutations have only minor

effects. APOE4 contributes particularly to reduced migra-

tion, increased proinflammatory responses and defective

glycolytic andmitochondrialmetabolism. This study eluci-

dates the role of human microglia in disease pathogenesis

in FAD and LOAD.
RESULTS

iPSCs Differentiate into iMGLs through Primitive

Hematopoiesis

We developed a high-yield 24-day protocol to differentiate

human iPSCs into iMGLs. To recapitulate microglial

ontogeny from the yolk sac (Ginhoux et al., 2010; Kierdorf

et al., 2013; Schwartz et al., 2015; Uenishi et al., 2014), we

used small molecules under defined oxygen conditions to

direct differentiation through primitive EMPs followed by

microglial maturation (Figure 1A). Morphological changes

and the expression of the key markers for each stage of dif-

ferentiation were assessed by flow cytometry and phase-

contrast microscopy (Figures 1B–1E and S1).

During the first differentiation days (D0–2), mesodermal

lineage was induced with BMP4, Activin A and CHIR99021

under low oxygen (5% O2) conditions and was accompa-

nied with a reduction of pluripotency markers (Figure 1B).

When the expression of mesodermal brachyury was the

highest, 48 h after initiation (Figure 1C), basic fibroblast

growth factor (bFGF), SB431542, vascular endothelial

growth factor (VEGF), and insulin were applied to evoke
Figure 1. iPSCs Differentiate into iMGLs through Primitive Hema
(A–E) Schematic protocol (A). Percentages of positive cells analyzed
mesodermal brachyury (BRAC), (D) primitive EMPs, and (E) and matu
(F) The expression of microglial signature genes in RNA sequencing (RNA
(G) Hierarchical clustering of RNA-seq data shows that our iMGLs clust
from dendritic cells (DCs), monocytes (CD14M and CD16M), iPSCs, an
(H–J) Immunostainings of D24 iMGLs (H). Repeated with two batche
3D-Matrigel co-culture with neurons and in (J) cerebral brain organoi
Data presented mean ± SEM.
See also Figures S1 and S2; Tables S1 and S2.
hemogenic differentiation. Subsequently, the areas of

endothelial-like cells formed (Figure S1) and the expression

of hemogenic EMP markers KDR, CD117 (c-kit), VE-cad-

herin, and CD34 increased (Figure 1C). On D6–7, loosely

attached round cells appeared with a high expression of

primitive EMP markers CD235a (Sturgeon et al., 2014)

and CD41a (Kennedy et al., 2007) (Figure 1D). MCSF1

and interleukin-34 (IL-34) were used to induce microglial

differentiation and expansion on ultra-low attachment

(ULA) dishes. On maturation, the expression of myeloid

markers increased and on D24, 88% of cells expressed

CD11b, 99% CD45, and 91% IBA1 when cultured on

ULA dishes (Figure 1E). Tomature iMGLs for functional ex-

periments, D16 progenitors were cultured on poly-D-lysine

(PDL)-coated vessels until D24 to promote ramified and

elongated morphology and IBA1 expression (Figure S1).

The microglial identity of iMGLs was confirmed with

whole-transcriptome analysis and qRT-PCR (Figures 1F

and S2; Table S1). The microglial signature genes, C1QA,

GAS6, GPR34, MERTK, PROS1, and TMEM119 (Butovsky

et al., 2014), were highly expressed (logCPM>2, Figures

1F and S2). Comparison of RNA sequencing profiles to pub-

lished dataset GSE89189 (Abud et al., 2017) usingmicroglia

genes (Lavin et al., 2014) revealed that iMGLs cluster with

published iPSC-derived microglia (Abud et al., 2017), as

well as with human microglia (Zhang et al., 2014), but

remain distinct from iPSCs and other tissue myeloid cells

(Figures 1G and S2). Immunostaining of D24 iMGLs veri-

fied ubiquitous expression of IBA1, CX3CR1, and PU.1 (Fig-

ures 1H and S1) and, importantly, microglia-specific pro-

teins TMEM119, P2RY12, and TREM2 (Bennett et al.,

2016) (Figure 1H). Furthermore, iMGLs spontaneously

migrated into 3D co-cultures and adopted a ramified

morphology (Figures 1I and 1J). Thus, the iMGLs generated

through induction of primitive EMPs show a typical micro-

glia-like genetic signature and protein expression.
iMGLs Express APP and PSEN1, and PSEN1DE9

Mutation Leads to Expected Alterations in PSEN1

Endoproteolysis

To assess the reproducibility of the differentiation protocol,

we successfully generated iMGLs from 16 different iPSC
topoiesis
by flow cytometry for markers of (B) pluripotency, (C) EMPs and

re microglia. n = 4 cell lines, repeated in 3 batches.
-seq) data of D24 iMGLs as log2 CPM values. n = 3 batches, 4 cell lines.
er with published iMGLs and human microglia (MG), but are distinct
d hematopoietic progenitor cells (HPCs) (Abud et al., 2017).
s for all cell lines. Images of iMGLs labeled with IBA1 (red) in (I)
ds. Repeated with two batches for 2–4 cell lines. Scale bars as mm.
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Figure 2. iMGLs Express APP and PSEN1 Proteins, and PSEN1DE9 Mutation Leads to Expected Alterations in PSEN1 Endoproteolysis
(A–L) Western blots for full-length (FL) and C-terminal fragment (CTF) of PSEN1 and APP proteins from 3 batches of control (CTRL) and
APPswe (pAPP, spAPP) iMGLs (A). GAPDH and b-ACTIN as loading controls. Quantification of blots normalized to GAPDH for (B) PSEN1-FL,
(C) PSEN1-CTF, and (D) APP protein. n = 3 batches. Respective western blots (E) and quantification (F–H) for PSEN1DE9 iMGLs (pPSEN,
spPSEN) and their isogenic controls (pISO and spISO). n = 2–5 batches. Western blots (I) for APOE3 and APOE4 iMGLs and quantification
(J–L) for the proteins. n = 3 batches.
(M) Ab 1-42 levels in cell culture medium after 48 h analyzed by ELISA. n = 2–5 batches for APP and PSEN; n = 3 wells for APOE repeated in
three batches.
Data presented mean ± SEM unpaired two-tailed t test,*p < 0.05, **p < 0.01, ***p < 0.001. p, presymptomatic; sp, symptomatic. See also
Figure S3.
lines (Table S3) with a 20-fold average yield. iPSCs origi-

nated from adult donors. Neutral APOE 33/3 alleles

(APOE3) were carried by five healthy subjects, two subjects

with familial KM670/671NL Swedish double mutation in

APP (APPswe) (Mullan et al., 1992), and two with a familial

4.6-kb deletion of exon 9 in PSEN1 (PSEN1DE9) (Crook

et al., 1998). Three subjects carried APOE 34/4 alleles

(APOE4) (Balez et al., 2016; Engel et al., 2018; Munoz

et al., 2018; Ooi et al., 2013). One APPswe carrier had symp-

tomatic AD (referred spAPP) and one was presymptomatic

(pAPP) with no clinical diagnosis. Similarly, one PSEN1DE9

carrier was presymptomatic (pPSEN) and one had AD diag-

nosis (spPSEN). The effect of PSEN1DE9 mutation was

validated with gene-corrected isogenic control lines from

the symptomatic (spISO) and the presymptomatic

(pISO) PSEN1DE9 carriers (Oksanen et al., 2017). Pluripo-
672 Stem Cell Reports j Vol. 13 j 669–683 j October 8, 2019
tency and the karyotype of previously unpublished pAPP,

APOE3, and APOE4 lines were characterized (Figure S3).

We next analyzed the effect of genetic background on

processing of APP protein into toxic Ab. APPswe iMGLs

showed 2.5-fold increase in PSEN1 protein but no consis-

tent changes in APP compared with control cells (Figures

2A–2D). As expected, PSEN1DE9 iMGLs showed a robust

accumulation of PSEN1 and a 3-fold increase in APP

compared with isogenic controls (Figures 2E–2H), thereby

establishing that the PSEN1DE9 mutation resulted in a

loss of g-secretase cleavage of APP. Furthermore, APOE3

and APOE4 lines showed low levels of APP, PSEN1, and

C-terminal fragments of PSEN1, and no differences be-

tween the genotypes (Figures 2I–2L). Quantification of Ab

fragments from cell lysates and culture media revealed

that iMGLs had no intracellular Ab and secreted only



Figure 3. ATP and ADP Evoke Intracellular Calcium [Ca2+]i Transients in iMGLs
(A) Example traces of [Ca2+]i transients following 100 mM ATP (left panel) and ADP (right panel) applications for 5 s (indicated by bars) in
iMGLs loaded with the Ca2+ indicator Fluo-4 AM.
(B) The ratio of maximum amplitudes normalized to amplitudes evoked by ionomycin that was applied in the end of experiment and used as
inclusion criteria. n = 4 batches, each with 9–10 coverslips, altogether 3,994 CTRL, 3,015 pAPP, and 3,906 spAPP cells.
(C–E) Percentages of ATP- and ADP-responsive cells in APPswe lines compared with control iMGLs (C). Ratio of maximum amplitudes (D)
and percentages of responsive cells (E) obtained from isogenic and PSENDE9 iMGLs. n = 4 batches, each with 9–12 coverslips, altogether
1,969 pISO, 2,355 spISO, 1,856 pPSEN, and 2,823 spPSEN cells.
(F and G) Similar data for APOE3 and APOE4 iMGLs. n = 4 coverslips, altogether 482 APOE3 and 991 APOE4 cells, repeated in three batches.
Data presented mean ± SEM unpaired two-tailed t test or one-way ANOVA followed by Bonferroni’s post hoc test, *p < 0.05, **p < 0.01.
CTRL, control; p, presymptomatic; sp, symptomatic; PSEN, PSEN1DE9; APP, APPswe; and ISO, isogenic control iMGLs.
Ab1-42 at similar levels regardless of the genotype (Fig-

ure 2M). Taken together, all cell lines had a normal karyo-

type and expressed FAD mutations or LOAD risk variants

supporting their use for studying AD, even though geno-

types failed to alter iMGL Ab production.

ATP and ADP Evoke Intracellular Calcium Transients

in iMGLs

Since calcium may control microglial functions under

resting and activated conditions (Hoffmann et al., 2003),

we next investigated intracellular calcium [Ca2+]i transients

in response to ATP and ADP. The representative traces

of [Ca2+]i transients demonstrate similar responses in all
genotypes (Figure 3A). The average amplitudes of the re-

sponding cells were equal in control and APPswe iMGLs

(Figure 3B). In contrast, there was a 22% reduction in

ATP-responsive cells in pAPP iMGLs and a 27% reduction

in ADP-responsive cells in both pre- and symptomatic

APPswe iMGLs compared with control (Figure 3C). Equal

amplitudes and percentages of responsive cells were

observed for isogenic and PSEN1DE9 iMGLs (Figures 3D

and 3E), and for APOE3 and APOE4 iMGLs (Figures 3F

and 3G) demonstrating the consistent functionality of

iMGLs harboring these genotypes. Collectively, all cell

lines responded to ADP and ATP by intracellular calcium

release, supporting microglia-like functionality of the
Stem Cell Reports j Vol. 13 j 669–683 j October 8, 2019 673



Figure 4. Chemokinesis Is Accelerated in APPswe and PSEN1DE9 iMGLs but Decelerated in APOE4 iMGLs
(A) Representative images of iMGLs in scratch wound migration assay at 0, 12, and 24 h time points. Scale bar 300 mm.
(B) Wound densities measured for 25 h with vehicle (VEH), 100 mM ATP, 100 mM ADP, or 1-mM soluble sAb treatments.
(C–E) Wound densities at 24 h normalized to vehicle (C). Time curves for (D) control (CTRL) and APPswe (APP), and (E) APOE3 and
APOE4 iMGLs.
(F) Wound densities at 24 h normalized to control or isogenic (ISO) iMGLs.
(G) A heatmap for increase (darker color) or decrease (lighter color) in wound density compared with vehicle. White asterisks indicate
significance compared with vehicle and black asterisks to control genotype.
(H) Time curves for wound density with 100 mM fractalkine (CX3CL1) treatment in APO3 iMGLs.
(I) Corresponding wound density at 24 h normalized to vehicle for APOE iMGLs. Curve graphs show a representative experiment of three
replicates, n = 3–5 wells. Boxplots and heatmap show normalized results from n = 3–5 replicate batches.
Data presented mean ± SEM, unpaired two-tailed t test, *p < 0.05, *p < 0.01, ***p < 0.001. p, presymptomatic; sp, symptomatic. See also
Figure S4.
iMGLs. Reduction in APPswe responses suggests that FAD

mutation can alter intracellular calcium signaling.

Chemokinesis Is Accelerated in APPswe and

PSEN1DE9 iMGLs but Decelerated in APOE4 iMGLs

Microglial migration to the injury site is crucial for main-

taining homeostasis in the brain. We analyzed the chemo-

kinesis of iMGLs using a scratch wound assay with live-cell

imaging for 24 h (Figure 4A). Acute application of ATP

and ADP, which can be released from injured neurons,

increased migration in all tested cell lines, whereas soluble

oligomeric Ab (sAb) failed to alter migration (Figures 4B,
674 Stem Cell Reports j Vol. 13 j 669–683 j October 8, 2019
4C, and S4). We observed increased basal migration in

APPswe lines compared with control iMGLs as well as in

spPSEN iMGLs compared with their isogenic controls (Fig-

ures 4D, 4F, and S4). In contrast, APOE4 genotype reduced

basal migration (Figures 4E and 4F). ATP or ADP induced

similar increase in migration in all genotypes (Figure 4G).

In contrast, migration evoked by fractalkine was restrained

in APOE4 iMGLs compared with APOE3 (Figures 4H and

4I), indicating impairment in motility in response to this

neuron-derived chemokine. The migration was reduced if

fetal bovine serum (FBS) was withdrawn from cell culture

and therefore the experiments were performed in the



presence of FBS (Figure 4S). Overall, all iMGL linesmigrated

and responded to different stimuli as expected for micro-

glia. A reduction in APOE4 and a mild increase in APP

and PSEN1 iMGLs suggest that LOAD risk variant and

FAD mutations have different effects on microglial

functions.

Phagocytosis Is Dampened in APOE4 iMGLs, but Not

in APPswe or PSEN1DE9 iMGLs

Since microglia fail to efficiently clear Ab plaques in AD

(Lee and Landreth, 2010), we examined phagocytosis

by live-cell imaging. iMGLs spontaneously phagocytosed

pHrodo Zymosan A bioparticles (Figures 5A and 5B)

equivalently despite of their genotypes (Figures 5C, 5D,

and S4). Since APOE4 variant was recently reported to

reduce phagocytosis in iPSC-derived microglia (Lin

et al., 2018), we investigated APOE iMGLs also with

confocal microscopy and with fewer number of larger

fluorescein isothiocyanate (FITC) Zymosan A bioparticles

to count internalized particles (Figures 5E and 5F).

Indeed, despite the equal overall intensity of phagocy-

tosed pHrodo particles (Figure 5G), APOE4 iMGLs in-

gested a smaller number of FITC particles per cell

compared with APOE3 (Figure 5H).

Next, we tested whether proinflammatory stimuli atten-

uate the phagocytosis of iMGLs as reported for murine

microglia (Koenigsknecht-Talboo and Landreth, 2005).

iMGLs were pretreated with lipopolysaccharide (LPS),

interferon g (IFN-g), or both LPS and IFN-g (LPS-IFN-g)

for 24 h or treated with sAb or insoluble fibrillary (fAb)

Ab1-42 at the time of particle application. Unexpectedly,

LPS failed to alter phagocytosis of pHrodo beads, whereas

IFN-g or LPS-IFN-g suppressed it (Figures 5I–5L). With-

drawal of stimuli before to themeasurement did not restore

IFN-g-mediated suppression, but in the LPS-pretreated

group phagocytosis was first abrogated and then potenti-

ated 5 h after withdrawal (Figure S4). Addition of fAb

only slightly enhanced the phagocytosis of pHrodo beads

in presymptomatic isogenic and PSEN1DE9 iMGLs,

whereas sAb had no effect (Figures 5J and 5K).

iMGLs phagocytosed also fluorescent Ab1-42 spontane-

ously (Figure 5M). APPswe iMGLs internalized 1.2-fold

more Ab compared with their controls (Figures 5N and

5O). PSEN1DE9 or APOE4 genotypes had no effect (Fig-

ure S4). To test the impact of proinflammatory activation

on Ab phagocytosis, we treated the cells with LPS, sAb, or

fAb simultaneously with fluorescent Ab. LPS reduced Ab

phagocytosis only in isogenic and PSEN1DE9 iMGLs

(Figure S4), and fAb induced engorged vacuoles in all geno-

types (Figure 5P). In summary, iMGLs presented microglia-

like phagocytosis of both particles and Ab and altered

phagocytosis upon inflammatory stimuli. Only APOE4

iMGLs showed mild impairment in phagocytosis.
Cytokine Release under Proinflammatory Conditions

Is Aggravated in APOE4 iMGLs but Decreased in

PSEN1DE9 and APPswe iMGLs

To study cytokine release, conditioned medium was

analyzed with cytokine bead array after 24 h treatment

with vehicle, LPS, IFN-g, or LPS-IFN-g (Figure 6A). Under

basal conditions, the levels of proinflammatory cytokines

IL-6, tumor necrosis factor alpha (TNF-a), regulated on

activation, normal T cell expressed and secreted (RANTES),

and granulocyte-macrophage colony-stimulating factor

(GM-CSF) were negligible (<1 pg/mL), whereas IL-8 levels

were small (10 pg/mL) and MCP1 reached even 1 ng/mL

concentrations (Figure 6A). As expected, iMGLs robustly re-

sponded to LPS with significant induction in all measured

cytokines. The combination of LPS-IFN-g triggered similar

or even higher release of cytokines exceptGM-CSF, whereas

IFN-g alone induced only small, yet detectable, increase.

We investigated further LPS-IFN-g effect since it simu-

lates in vivo damage-associated molecular patterns acting

on Toll-like receptors and IFN-g produced by CNS cells (Pu-

lido-Salgado et al., 2018). APPswe iMGLs produced less

TNF-a and MCP1 in response to LPS-IFN-g compared

with control iMGLs (Figure 6B). Similarly, PSEN1DE9

iMGLs secreted less IL-6, TNF-a, and RANTES compared

with their isogenic controls (Figure 6C). Concomitantly,

LPS or IFN-g alone resulted in decreased cytokine secre-

tion in iMGLs harboring these genotypes (Figure S4).

In contrast, APOE4 iMGLs produced more cytokines

compared with APOE3 iMGLs upon treatment with LPS-

IFN-g (Figure 6D), LPS or IFN-g (Figure S4). Taken together,

APOE4 genotype increased cytokine secretion, whereas

FAD mutations reduced it.
Metabolism of iMGLs Is Altered under Pro- and

Anti-inflammatory Stimuli and by APOE4 Genetic

Background

To investigate metabolism under anti- or proinflammatory

stimuli we measured the cellular respiration of iMGLs after

24 h treatment with IL-4, LPS, IFN-g, or LPS-IFN-g (Figures

7A and 7B). An anti-inflammatory IL-4 increased parame-

ters of oxidative respiration, whereas proinflammatory

LPS and LPS-IFN-g reduced them (Figure 7C). IFN-g

increased all parameters except ATPproduction (Figure 7C).

Compared with LPS, LPS-IFN-g reversed oxidative parame-

ters toward the levels of the vehicle (Figure 7C). On the

contrary, all proinflammatory stimuli increased anaerobic

glycolysis and glycolytic capacity indicating a shift from

oxidative respiration toward anaerobic glycolysis (Fig-

ure 7D). The pooled data for LPS normalized to the vehicle

confirmed the equal shifts in all genotypes, except the pro-

ton leak was increased in pAPP and glycolytic capacity in

spAPP compared with control iMGLs (Figure 7E).
Stem Cell Reports j Vol. 13 j 669–683 j October 8, 2019 675



Figure 5. Phagocytosis Is Dampened in APOE4 iMGLs, but not in APPswe or PSEN1DE9 iMGLs
(A and B) Representative images of phagocytosed green pHrodo Zymosan A bioparticles in iMGLs at 5 h.
(C) Time curves for pHrodo fluorescence intensity in control (CTRL) and APPswe (APP) iMGLs normalized to cell amount.
(D) Respective boxplots at 5 h normalized to control or isogenic (ISO) iMGLs.
(E and F) Representative images of phagocytosed FITC Zymosan A bioparticles in iMGLs.
(G) pHrodo time curves for APOE3 and APOE4 iMGLs.
(H) Percentages of APOE iMGLs that internalized certain number of FITC particles per cell. n = 290–750 cells.
(I–L) pHrodo intensity at 5 h, after 24 h pretreatment with 100 ng/mL LPS, 20 ng/mL IFN-g, or LPS-IFN-g, or with simultaneous treatment
with 0.5 mM soluble sAb or fibrillar fAb, compared with vehicle (Veh) in APPswe (I), pPSEN (J), spPSEN (K), and APOE (L) iMGLs.
(M) Representative image of phagocytosed green fluor-Ab1-42 in iMGLs at 5 h.
(N) Time curves for fluorescence intensity of fluor-Ab in control and APPswe iMGLs.
(O) Respective bar graphs at 5 h normalized to control iMGLs.
(P) Representative image of iMGLs treated with fluor-Ab and fAb depicting enlarged vacuoles. Scale bars, 50 mm. Curve graphs show
a representative experiment of 3 replicates, n = 4 wells. Boxplots and bar graphs show normalized results from n = 2–6 replicate batches.
Data presented mean ± SEM unpaired two-tailed t test or two-way ANOVA with Bonferroni’s post hoc test,*p < 0.05, **p < 0.01,
***p < 0.001. p, presymptomatic; sp, symptomatic; PSEN, PSEN1DE9 iMGLs. See also Figure S4.
To elucidate whether AD-predisposing genetic back-

grounds provoked ametabolic shift toward a proinflamma-

tory glycolytic phenotype, we next compared respiration
676 Stem Cell Reports j Vol. 13 j 669–683 j October 8, 2019
between the genotypes without stimulus. FAD mutations

did not alter the metabolism (Figures 7F and 7G). In

contrast, oxygen consumption rate was lower in APOE4



Figure 6. Cytokine Release under Proinflammatory Conditions Is Aggravated in APOE4 iMGLs but Decreased in PSEN1DE9 and
APPswe iMGLs
(A) iMGLs secrete cytokines when stimulated for 24 h with LPS 100 ng/mL, IFN-g 20 ng/mL, or their combination LPS-IFN-g as measured
from media by cytometric bead array assay. Representative graphs. n = 4 wells.
(B) spAPP iMGLs released less TNF-a, and pAPP less TNF-a and MCP1, compared with control iMGLs in response to LPS-IFN-g treatment.
(C) PSEN1DE9 iMGLs released less IL-6, TNF-a, and RANTES compared with isogenic iMGLs.
(D) In contrast, APOE4 iMGLs released aggregated amounts of TNF-a and IL-8 compared with APOE3. For (B–D) n = 3–6 batches, each with
4 wells.
Data presented mean ± SEM unpaired two-tailed t test, *p < 0.05, *p < 0.01, ***p < 0.001. See also Figure S4. CTRL, control;
p, presymptomatic; sp, symptomatic; PSEN, PSEN1DE9; APP, APPswe; and ISO, isogenic control iMGLs.
iMGLs compared with APOE3 iMGLs, demonstrating a

similar shift as with LPS treatment (Figure 7H). Surpris-

ingly, the APOE4 genotype led to a reduced extracellular

acidification (Figure 7H), whereas LPS had increased it (Fig-

ure 7A). In accordance, APOE4 iMGLs showed a reduction

in all mitochondrial parameters compared with the

APOE3 iMGLs (Figure 7I).
DISCUSSION

Here, we demonstrate the power of iPSC-derived microglia

to elucidate distinct functional phenotypes of human

microglia in disease. Differentiated iMGLs show a typical

microglia-like gene and protein expression and respond

to inflammatory stimuli robustly inmultiple functional as-

says. We pinpoint specific phenotypes in iMGLs with three

AD-predisposing genetic backgrounds, revealing that

APOE4 has a profound impact on several aspects of micro-

glial functionality, whereas APPswe and PSEN1DE9 have
minor effects. The distinct phenotypes were observed

without changes in amounts of Ab, suggesting that Ab

burden associated with PSEN1DE9, APPswe, and APOE4 is

of neuronal and astrocytic origin (Oberstein et al., 2015;

Scheuner et al., 1996), and that human microglia with

these genotypes harbor alternative mechanisms underly-

ing development and progression of AD.

This study reveals that APOE4 iMGLs are fundamentally

unable to mount normal microglial functionality as

hypothesized for AD (Saijo andGlass, 2011). TheAPOE4 ge-

notype impaired phagocytosis and migration, and aggra-

vated inflammatory responses of iMGLs, suggesting that

APOE4 confers iMGLs toward a proinflammatory disease-

associated microglial (DAM) phenotype (Lin et al., 2018;

Olah et al., 2018). We also reported similar responses to

proinflammatory IFN-g and LPS in phagocytosis and cyto-

kine release, consistent with murine microglia (Townsend

et al., 2005, Koenigsknecht-Talboo and Landreth, 2005).

APOE4 conferred decrease in migration at basal level

and in response to fractalkine, although no changes in
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Figure 7. Metabolism of iMGLs Is Altered under Pro- and Anti-inflammatory Stimuli and by APOE4 Genetic Background
(A) Representative oxygen consumption rate (OCR) curves for iMGLs following 24 h vehicle (VEH), LPS, IL-4, IFN-g, and LPS-IFN-g
treatments, all 20 ng/mL. n = 3–5 wells.

(legend continued on next page)
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P2RY12 or CX3CR1 expression were observed. Further-

more, no increase in chemokinesis upon Ab exposure was

seen in scratch wound assay, although invasion assays

could be more relevant to study chemotaxis. In mouse

models, the switch to DAM is triggered by TREM2-APOE

interaction (Krasemann et al., 2017); however, exact mech-

anisms underlying human APOE4-induced inflammatory

phenotype in AD microglia remain incompletely defined.

We extend these findings to highlight a novel role of

APOE4 in impaired metabolism of microglia. The cellular

metabolism was robustly shifted in all iMGLs in response

to inflammatory stimuli. LPS induced switch from oxida-

tive metabolism to anaerobic glycolysis in line with recent

evidence (Ghosh et al., 2018; Orihuela et al., 2016),

whereas less studied IFN-g increased both oxidative and

glycolytic metabolism, supporting its role in the priming

of microglia to meet the energy demands upon activation

(Ta et al., 2019). Metabolic shift toward glycolysis is re-

ported to occur also in AD microglia with TREM2 muta-

tions (Ulland et al., 2017). On the contrary, we observed a

general downregulation of all metabolic parameters, both

oxidative and glycolytic, in APOE4 iMGLs. Thus, APOE4-

induced inhibition of microglial metabolism and phagocy-

tosis accompanied with heightened cytokine release may

partly explain the development AD-related plaque burden

in the brain.

In contrast to APOE4, the FAD mutations caused only a

slight decrease in proinflammatory cytokine release and in-

crease in chemokinesis. Unlike that recently reported for

sporadic AD lines (Xu et al., 2019), APPswe and PSEN1DE9

mutations did not predispose iMGLs toward a more

proinflammatory phenotype, but rather toward a senes-

cent phenotype incapable of implementing a full inflam-

matory response. Cytokine-mediated inflammation has

been strongly established in multiple animal models of

AD, but human patients show varied results (Wang et al.,

2015; Smith et al., 2012, Barroeta-Espar et al., 2019).

PSEN2 rather than PSEN1 has been reported to modulate

microglial cytokine release (Jayadev et al., 2013). iMGLs

secreted similar levels of cytokines with human autopsy

microglia (Rustenhoven et al., 2016), and decrease in FAD

iMGLs is consistent with lower cytokine levels reported
(B–D) Corresponding extracellular acidification rate (ECAR) curves (B
from ECARs in (B).
(E–H) Heatmap indicating decrease (blue) or increase (red) in fold c
with vehicle (E). White equals 1. n = 5 CTRL, n = 4 pAPP, n = 2 spAPP, n =
n = 3 PSEN1 batches with 4–5 wells. Representative OCR and ECAR cur
(H) APOE4 and APOE3 iMGLs. n = 5–10 wells, repeated with three bat
(I) Mitochondrial parameters calculated from OCRs and ECARs in (H
#compared with LPS, ycompared with IFN-g, two-tailed unpaired t t
phenylhydrazone; R/A, rotenone and antimycin A, each 1 mM. CTRL, c
APPswe; and ISO, isogenic control iMGLs.
in certain brain areas of AD patients compared with non-

AD subjects (Lanzrein et al., 1998). These mild and oppo-

site outcomes in iMGLs with FAD mutations compared

with the APOE4 genotype indicate that functionality of

human microglia with different genetic backgrounds is

sensitively and distinctly modulated, and that pathogenic

effects of APPswe and PSEN1DE9 are mainly mediated by

other cell types.

To elucidate the aforementioned functional AD pheno-

types of human microglia we used a novel method to

generate iMGLs. Several groups have recently reported pro-

tocols (Douvaras et al., 2017; Haenseler et al., 2017; Muffat

et al., 2016; Pandya et al., 2017) to produce microglia from

stem cells, and our protocol closely resembles methods

from the Blurton-Jones group (Abud et al., 2017; McQuade

et al., 2018). In our method, differentiation is initiated

simply with a defined number of single cells to generate

functional high-purity microglia-like cells in 24 days with

a 20-fold yield. Importantly, we confirmed that most cells

differentiate through primitive EMPs, the most critical

step making microglia distinct from other tissue macro-

phages (Kennedy et al., 2007; Sturgeon et al., 2014). In

our hands, low oxygen conditions during the early stages

were pivotal in yielding considerable numbers of primitive

EMPs, even though a recent study (McQuade et al., 2018)

suggests that normoxic conditions would be advantageous

for simplifying equipment. The microglia-like identity of

iMGLs was confirmed with high expression of microglial

signature genes and low expression of macrophage genes,

since microglial genes are expressed to some extent also

in primitive macrophages (Haenseler et al., 2017).

Considering that iPSC-models fundamentally produce

rather immature cell types, the iMGLs probably represent

relatively young microglia. In accordance, P2RY12, a

marker for mature microglia, was expressed at a relatively

low level (Bennett et al., 2016; Butovsky et al., 2014).

iMGLs also exhibited a highmigration capacity in response

to chemotactic signals, such as ATP (De Simone et al., 2010;

Lambert et al., 2010), as has been shown previously for

young microglia (Caldeira et al., 2017). Thus, we recognize

that the method can be further optimized by utilizing the

advantages presented in other iPSC-derived microglia
). Mitochondrial parameters calculated from (C) OCRs in (A and D)

hange of mitochondrial parameters of LPS-treated iMGLs compared
3 APOE3, and n = 2 APOE4 batches with 10 wells; n = 1 isogenic, and

ves for (F) control and APPswe, (G) isogenic and PSEN1DE9, and for
ches.
) *p < 0.05, **p < 0.01, ***p < 0.001 compared with vehicle,

est. Olig, oligomycin; FCCP, carbonyl cyanide-4-(trifluoromethoxy)
ontrol; p, presymptomatic; sp, symptomatic; PSEN, PSEN1DE9; APP,
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protocols. FBS could be replaced withmore defined supple-

ments to reduce potential unwanted priming that might

mask subtle genotype differences and additional matura-

tion factors, such as transforming growth factor b,

CD200, and CX3CL1, could be applied.

Taken together, we report here a short and relatively

easy to use protocol to differentiate iMGLs from iPSCs.

We characterize the effect of AD-predisposing genetic

backgrounds on the functionality of cells featuring a pro-

found impact of APOE on the phenotype ofmicroglia. The

current study highlights the importance of investigating

the role of gene variants in humanmicroglia and provides

a useful, clinically relevant model for studying microglia

in disease.
EXPERIMENTAL PROCEDURES

See further details in the Supplemental Experimental Procedures.
Generation and Maintenance of iPSCs
iPSC lines Ctrl1, Ctrl3, and PSEN1, and their isogenic control lines

were previously generated and characterized (Oksanen et al.,

2017) by the approval of the committee on Research Ethics of

Northern Savo Hospital district (123/2016) after written consent

from the subjects. pAPP and spAPP lines were approved by the

ethical review board of Karolinska Institutet/University (2017/

834–31/1), and spAPP was characterized previously (Oksanen

et al., 2018). HC1-3 and LOAD1-3 lines were characterized

(Balez et al., 2016; Munoz et al., 2018; Ooi et al., 2013) with the

approval of the University of Wollongong human research ethics

committee (HE13/299). Previously uncharacterized lines pAPP,

TOB0002c3, andMBE2968c1 were approved by the ethical review

board of Karolinska Institutet/University (2017/834–31/1), or by

the human research ethics committees of the Royal Victorian

Eye and Ear Hospital (11/1031H, 13/1151H-004), University of

Melbourne (1545394), University of Tasmania (H0014124), with

the requirements of the National Health & Medical Research

Council of Australia and conformed with the Declarations of Hel-

sinki (McCaughey et al., 2016). Fibroblasts were isolated and

cultured as described previously (Crombie et al., 2017; Qu et al.,

2013) and were reprogrammed to iPSCs either with Sendai virus

using CytoTune 1.0 kit (Invitrogen) (Holmqvist et al., 2016) or

by nucleofection (Lonza Amaxa Nucleofector) (Okita et al.,

2011). iPSCs were maintained in Essential 8 Medium (E8, Gibco)

on Matrigel (Corning) and were passaged with 0.5 mM EDTA (In-

vitrogen) in the presence of 5 mMY-27632 (Selleckchem). All iPSCs

were confirmed to be sterile and all cell cultures were tested for

mycoplasma using a MycoAlert Kit (Lonza).
Differentiation of iMGLs
On D0, iPSCs were dissociated to single cells with 0.5 mM EDTA

or Accutase (Innovative Cell Technologies) and were replated

at a density of 6,000–16,000 cells/cm2 on Matrigel in E8,

0.5% penicillin/streptomycin (P/S) (50 IU/50 mg/mL), 5 ng/mL

BMP4, 25 ng/mL Activin A (both from PeproTech or Miltenyi Bio-
680 Stem Cell Reports j Vol. 13 j 669–683 j October 8, 2019
tec), 1 mM CHIR 99021 (Axon or Stem Cell Technologies) and

10 mM Y-27632. The cells were maintained in low oxygen at

5% O2, 5% CO2, 37
�C. On D1, the medium was replaced with a

lower concentration of 1 mM Y-27632. After 48 h on D2 the me-

dium was changed to differentiation base medium (dif-base) con-

taining DMEM/F-12, 0.5% P/S, 1% GlutaMAX, 0.0543% sodium

bicarbonate (all fromThermo Fisher Scientific), 64mg/L L-ascorbic

acid and 14 mg/L sodium selenite (both from Sigma). The dif-base

was supplemented with 100 ng/mL FGF2, 50 ng/mL VEGF (both

fromPeproTech), 10 mMSB431542 (Selleckchemor StemCell Tech-

nologies), and 5 mg/mL insulin (Sigma). On D4, the media was re-

placed by dif-base supplemented with 5 mg/mL insulin, 50 ng/mL

FGF2, VEGF, IL-6, and thyroid peroxidase, and 10 ng/mL IL-3

and stem cell factor. From then on, the cells were maintained

in a normoxic incubator. Fresh EMP medium was changed daily

until D8, when floating round EMPs were collected from the

top of the monolayer. After centrifugation 300 3 g for 5 min,

350,000 cells/mL were transferred to ULA dishes (Corning) in mi-

croglial medium containing Iscove’s modified Dulbecco’s medium

(Thermo Fisher Scientific), 0.5% P/S, and 10% heat inactivated FBS

(Biowest) or DMEM/F12, 0.5% N2, 0.5% B27 supplemented with

5 mg/mL insulin, 5 ng/mL MCSF, and 100 ng/mL IL-34 (both

from PeproTech). On D10, the cell suspension was changed by

centrifuging and 350,000 cells/mLwere seeded back to ULA dishes

in microglial maturation medium supplemented with 10 ng/mL

MCSF and 10 ng/mL IL-34. This medium was changed similarly

every second day until D16, when the cells were detached from

ULA dishes with Accutase and replated on PDL-coated (Sigma)

nunclon cell culture-treated plates (Thermo Fisher Scientific) in

desired densities for experiments. Half of the maturation medium

was changed daily until D23–24 when experiments were

performed. To ensure the functionality of the cells after longer

maturation, iMGLs from APOE lines were maturated in presence

of IL-34 (100 ng/mL) and MCSF (5 ng/mL) until D42, and similar

results were obtained for cytokine secretion, qRT-PCR and

phagocytosis.

Statistical Analysis
Statistical analysis was performed using Graphpad Prism 7.

Comparisons involving two groups were analyzed with two-tailed

Student’s t test. One-way ANOVA was utilized for comparisons

with more than two groups followed by Tukey’s post hoc test.

Two-way ANOVA was utilized for comparisons of genotypes

and treatment groups and followed by Bonferroni’s multiple-

comparison post hoc test. Corrected p values for multiple compar-

isons were reported. Differences were considered significant when

p < 0.05.
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