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Abstract

Background: Experimental evolution of microbes often involves a serial transfer protocol, where microbes are
repeatedly diluted by transfer to a fresh medium, starting a new growth cycle. This has revealed that evolution can be
remarkably reproducible, where microbes show parallel adaptations both on the level of the phenotype as well as the
genotype. However, these studies also reveal a strong potential for divergent evolution, leading to diversity both
between and within replicate populations. We here study how in silico evolved Virtual Microbe “wild types” (WTs)
adapt to a serial transfer protocol to investigate generic evolutionary adaptations, and how these adaptations can be
manifested by a variety of different mechanisms.

Results: We show that all WTs evolve to anticipate the regularity of the serial transfer protocol by adopting a
fine-tuned balance of growth and survival. This anticipation is done by evolving either a high yield mode, or a high
growth rate mode. We find that both modes of anticipation can be achieved by individual lineages and by collectives
of microbes. Moreover, these different outcomes can be achieved with or without regulation, although the
individual-based anticipation without regulation is less well adapted in the high growth rate mode.

Conclusions: All our in silicoWTs evolve to trust the hand that feeds by evolving to anticipate the periodicity of a serial
transfer protocol, but can do so by evolving two distinct growth strategies. Furthermore, both these growth strategies
can be accomplished by gene regulation, a variety of different polymorphisms, and combinations thereof. Our work
reveals that, even under controlled conditions like those in the lab, it may not be possible to predict individual
evolutionary trajectories, but repeated experiments may well result in only a limited number of possible outcomes.

Keywords: Experimental evolution, Predicting evolution, Serial transfer protocol, Resource cycle, Eco-evolutionary
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Background
In order to see microbial evolution in action, we often
rely on experimental evolution under controlled labora-
tory conditions. The Long-term Evolution Experiment
(LTEE) [1] and similar shorter studies [2, 3] have, for
example, evolved many generations of microbes using a
serial transfer protocol, where microbes are repeatedly
diluted and transferred to a fresh medium to start a new
growth cycle. Conceptually, if we learn to understand how
microbes adapt to such a resource cycle, we might one
day be able to predict evolution in the lab and — ide-
ally — also in nature. Indeed, a lot of evolution in the
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lab seems remarkably reproducible, where microbes show
parallel adaptations both on the level of the phenotype as
well as the genotype [4–11]. However, there also seems
to be strong potential for divergent evolution, leading to
diversity both between and within replicate populations
[12–14]. Diversification events within populations in
serial transfer regularly show cross-feeding interac-
tions [12, 13, 15–17], where strains emerge that grow
on metabolic by-products. These cross-feeding interac-
tions are increasingly well understood with the help of
metabolic modeling and digital evolution [18, 19]. A
recent metagenomics study has revealed even more coex-
isting lineages in the LTEE than were previously reported

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=s12862-019-1512-2&domain=pdf
mailto: bramvandijk88@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


van Dijk et al. BMC Evolutionary Biology          (2019) 19:201 Page 2 of 18

[20]. It is however not yet clear whether all these poly-
morphisms are the result of uni-directional cross-feeding
interactions, or if other mechanisms could drive coex-
istence in a simple experiment such as a serial transfer
protocol. Furthermore, whether or not the diversified
communities experience fundamentally different selec-
tion pressures and growth dynamics as a collective, is still
an open question.
Prior to being subjected to lab conditions, the microbes

used in the aforementioned experimental studies have all
had a long evolutionary history in natural environments,
experiencing harshly fluctuating and — more often than
not — unfavourable conditions. While a serial transfer
protocol at a first glance selects mostly for higher growth
rates when resources are abundant (i.e. during the log
phase), there is also selection to survive when resources
are depleted and the population no longer grows (i.e.
during the stationary phase). In fact, given the unpre-
dictable conditions found in nature, some of the ancestors
of Escherichia coli might have survived precisely because
they diverted resources away from growth. Indeed, E. coli
does exactly this during the stationary phase by means
of the stringent response, regulating up to one third of
all genes during starvation [21]. This response lowers the
growth rate, but promotes efficiency and survival (i.e. a
higher yield). While most microbes have ways to deal
with starvation, the physiology of growth arrest varies a
lot across different microbes, and especially display great
variation in how long they can persist in the absence of
nutrients (for an excellent review, see [22]). After pro-
longed starvation, many species of bacteria go through
even more physiological changes, such as the GASP
response [23], persistence [24], and sporulation [25]. Bac-
teria have also been shown to employ bet-hedging strate-
gies with respect to these physiological changes [26–28],
which could help to adapt to unexpected environmental
changes. Finally, it has been shown that microorganisms
can even adjust to expected environmental changes, antic-
ipating regularity in environmental changes [24, 29, 30],
which usually entails using predictive cues from the envi-
ronment. All these responses, as well as other features that
organisms have acquired during their evolutionary history
(gene clustering, gene regulatory network architecture,
metabolic regulation, etc.), might strongly influence the
adaptation and reproducibility we observe in the lab today.
What do we expect when a complex, “pre-evolved”

organism adapts to serial transfer protocol in the lab, given
how clean and extremely regular these conditions are?
We here use Virtual Microbes in order to firstly mimic
natural evolution, acquiring Virtual “wild types” (WTs),
which we then expose to a serial transfer protocol (see
methods). We do so in order to obtain a fresh perspec-
tive on which generic adaptations might appear in spite
of evolutionary contingencies, and how these adaptations

are achieved. We find that all the WTs — which are
both genotypically and phenotypically diverse — evolve
to anticipate the regularity of the serial transfer proto-
col by timing their growth rate, yield, and survival, to
accurately fit the daily cycle. Yet, we observe many alter-
native paths in terms of growth dynamics trajectories,
gene regulation, and diversification. Whereas some WTs
adapt by means of clever gene regulation, others diverge
into multiple strains with their own temporal niche, and
others simply time their resource consumption as to not
over-exploit the medium. In short, our WTs all recog-
nized and exploited the regularity of the serial transfer
protocol, having learned to trust the hand that feeds,
but they solve this challenge by a variety of different
mechanisms.

Results
In this study we use Virtual Microbes, a model of the
eco-evolutionary dynamics of microbes (Fig.1 and meth-
ods). In short, the Virtual Microbe model is unsupervised,
meaning that it aims to combine relevant biological struc-
tures (genes, genomes, metabolism, mutations, ecology,
etc.), allowing us to study the emergent properties of
fitness and evolution in an undirected system. In other
words, by not explicitly defining what the model should
do, we take a serendipitous approach to study microbial
evolution. By modelling evolution with many degrees of
freedom, the process can be seen as a “inventive” gen-
erator of attainable (and maintainable) adaptations [31],
and can furthermore serve to debug false intuitions [32].
Our main objective in this study is to elucidate generic
adaptations of evolution in a serial transfer protocol, to
investigate how this is achieved, and to what extend it
is constrained by prior evolution. In order not to lose
track of the objective of finding generic patterns, we refrain
from discussing and analysing every mechanistic detail,
and instead focus on major observables and discuss some
illustrative cases.

Evolving Virtual Microbe “wild types”
Before evolving Virtual Microbes in a serial transfer pro-
tocol, we first evolved a set of Virtual “Wild Types”
(WTs). Instead of optimizing these WTs solely for high
growth rates or optimal metabolic flux, we here mimic
natural circumstances by fluctuating resource conditions
(Fig. 2a). When too little resource is available, the Virtual
Microbes cannot grow, and can only stay alive for as long
as their internal resources last. When too much resource
is available however, the Virtual Microbes run the risk
of accumulating too high concentrations of metabolites,
resulting in increased death rates due to toxicity. Further-
more, a stochastic death process is implemented, allowing
even a maximally flourishing Virtual Microbes to only
live 100 time steps on average. To avoid extinction, we
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Fig. 1 Virtual Microbes model overview. a At the basis of the Virtual Microbe model is an artificial “metabolic universe”, describing all the possible
reactions that can be catalysed. Resources (yellow and blue) are fluxed in, but building blocks (purple) and energy (red) must be synthesized to
express proteins and transport metabolites across the membrane, respectively. b A Virtual Microbe only needs to express a subset of all possible
reactions to be viable, and no metabolic strategy is necessarily the “right” one. c The individuals grow and reproduce on a spatial grid, and can only
reproduce when there is an empty spot. Death happens stochastically or when a cell has accumulated toxicity by having excessively high
concentrations of metabolites. Since only cells that have grown sufficiently are allowed to reproduce, we simulate evolution with no prior
expectation

divided the total grid into four sub-grids, where the two
resource metabolites A and C (yellow and blue in Fig. 1a)
independently change in their influx rates with probabil-
ity 0.01 (see Table 3). Thus, on average, an individual will
experience one fluctuation in resource conditions dur-
ing its lifetime (see full configuration in S1). While both
influxed resources can be converted into building blocks
required for growth, the rates of influx span four orders
of magnitude (10−5 – 10−1, see Table 3), and condi-
tions will thus vary from very favourable to very poor.
Although poor conditions could cause a local population
of microbes to go extinct due to limiting resources, total
extinction is highly unlikely due to the 4 independent
sub-grids. All this in turn depends on which resources
the evolved Virtual Microbes like to consume (and at
which rate), whether or not there is too much or too
little resource, and whether or not space for reproduc-
tion is available. Finally, persisting in an unfavourable
environment for a long time can be rewarding if condi-
tions improve. All in all, this results in an unsupervised
evolutionary process where there is no prior expectation
of what metabolic strategy or gene regulatory networks
might be best suited to survive. We study what will be the
long-term target of the eco-evolutionary dynamics, not in
terms of fitness, but in terms of what the Virtual Microbes
evolve to do.
We evolved the same initial clone in the exact same

“random” resource fluctuations, only varying the muta-
tions that happened across ∼10.000 generations of evo-
lution. This produced 16 distinct WTs with their own
evolutionary history, which we then expose to the serial
transfer protocol (Fig. 2b). Despite experiencing precisely

the same fluctuations, no two WTs evolved to be the
same. For example, we observe a great diversity in gene
content, kinetic parameters of enzymes, gene regula-
tory networks and their complexity, and responses to
environmental stimuli. The core metabolism is however
strikingly similar across WTs, always consisting of a sim-
ple metabolic cycle. The rates of building block produc-
tion and death rates are also very similar across all WTs
(Additional file 1: Figure S3). In other words, it appears
that there are many different ways to be fit, and that
no solution is evidently better. The similarities and dif-
ferences between our WTs are summarized in Fig. 2c,
but we discuss this in more detail in Additional file 1:
Section S1.

In silico serial transfer evolution experiment
After evolving a variety of different WTs, we transfer
the WTs to a serial transfer protocol. With regular inter-
vals, all but 10 percent of the cells are removed, while
at the same time refreshing the medium. Although time
in Virtual Microbes has arbitrary units, we will refer
to this process as the “daily” cycle from this point for-
ward. Early in the day, during the log phase, high growth
rates are very rewarding as there is a lot of opportu-
nity to reproduce. However, once the population has
reached stationary phase (having consumed all resources),
it is favourable to survive and to not invest in growth
any further. We will focus on how our WTs adapt to
these alternating selection pressures. The results dis-
cussed here are found for a variety of different medium
conditions (e.g. also see Additional file 1: Table S2). In
the main text however, we present the 50 time step
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Fig. 2 Evolution of Virtual “wild types” under naturally unpredictable and fluctuating resource conditions. a Natural evolution is mimicked by (harsly)
fluctuating resource conditions, resulting in a wide variety of resource conditions. The (actual) grid is 40x40, with four 20x20 subspaces where the
rates of influx vary stochastically. These subspaces do not impede diffusion of metabolites or reproduction. The fluctuations of the A and C resource
(blue and yellow respectively) are independent, resulting in a variety of different conditions. bWe repeat the evolution in natural conditions 16 times
starting from the same (minimally viable) initial clone (varying themutations that happen) yielding 16 distinct WTs. TheseWTs are later transfered to a
serial transfer protocol. c In the white labels we show howmany of the evolved WTs adapted to use particular reactions. The thicker arrows represent
the shared core genome which consists of two resource importers, a metabolic cycle, and a C-exporter (yellow). Transcription factors (diamonds)
were always present across WTs, but only 11/16 WTs visibly display changes in gene expression correlated with changes in the environment

serial transfer protocol where the medium contained both
resources (A and C), as this was a condition on which
all WTs could be cultivated, ensuring equal treatment.
We focus on the generic adaptations towards this proto-
col first, and then show how specific WTs and contin-
gent factors from their evolutionary history shape these
outcomes.

All wild types evolve to anticipate the serial transfer
protocol
After 800 days of evolving in a serial transfer protocol, we
compare the ancestral WTs with the evolved populations.
We first show some of the well-known growth dynamics of
microbes: the lag-, log-, and stationary phase (Fig. 3a). As
most experimental evolutionary studies in the lab, we too
observe a decreased lag phase and an increased growth
rate. The increased growth rate in the evolved popula-
tion results in an earlier onset of the stationary phase,
which therefore takes much longer than for their WT
ancestors. Eventually, this leads to a phase where the cell
count decreases again (death phase), revealing a decrease
in survival for the evolved populations. To further study

how this decreased survival comes about, we next inves-
tigated the dynamics of average cell volumes. Cell volume
is an indicator for the “health” of the population, deter-
mining the ability to divide (minimal division volume) and
survive (minimal viable volume). A first interesting obser-
vation is an increase in average cell volume during the log
phase (Fig. 3b-c), which is also one of the first results from
the LTEE [33]. However, after this increase in cell vol-
umes during the log phase, evolved populations display a
clear decrease in cell volumes, either at the end of the day
(Fig. 3b), or during the whole stationary phase (Fig. 3c).
Indeed, if we expose the populations to prolonged star-
vation by extending the day, the evolved populations die
shortly after the anticipated serial transfer, while their
WT ancestors survived for much longer (Fig. 3b-c, right-
hand side). Strikingly, we observed that the cell volume
at the time of transferring the cells to a fresh medium
(henceforth ‘volume-at-transfer’) fall into two distinct cat-
egories. In the high yield scenario (Fig. 3b), cell volumes
are maintained above the division volume until the very
end of the day, whereas the low yield scenario, albeit hav-
ing a higher growth rate, leads to a volume-at-transfer
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Fig. 3 Virtual Microbes adapt to anticipate the regularity of a serial transfer protocol. a Growth dynamics of early population (green) and evolved
populations (blue) in terms of cell counts. (WT03#1 taken as an illustrative example). b-c Two WTs (green) and the population after prolonged
evolution in the serial transfer protocol (blue) are shown as an illustration of the anticipation effects. Over the course of 3 cycles, the average cell
volume is plotted against time for the ancestral WT (green) and for the evolved population (blue). The y-axis (cell volume) indicates the minimal
viable volume and division volume (which are fixed for the model), and the evolved volume-at-transfer (as measured at the end of the third cycle).
Daily and extended yield are measured as defined in the method section. After the third cycle, serial transfer is stopped (transparent area), showing
decreased survival of the evolved populations with respect to their ancestor. d Stacked density distributions are plotted for the volume-at-transfer
both early (transfer 0-40, green) and late (transfer 760-800, blue). e The evolved changes in yield both “daily” (within one cycle of the protocol) and
“extended” (after prolonged starvation) for all 16 WTs
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that is just above minimal. Indeed, the distribution of
these observed volume-at-transfer across ancestral WTs
are mostly high (Fig. 3d, left-hand side), while the evolved
cells clearly show a bimodal distribution (Fig. 3d, right-
hand side). Thus, all the populations evolved to either be
ready to immediately divide at transfer (high yield mode),
or exploit as much resource as possible while remaining
above theminimal viable volume (high growth ratemode).
Despite this difference in growth modes, both popula-
tions have evolved to accurately time the regularity of the
serial transfer protocol. All evolved populations also show
a consistent decrease in extended yield (Fig. 3e) relative
to the WTs, as long term yield is now masked from natu-
ral selection. Finally, we found that this anticipation effect
did not depend on details in the protocol, such as the
length of the daily cycle or the number of resources used
(Additional file 1: Figure S5 and Table S2). This reveals
that a key selection pressure in a serial transfer protocol
is not only growth as fast as possible, but also remain-
ing viable until the next day, anticipating the next supply
of nutrients.

Evolution toward a growth-yield trade-off
The two extreme categories of cell volume dynamics
from Fig. 3 illustrate a well-studied trade-off between

growth and yield in microbial populations [34–36]. We
next investigate how our different WTs evolve towards
this trade-off, and how reproducible these trajectories are.
For this, we repeated the serial transfer protocol 3 times
for each WT, and follow the trajectories over time. After
∼800 serial transfers, all populations have adapted along a
trade-off between growth and yield (Fig. 4a). No trade-off
was not observed during the first cycle of the proto-
col, which instead shows a positive correlation between
growth and yield (Fig. 4b), revealing how both growth
and yield could initially be improved for most WTs. Evo-
lution towards the trade-off, by improving both growth
and yield by e.g. importing more resources or producing
more building blocks, is similar across all WTs, although
not all WTs approach it with the same angle (also see
Additional file 1: Figure S6). Subsequent evolution on the
trade-off diverges into two distinct clusters, representing
the two aforementioned modes of high yield and high
growth rate. This divergence is not only seen between
different WTs (Fig. 4c-d), but also occurs in replicate
experiments of the same WT (Fig. 4e, Additional file 1:
Figure S6). Finally, specific WTs appear to more readily
give rise to certain outcomes, having specific adaptations
in their “mutational neighbourhood”. This is for example
illustrated by twoWTs (5 and 11) that repeatedly gave rise

Fig. 4 Trajectories towards a growth versus yield trade-off end in either the high growth rate mode or the high yield mode. a Growth rate (average
building block production rate) is plotted against daily yield (average population biomass within a single cycle), for all the 48 experiments after
adaptation to 800 serial transfers. The black dotted line is a linear regression model (R2 = 0.54). b Shows the initial points for all 16 WTs, which
actually have a positive correlation between growth and yield (R2 = 0.32) instead of the negative correlation (black dotted line). c-e These insets
display how the repeated evolution of certain WTs produce very similar trajectories towards the trade-off (time points are day 0, 20, 40, 100, 200 and
800), ending in either high daily yield (c) or low daily yield (d). Other WTs diverge after reaching the trade-off, and thus show more diverse
trajectories when repeated (e). The colours of the end point symbols depict different modes of adaptation as discussed in the next paragraph (grey
= no coexistence, purple = (quasi-)stable coexistence, black cross = extinction due to over-exploiting the medium)
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to mutants with extremely high, but unsustainable growth
rates, causing populations to go extinct repeatedly (black
crosses in Fig. 4). In summary, some WTs adapt in a sim-
ilar way to the serial transfer protocol, while others (that
have experienced the same amount of prior evolution)
have diverging evolutionary trajectories and can reach dif-
ferent solutions, especially after having adapted towards
the trade-off.

Anticipating as a collective
So far we have only looked at population averages. Next,
we study the dynamics of lineages and the evolved dynam-
ics within cells. To track lineages we tag each individual in
the population with a neutral lineage marker at the start of

the experiment (analogous to DNA barcoding [37]).When
a single lineage reaches fixation, we reapply these neutral
markers, allowing us to quickly detect long-term coexis-
tence. Moreover, these neutral markers allow us to study
which arising mutants are adaptive in the different phases
of the growth cycle. In Fig. 5a we show dynamics of neu-
tral lineagemarkers that are frequently redistributed when
one lineages fixates in the population, indicating that there
is no long-term coexistence of strains. In contrast, Fig. 5b
displays repeatedly observed (quasi-)stable coexistence,
where two lineages coexist for some time, but coexistence
was not stable in the long-term. Lastly, Fig. 5c shows sta-
ble, long-term coexistence, where the population sustains
a balanced polymorphism until the end of the experiment.

Fig. 5 Dynamics of neutral lineage markers reveal balanced polymorphisms based on the daily cycle. a-c Neutral lineage marker (random colours)
frequencies are plotted along 800 serial transfers (left hand side) and along 3 cycles. Panel A shows an example with no coexistence which is found
in 23 out of 44 replicates, and panel B and C show (quasi-)stable coexistence, found in the remaining 21 replicates. d shows, for all 3 replicates of all
WTs whether or not coexistence of neutral lineage markers was observed (grey = no coexistence, purple = (quasi-)stable coexistence, black cross =
extinction due to over-exploiting the medium). Also see Additional file 1: Figure S8
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Based on these lineage markers (also see Additional file 1:
Figure S8), coexistence (either quasi-stable or stable) was
observed in 21 out of 44 extant populations (Fig. 5d).
By zooming in on the dynamics of coexisting lineage

markers over a shorter time span (Fig. 5b-c, right-hand
side), we can better understand how these lineages sta-
bly coexist. Notably, one lineage is dominating during
log phase, while the other lineage performs better dur-
ing stationary phase. In other words, the lineages have
specialized on their own temporal niche. We find that
these dynamics can be the result of three mechanisms
(or combinations thereof): 1) cross-feeding on building
block metabolites, 2) specialisation on either of the two
resources, or 3) based on the growth vs. yield trade-off.
Cross-feeding dynamics always resulted in quasi-stable
coexistence (such as depicted in Fig. 5b), and never
resulted in the balanced polymorphism as depicted in
Fig. 5c), while the other two mechanisms (resource spe-
cialisation and growth vs. yield differentiation) most often
resulted in long-term coexistence where lineages perform
better together than they do alone (Additional file 1:
Figure S9).
While specialisation on different resources is a well

known mechanism for negative frequency dependent
selection, it is far less evident how a growth vs. yield
trade-off would result in a fully balanced polymorphism.
Mutants with higher growth rates but elevated death rates
have a very distinct signature of increasing in frequency
early in the daily cycle and decreasing to much lower fre-
quencies during the stationary phase (Additional file 1:
Figure S7A), as apposed to lineages that increase in fre-
quency throughout all phases of the cycle (Additional
file 1: Figure S7B).While suchmutants readily arise across
our experiments, they often have difficulty rising to fixa-
tion due to the increased duration of the stationary phase,
where they are unfit. In the meantime, a slower growing
lineage with lower death rates can be optimized to utilize
resources at low concentrations during stationary phase.
These dynamics can give rise to a balanced polymorphism
that does not depend on resource specialisation or cross
feeding, and is also observed in our experiments with a
single resource (Additional file 1: Table S2). Indeed, Fig. 5c
illustrates how two lineages with more than a three-fold
difference in death rates (±0.015 and ±0.048) can stably
coexist.
discussed above can differ strongly across WTs and

replicated experiments. For example, since de novo gene
discoveries were disabled during this experiment, cross-
feeding on building blocks is only possible if the ancestral
WT had the necessary importer for building blocks, which
was true only for 6/16 WTs. Similarly, even though all
WTs have the necessary importers for both the A and C
resource, oneWT consistently diverged into an A- and C-
specialist (WT10). While other WTs have multiple gene

copies for these importers, WT10 had only 1 copy of
both genes, making the loss-of-function mutations readily
accessible. In conclusion, although all polymorphic popu-
lations also anticipate the serial transfer protocol, they do
so in a different way than populations consisting of a single
lineage. They all consist of strains which time growth and
survival strategies in relation to each other in order to
precisely finish the available nutrients by the end of
the day.

Individual anticipation by tuning and trimming the gene
regulatory network
The previous section illustrates how multiple lineages can
coexist because the predictable serial transfer protocol
produces temporal niches. However, many of our WTs
do not show any tendency to differentiate like this, and
instead always adapt to the serial transfer protocol as
a single lineage (Fig. 6d). In order to better understand
this, we will now look at the intracellular dynamics of
WT07, and how it changes when adapting to the pro-
tocol. WT07 is one of the more “clever” WTs with a
relatively complex GRN, and displays strong responses in
gene expression when exposed to fluctuations. In Fig. 6b
we show that WT07 consistently adapts to the protocol
by switching between two modes of metabolism, where
importer proteins are primed and ready at the beginning
of the cycle, and exporter proteins and anabolic enzymes
are suppressed during stationary phase. Despite some dif-
ferences in the structure of the evolved GRNs, the protein
allocation patterns are virtually indistinguishable across
the three replicate evolutionary experiments. Interest-
ingly, although no parallel changes were observed in the
kinetic parameters of proteins, we do observe the paral-
lel loss of an energy-sensing transcription factor as well
as increased sensitivity of the TF that senses the exter-
nal resource C. In other words, even though all mutations
are equally likely, evolution apparently happened mostly
through loss, and tuning and trimming of the GRN. Mod-
ulation between two metabolic modes allows this single
lineage to switch between log and stationary phase, occu-
pying both temporal niches. Indeed, a second lineage
never appeared for this WT (Fig. 6b and Additional file 1:
Table S2).

Individual and collective solutions have similar macro-level
observables
We have illustrated how all of our evolutionary exper-
iments result in two modes, one with high yield, and
another with high growth rates and lower yield. We have
also shown how populations could or could not diver-
sify into two strains, and how certain populations used
regulated gene expression to adapt to all growth phases
by itself. The four different combinations of collectives
vs individual and regulating vs. non-regulating solutions,
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Fig. 6 Anticipation can entail polymorphism or a single lineage that switches between two metabolic modes. a Two lineages occupy different
niches on the growth vs. yield trade-off WT02#01 diverges into a slow growing lineage (yellow lineage, average death rate ±0.015) and a faster
growing lineage with elevated death rates (blue lineages, average death rate ±0.048), together anticipating the serial transfer protocol. b A single
lineage anticipates the daily cycle by trimming and tuning the gene regulatory network. On the left the ancestral GRN, protein allocation dynamics,
and resource concentrations are displayed over the course of 1 day. Next, after 400 days, all three independent simulations of WT07 are shown to
have evolved to anticipate as a single lineage with two metabolic modes

and their daily yield, are shown in Fig. 7. As can be seen,
all these combinations anticipate the serial transfer proto-
col using either the high yield or high growth rate strategy,
and achieve similar values. The non-regulating individual
solutions however clearly perform more poorly, as these
populations lack the ability to fill both temporal niches
(note that gene discoveries are disabled during the serial
transfer experiment, so gene regulation cannot evolve de
novo). Also note that, although the regulating WTs could
fill both temporal niches by themselves, this does not pre-
vent balanced polymorphisms from forming repeatedly.
These results show that either a collective solution and/or
gene regulation is required to be well-adapted to a serial
transfer protocol, and that which solution is used is not
observable on the overall macro-level.

Discussion
In this study we have taken a serendipitous approach to
study how microbes adapt to a serial transfer protocol,
and to what extent this is determined by their evolution-
ary history. The Virtual Microbe modelling framework
serves this goal by building biology from the bottom
up, i.e. implementing basic biological features and their
interactions. We observe that regardless of their evolu-
tionary history, all WTs learn to anticipate the regularity
of the serial transfer protocol by evolving a fine-tuned
balance between high growth rate and yield. Long-term
survival without nutrients, which is nowmasked from nat-
ural selection, always deteriorates after prolonged expo-
sure to such a protocol. Furthermore, this anticipation is
done in two distinct ways. The high yield mode makes
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Fig. 7 Individual and collective solutions have similar macro-level observables The daily yield for all the evolved populations is shown, for groups of
individual / collective solutions with and without regulated gene expression. Colours and symbols are identical to previous figures (grey=no
coexistence, purple=coexistence). Only the non-regulating, individual lineages perform significantly worse than any of the other groups
(performing all 6 Wilcoxon rank-sum tests with α 0.05)

sure that the cells are ready to divide as soon as trans-
ferred to a fresh medium, whereas the high growth
rate mode maximally exploits the medium but results
in a poor performance during the stationary phase. We
next show that WTs have similar trajectories towards
a growth versus yield trade-off, but may subsequently
diverge along it. Polymorphisms within populations are
frequently observed, which can happen by means of
cross-feeding interactions, resource specialisation, or by
means of growth vs. yield specialisation. We furthermore
find that these evolved collectives are dependent on one
another, as both lineages perform better in the presence
of the other. Finally, we show that regulated gene expres-
sion allows for an individual lineage to fill both temporal
niches by itself, but that populations without regulated
gene expression can still be well adapted to the proto-
col by diverging into two strains. In general, our results
are robust to details in the serial transfer protocol, such
as using only a single resource, or varying the interval
between transfers (see Additional file 1: Table S2). The
anticipation effects therefore appear to be generic features
of microbes exposed to prolonged evolution in a serial
transfer protocol.
How do our results map onto experimental evolution

in the lab? E. coli REL606 has been subjected to a daily
serial transfer protocol for over 30 years (∼70.000 gener-
ations) in the LTEE. Many of our observations are very
similar to the LTEE, such as the improved growth rate
and cell sizes during the log phase[33], the (quasi-)stable
dynamics of coexisting lineages[20], and “leapfrogging”
dynamics (e.g. Fig. 5a-b) where an abundant lineage is

overtaken by another lineage before rising to fixation
[38, 39]. The comparison with respect to the growth
rates, yield, and the anticipation effects discussed in this
work, is however less straightforward. We have observed
how all our WTs quickly evolve to be maximally effi-
cient given our artificial chemistry, and only subse-
quently diverge along the apparent growth versus yield
trade-off (see Additional file 1: Figure S6). In the LTEE,
growth and yield have continued to improve so far, and
although a trade-off has been observed within the popu-
lations[40], no growth versus yield trade-off between the
replicate populations has been observed yet. Nevertheless,
we propose that anticipation of periodic environmen-
tal change, and a growth versus yield trade-off, provides
testable hypotheses for the LTEE and similar experimental
studies.
More similarities with empirical studies are found in

the surprising number of experiments that result in bal-
anced polymorphisms. A repeatedly observed mechanism
for such a polymorphism is cross-feeding [11, 13, 16, 17],
where modeling has shown that this adaptive diversifi-
cation involves character displacement and strong niche
construction[18], and furthermore strongly depend on
the regularity of a serial transfer protocol [19]. We how-
ever also found balanced polymorphisms that did not
include cross-feeding, involving one lineage with high
growth rates during log phase and a slower growing
lineage which performs better in stationary phase. Sim-
ilar mechanisms of coexistence has been observed in
respiratory and fermenting strains of Saccharomyces cere-
visiae in chemostat [34], and single nucleotide mapping
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has furthermore revealed the existence of this trade-off
[35]. These results are directly related to r/K selection
theory [41], which describes an inherent conflict between
the quantity and quality of ones offspring. Indeed, these
dynamics have been shown to lead to two species stably
coexisting in microbial populations [36, 42, 43]. Manhart
& Shakhnovich [44] furthermore show that an unlim-
ited number of species can theoretically coexist within
a serial transfer protocol, occupying any niche on a
trade-off continuum. Here we show that these dynam-
ics can emerge from a more complex eco-evolutionary
setting. However, our results suggest that the trade-off
between growth and yield is not continuous, as inter-
mediate solutions rarely evolve. This is caused by the
fact that as soon as the volume-at-transfer for our dig-
ital microbes is smaller than the division volume (i.o.w.
something else than the main nutrient becomes limit-
ing for division), a cell may as well exploit its resources
fully.
Experimental evolution of Pseudomonas fluorescens has

shown that different evolutionary paths can lead to the
same phenotypic adaptations in a new environment [45,
46]. On the other hand, many studies have also suggested
that adaptation can often entail mutations in the same
genes [47, 48]. In our experiments, prior adaptations can
in some cases strongly shape the way subsequent evo-
lution plays out, but these evolutionary constraints can
strongly differ betweenWTs (Additional file 1: Figure S6).
Furthermore, these data show that these evolutionary
constraints may or may not diminish after prolonged evo-
lution. There is a lot of variation on the predictability
during the serial transfer experiment, revealing that evo-
lutionary constraints bymeans of historical contingencies,
are themselves the result of contingencies.
A factor that has been hypothesised to strongly impact

the predictability and evolvability of biological systems
are their GRNs [6, 49–51], where for example global
transcription factors could serve as mutational targets
with large-scale phenotypic effects [8]. While our results
(Fig. 6b) clearly show an example where similar muta-
tions result in similar adaptive changes, other regulating
WTs showed much less predictability. For example, WT
#09 is another strong regulatingWT, but showed different
outcomes with respect to diversification and regulation
in all 3 cases. In other words, while the GRN appears
to add knobs and buttons for evolution to push, other
mechanisms are clearly available to adapt and be fit in a
serial transfer protocol. One such mechanism could be
‘metabolic regulation’, which has recently been shown to
be able to achieve very high levels of robustness with-
out leading to a loss in adaptive degrees of freedom
[52]. Because all the kinetic parameters of enzymes (Km,
Vmax, etc.) in the Virtual Microbes are freely evolvable,
it is likely that this metabolic regulation of homeostasis

plays a very important role in Virtual Microbes. This
could furthermore explain why the differences in evolv-
ability between regulating and non-regulating popula-
tions were smaller than we initially expected. We have
indeed observed that, for certain WTs, a change in
metabolism could bypass regulated protein expression by
means of kinetic neofunctionalistaion of importer pro-
teins, that evolved to be sensitive to different concentra-
tions. Although such a solution does waste more building
blocks on the continuous production of importer proteins,
it is alsomuchmore responsive to environmental changes.
It is possible that subtle differences like this explain, for
example, why two of our WTs were much more sensitive
to extinction by over-exploiting the medium than others.
Furthermore, although the phenotypes that are reachable
can be limited by prior evolution [53], the trajectories of
evolution may be much less predictable on the long-term
[54]. The role of metabolic regulation, and how this inter-
plays with the repeatability and timescales of evolution, is
a promising endeavour for future studies.

Who is anticipating what?
Our experiments reveal how populations of microbes
can evolve to anticipate the regularity of a serial trans-
fer protocol, trusting that new resources will be delivered
on time. The concept of microbial populations anticipat-
ing predictable changes is frequently observed in nature
[29, 29, 55], and is supported by theoretical models
[30, 56]. This form of anticipation however typically
entails an environmental cue, where a preceding unrelated
signal is used to anticipate environmental changes, usually
followed by individuals taking some form of action. With-
out the necessity of such a cue, we show that anticipation
can readily emerge in many different ways from an eco-
evolutionary process. Although our form of anticipation
is more passive, where not an individual but the system as
a whole has temporal dynamics that accurately fit the pro-
tocol, this does not necessarily exclude individual-based
anticipation. Like WT#07, most of the evolved regulat-
ing populations actually did not evolve to down-regulate
their resource importers during the stationary phase,
despite having repeatedly evolved to down-regulate other
catabolic and anabolic enzymes (illustrated in Fig. 6b).
Since no more resource is available, and building blocks
are consumed in order to keep expressing these importer
proteins, this clearly does not have a positive impact dur-
ing the late stationary phase. One can wonder why these
individuals seem to keep the engine running. Whereas
bet-hedging strategies have been shown to be a way to deal
with irregular environmental changes [24, 26–28, 57, 58],
this passive form of anticipation can be a way deal with
regular, predictable changes in the environment. Further-
more, this could potentially be the first step towards active
anticipation by means of a circadian rhythm, such as the
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sunflower heliotropism [59] and the diurnal migration of
life in lakes and oceans [60–62].

Moving towards an eco-evolutionary understanding
The dynamics of Virtual Microbes expose that even a
simple serial transfer protocol entails much more than
sequentially evolving higher and higher growth rates.
Instead, adaptation is an eco-evolutionary process that
strongly depends on prior evolution, timescales, the pres-
ence of other competitors and mutants, and transient
fitness effects. Although we found that competition exper-
iments generally favoured the evolved population over
the ancestral WTs, there were exceptions to this rule.
It is therefore possible that the ancestral WTs perform
better in such an experiment, but that this does not
describe the stable eco-evolutionary attractor. Indeed,
survival of the fittest is an eco-evolutionary process
where any emerging lineage interacts with other lin-
eages (or with other mutants) through changes in the
environment, often resulting in a collective, community-
based solution rather than the winner of all pair-wise
interactions [44]. Furthermore, faster growth becomes
less and less important as populations become better
adapted to the serial transfer protocol, perhaps mak-
ing the aforementioned interactions between lineages
increasingly relevant. Other recent studies have recently
elucidated the importance of eco-evolutionary dynamics
[44, 63], and how this can readily give rise to coexis-
tence of multiple strains which could not have formed
from a classical adaptive dynamics perspective [64, 65].
Indeed, metagenomics have revealed much more diver-
sity in the LTEE than previously anticipated [20]. Shift-
ing focus from competition experiments towards the
ever-changing selection pressures that emerge from the
eco-evolutionary dynamics and interactions, will make
the field of experimental evolution harder, but more
intriguing, to study.

Conclusions
We have studied how in silico WTs of Virtual Microbes
adapt to a serial transfer protocol like that of the LTEE.
The LTEE has shown a sustained increase in competitive
fitness, and intensive research displays how the evolved
clones are still improving their growth rates with respect
to their ancestor as to this day [66–68]. Our experiments
have generated a novel hypothesis that microbes in a
serial transfer protocol will eventually evolve to anticipate
the regular resource interval, and can do so by evolving
either a high growth rate mode, or a high yield mode.
Both these modes can be achieved by a single individ-
ual lineage, or by a collective of two strains which both
have their own temporal niche. Taken together, our results
reveal important insights into the dynamics and relevant
selection pressures in experimental evolution, advancing

our understanding of the eco-evolutionary dynamics of
microbes.

Methods
A full description of the model and underlying equations
is available online (https://bitbucket.org/thocu/virtual-
microbes and https://virtualmicrobes.readthedocs.io).
Here we summarize the sections of these documents that
are relevant to this study.

Finding generic patterns of evolution
Experimental evolution is, of course, done on organisms
that have evolved for a long time under a wide variety of
conditions. These studied organisms all have their own
evolutionary history, and differences in how they deal with
starvation, stress, changes in resource etc. With Virtual
Microbes we are able to evolve a de novo set of “wild
types” (WTs), adapted to live in such severely fluctuating
resource conditions. We can then explore how these WTs
adapt to experimental evolution, and find generic patterns
of evolution. To find generic patterns without being biased
towards specific solutions, the biology of VirtualMicrobes
build-up frommany levels with many degrees of freedom.
One downside of this strategy can be that it can be hard for
readers to understand all the underlying assumptions and
algorithm and that many simulations result in a slightly
different anecdote. However, we encourage the reader to
read this work as though reading about ‘real’ biological
evolution, where the experiments reveal new generic pat-
terns and generate new hypotheses. With or without an
understanding of the mechanistic details, relatively sim-
ple multilevel models can capture the eco-evolutionary
dynamics of microbes, allowing us to study what happens,
what else emerges from these dynamics “for free”, and
equally important: what needs further explanation?

Model overview
Virtual Microbes metabolise, grow and divide on a spa-
tial grid (Fig. 1c). Here, we use two parallel 40x40 grids
with wrapped boundary conditions. One grid contains the
Virtual Microbes and empty grid-points, and the other
describes the local environment in which the Virtual
Microbes live. This environmental layer holds influxed
metabolites, waste products of Virtual Microbes, and
spilled metabolites from lysing cells (Fig. 1b). In order to
express proteins, grow, and maintain their cell size, Vir-
tual Microbes must synthesize predefined metabolite(s),
which we call building blocks. These building blocks are
not directly provided, but must be synthesized by the
Virtual Microbes by expressing the right proteins, allow-
ing them to pump metabolites into the cell, and convert
metabolites into one another (Fig. 1a). The expression of
these proteins depends on genes on genomes that undergo
a wide variety of possible mutations upon reproduction

https://bitbucket.org/thocu/virtual-microbes
https://bitbucket.org/thocu/virtual-microbes
https://virtualmicrobes.readthedocs.io
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(Table 1). Genomes are circular lists of genes, each with
their own unique properties (e.g. Km, Vmax for enzymes,
Kligand and binding motif for TFs). The level of expres-
sion is unique for each gene, and is determined by its
evolvable basal transcription rate and how this rate is
modulated by transcription factors. When an enzyme or
transporter gene is expressed, that specific reaction will
take place within the cell that carries that gene. Note how-
ever that in the complete metabolic universe, many more
possible reactions exist. The genome of an evolved Vir-
tual Microbes will typically only use a subset of all the
possible reactions. Genes to catalyse new reactions and
novel TFs can be discovered through rare events. Which
genes end up being selected for is not explicitly defined,
but the result of a birth and death process. Birth depends
on the availability of empty space and resources to syn-
thesize new building blocks, whereas death depends on
the ability to survive under a variety of different condi-
tions and the potential accumulation (and avoidance) of
toxicity. The resulting survival of the fittest (referred to as
“competitive fitness” by Fragata et al., 2018) is an emergent
phenomenon of eco-evolutionary dynamics[69].

Metabolic universe The metabolic universe in Virtual
Microbes is an automatically generated (or user defined)
set of metabolites and reactions between them. The sim-
ple metabolic universe used in this study was automati-
cally generated by a simple algorithm that defines 4 classes
of molecules, how they can be converted into one another
by means of 6 reactions, how fast they degrade, diffuse
over the membranes, etc. (see Table 4).

The metabolism is simulated on the grid in terms of
Ordinary Differential Equations (ODEs) using the Gnu
Scientific Library in Cython. These ODEs include the
influx of molecules into the system, transport or diffusion
across the membrane, intracellular metabolism (includ-
ing expression and decay of proteins), biomass produc-
tion, cell volume, the build-up of toxicity, etc.. Diffusion
between grid points was implemented as a simple local
diffusion process, and is interleaved with the ODEs for
efficiency. The number of simulations was limited to 16
WTs and 16x3 “lab” experiments due to computational
feasibility. Statistics in this study only report effect sizes,
as p-values are irrelevant in simulated studies [70].

Transmembrane transport For all molecules, trans-
porters exist that import or export molecules across the
cell membrane. Michaelis-Menten kinetics determine the
transmembrane transportation with rate v :

v = vmaxT ·[ T ] · [ S] ·[ e]
([ S]+KS) · ([ e]+Ke)

where [ T ] is the concentration of the transporter protein,
[ S] is the concentration of substrate transported, and [ e]
is the concentration of available energy carrier metabo-
lites. KS and KE are the Michaelis-Menten constants for
the substrate and energy carrier respectfully. Depending
on the direction of transport (importing or exporting) [ S]
is either the external or the internal concentration of the
substrate. Note that for any gene on the genome of a Vir-
tual Microbe, VmaxT ,KS and KE are all freely evolvable
parameters.

Table 1 Types of mutations and their probabilities in WT evolution and serial transfer protocol (STP)

Mutation Description Prob (WT
evolution)

Prob (STP)

Duplication A stretch of 1 or more genes is duplicated in
tandem

0.005 0.0015

Deletion A stretch of 1 or more genes is deleted 0.005 0.0015

Inversion A stretch of 1 or more genes is inverted in
order

0.005 0.0015

Translocation A stretch of 1 or more genes is moved to a
random location

0.005 0.0015

(stretch length) Geometrically distributed with p = 0.3 - -

Gene discovery Per time-step probability of discovering a
new (randomly parameterised) gene.

0.0002 (disabled)

HGT Per time-step probability of copying a gene
from a cell closeby

0.002 (disabled)

Point mutation Per gene per generation probability of modi-
fying a single parameter of a gene (promoter
strength, Michaelis Menten constants)

0.005 0.0015

Regulatory mutation Per gene per generation probability of (par-
tially) modifying the upstream binary opera-
tor sequence of a gene

0.005 0.0015
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Metabolism Similar to the transport, metabolic rates are
catalysed by proteins by Michaelis-Menten kinetics with
rate v:

v = vmaxE ·[ E] ·
∏

R∈R[R]
∏

R∈R([R]+KR)

where [E] is the concentration of the enzyme catalysing
the reaction,R the set of all reactant metabolites, and KR
and vmaxE are evolvable kinetic parameters of enzyme E .

Biomass production Virtual microbes convert building
block B to a biomass product P, which is consumed for
cell growth and maintenance Growth(B) and protein pro-
duction Prod(B), and determines strength with which
individuals compete to reproduce. Biomass is next con-
verted to cell volumewith a fixed rate, and used for protein
expression depending on the demands by the evolved
genome. In other words, high rates of expression demand
more biomass product for proteins, leaving less biomass
product to invest in cell volume or maintenance (see cell
volume growth). In total, the rate of change of P then
becomes
dP
dt

=Production(B) − Growth(B) − Proteinexpression(B)

− dilution − degradation
where B is the concentration of building block metabo-
lites. Production is a linear conversion of B into P, whereas
growth, protein expression, and dilution depend on the
dynamics of the cell. Biomass product is then consumed
by cellular growth and protein expression which are a
function of the building block concentration, is diluted
proportional to the changes in cell volume, and degra-
dation is fixed. Consumption for protein expression is
summed over all genes:

Ngenes∑

i=1
Pri · Regi

where Pri is the basal expression rate of gene i, either up
or down-regulated if transcription factors are bound to its
operator sequence Regi (see transcriptional regulation).

Cell volume growth We assume that cell volumes amax-
imum cell size MaxV and that there is a continuous
turnover d of the cell volume at steady state, ensuring the
necessity to keep on metabolising even if there is no pos-
sibility to reproduce (i.e. if the grid points are all full).
Volume then changes as

dV
dt

= g · V · 1 − V
MaxV

− d · V

Transcriptional regulation The rates at which genes are
expressed is a function of the basal expression rate of
the gene and the concentrations of binding TFs and their

molecular ligands. The intrinsic basal expression rate of a
gene is encoded by a strength parameter in a gene’s pro-
moter region. This basal expression rate can bemodulated
by TFs that bind to an operator sequence associated with
the gene. Binding sites and TF binding motifs are mod-
elled as bit-strings and matching depends on a certain
fraction of sequence complementarity. If aminimum com-
plementarity is chosen < 1 a match may occur anywhere
within the full length of the operator binding sequence
and the TF binding motif. The maximum fraction of
complementarity achieved between matching sequences
linearly scales the strength with which a TF binds the tar-
get gene. In addition to binding strength following from
sequence complementarity, TFs encode an intrinsic bind-
ing affinity for promoters Kb, representing the structural
stability of the TF-DNA binding complex.
TFs can, themselves, be bound to small ligandmolecules

with binding affinity Kl, altering the regulatory effect they
exert on downstream genes. These effects are encoded
by parameters effbound and effapo for the ligand-bound
and ligand-free state of the TF, respectively, and evolve
independently. Ligand binding to TFs is assumed to be
a fast process, relative to enzymatic and transcription-
translation dynamics, and modeled at quasi steady state.
We determine the fraction of TF that is not bound by any
of its ligands L:

Wapo =
∏

l∈L

(

1 − [ l]
[ l]+Kl

)

The fraction of time that a TF τ in a particular state σ

(bound or apo) is bound to a particular operator o:

Vo = [ τσ ] ·cτo · Kbτ

1 + ∑
σ∈S

∑
τσ ∈T [ τσ ] ·cτo · Kbτ

depends on the inherent binding affinity Kbτ
as well as the

sequence complementarity score cτo between the tf bind-
ing motif and the operator sequence [cite Neyfahk]. The
binding polynomial in the denominator is the partition
function of all TFs T in any of the states S that can bind
the operator. Note that small declines in the concentration
of free TFs due to binding to operators are neglected.

Now, the operator mediated regulation function for any
gene is given by

Reg =
∑

Vi · Ei
with Vi the fraction of time that the operator is either
unbound or bound by a TF in either ligand bound or
unbound state and Ei the regulatory effect of that state
(1 if unbound or effbound or effapo when bound by a lig-
and bound or ligand free TF, respectively). Finally, protein
concentrations [P] are governed by the function:

d[P]
dt

= Pr · Reg · degr·[P]
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where Pr is the evolvable parameter promoter strength
and degr a fixed protein degradation rate which is not
evolvable.

Toxicity and death Virtual Microbe death is a stochas-
tic process depending on a basal death rate, which is
potentially increased when internal metabolite concentra-
tions reach a toxic threshold. A cumulative toxic effect is
computed over the current life time τ of a microbe as

etox =
∑

m∈M

∫ τ

t=0
f (m, t)dt

for all internal moleculesM, with

f (m, t) = max
(

0,
[m]t −toxm

toxm

)

the toxic effect function for the concentration of molecule
m at time t with toxicity threshold toxm. This toxic effect
increases the death rate d of microbes starting at the
intrinsic death rate r

d = etox
s + etox

· (1 − r) + r

where s scales the toxic effect. Virtual Microbes that sur-
vive after an update cycle retain the toxic level they accu-
mulated so far. Apart from toxicity and stochastic death,
cells can also starve. When insufficient biomass product
is available to keep up the slowly decaying volume of the
cell, the cells decrease in volume. If the cell volume drops
below aminimally viable volume, this cell is automatically
for death.

Reproduction When an empty grid point is available, the
8 (or less) neighbouring competitors get to compete to
reproduce into the grid point. During the ‘in silico serial
transfer protocol’ (see below), all cells are continuously
mixed, so 8 (or less) random competitors are sampled.
When cells compete for reproduction, the cells are ranked
according to cell size. The “winner” is then drawn from
a roulette wheel with weights proportional to this rank-
ing. Upon reproduction, cell volume is divided equally
between parent and offspring, and the genome is copied
withmutations (see below). Molecule and protein concen-
trations remaining constant. Toxic effects built up during
the parent’s lifetime do not carry over to offspring.

Genome and mutations The genome is a circular list of
explicit genes and their promoter region, organised like
“pearls on a string”. Genes can be enzymes, transporters,
or transcription factors. At birth, the genome is subject
to various types of mutations. Large mutations include
duplications, deletions, inversions, and translocations of
stretches of genes (see Table 1). At the single gene level,

point mutations allow all evolvable parameters to mutate
individually (see Table 2). Horizontal gene transfer can
occur on every time step. Innovations are an abstraction of
“HGT from an external (off-grid) source”, and allow ran-
domly parameterised genes to be discovered at any given
moment with a low probability.

Experimental setup
Metabolic network and wild type evolution We use a
very simple metabolic network with 2 resource metabo-
lites, 1 building block metabolite, and an energy car-
rier (Fig. 2a). We initialised 16 minimally viable Virtual
Microbes, and evolved them for ∼10.000-15.000 genera-
tions in fluctuating resource conditions by applying ran-
dom fluctuations of the influx rates for the A and the C
resource. Because the rate of influx for the two resource
metabolites fluctuates between very high (10−1) and very
low values (10−5), conditions can be very poor, very rich,
and/or potentially toxic. To avoid total extinction, we
subdivided the 40x40 grid into four 20x20 subspaces, in
which these fluctuations are independent (see Fig. 2b).
Note however that these subspaces do not impede diffu-
sion and reproduction, but merely define the rate at which
resources flux into different positions on the grid. In this
study, the microbes do not migrate during their lifetime.
These conditions, summarized in Table 3, aim to simulate
natural resource fluctuations, evolving what we call “wild
types” (WTs) of Virtual Microbes. (see Additional file 1:
Section S1).

Table 2 Gene level mutations and the boundary conditions

Parameter Gene types Value range in simulation

Promoter
strength

Enzyme,
transporter,
TF

[ 0.001, 10]

Ksubstrate Enzyme,
transporter

[ 0.001, 10]

Kenergy Transporter [ 0.001, 10]

Kligand TF [ 0.001, 10]

Koperator TF [ 0.001, 10]

Vmax Enzyme,
Transporter

[ 0.001, 10]

effect-bound TF [ 0.001, 10]

effect-apo TF [ 0.001, 10]

ligand TF A, B, C, or e

exporting Transporter True,False

sense-
external

TF [True,False]

binding-
motif

TF bit flip at random position

operator-
sequence

Enzyme,
Transporter,
TF

bit flip at random position
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Table 3 Grid setup and environmental forcing in WT evolution
and serial transfer protocol (STP)

Option (WT evolution) Description Value or range

Maximum population
size

As defined by the size of
the grid (40x40)

4900

Sub-grids The grid is sub-divided
into n grids where fluctu-
ations are independent

4

Fluctuation frequency Probability (per time
step) of 1 metabolite (A
or C) changes in influx in
one of the sub-grids

0.01

Fluctuation range New influx of
metabolite is sampled
uniformly from range

[10e-5, 10e-1]

Extracellular metabolite
outflux

Rate at which
metabolites outside of
cells wash out

0.01

Option (serial transfer
protocol)

Description Value or range

Maximum population
size

As defined by the size of
the grid (70x70)

4900

Number of cells serially
transferred

A (near) tenfold dilution
of cells

500

Time steps of cycle This represents, for
example, the“ 24 h” serial
transfer protocol of the
LTEE

50 (AUT)

[ A] at beginning of cycle Amount of resource A
given at the beginning
of the cycle

1.25

[ C] at beginning of cycle Ammount of resource C
given at the beginning
of the cycle

1.25

Extracellular metabolite
outflux

Assuming metabolites
can no longer wash out
of the system

0.0

The initial population consists of cells that have 3
enzymes, 3 pumps, and 5 transcription factors. All these
proteins are randomly parameterized, meaning that these
proteins are unlikely to have good binding affinities and
catalytic rates. The amount of building block required to
grow and produce protein is therefor very minimal in the
early stages of evolution, and is increased up to a fixed
level as the Virtual Microbes become more productive
over time.

In silico serial transfer protocol We mimic a serial
transfer protocol like by taking our evolved WTs and –
instead of fluctuating the resource conditions – period-
ically supplying a strong pulse of both the A- and the
C-resource. While WTs are evolved in a spatial setting
where resources flux in and out of the system, we here mix
all cells and resources continuously and fully close the sys-
tem, meaning no metabolites wash in or out of the system
during the daily cycle. To apply strong bottlenecks while at
the same time allowing for sufficient growth, we increased
the size of the grid from 40x40 to 70x70. We then dilute
population approximately tenfold, transferring 500 cells to
the next cycle. Horizontal gene transfer between cells was
disabled to represent the modified (asexual) Escherichia
coli REL606 clone that is used in the LTEE [1]. Finally,
as the strong bottlenecks cause more genetic drift in our
small populations than in the WT evolution, we found it
necessary to dial back the mutation rates for the evolu-
tion of WTs to 30% to avoid over-exploiting mutants from
appearing to easily (see Table 1). Other parameters of the
serial transfer protocol are listed in Table 3.

Growth rate and yield measurements Yield was
approximated by taking sum of all cell volumes. We
measured yield both within a single serial transfer cycle
(“daily yield”), and as the extended yield when we tested
for long-term survival. As all WTs had slightly temporal
growth rate dynamics, we estimated the growth rates as
the average building block production during the first half
of the protocol.

Characterising coexistence Using the neutral lineage
markers (also see Additional file 1: Figure S8), we manu-
ally characterised coexistence by looking at the dynamics
of neutral lineagemarkers.When two neutral markers had
relatively stable frequencies as visualised in Fig. 5b-c for at
least 10.000 time steps (approximately 100 generations), it
was scored as coexistence. Sometimes coexistence did not
last until the end of the simulation, which we refer to as
quasi-stable coexistence.

Table 4 A priori defined metabolites and reactions in artificial chemistry

Metabolite Mass Class Degradation rate Diffusion rate Toxicity level

A 4 Resource 0.01 0.02 0.2

B 5 Building block 0.1 0.0015 0.2

C 6 Resource 0.01 0.015 0.2

e 1 Energy carrier 0.5 0.0015 0.2

Potential reactions (6)

1C → 1B + 1e 1C → 1A + 2e 1A + 1B → 1C 2A → 1C 2A → 1B 1B → 1A + 1D



van Dijk et al. BMC Evolutionary Biology          (2019) 19:201 Page 17 of 18

Further configuration of Virtual Microbes Apart from
the parameters within the confines of this article
(Tables 1, 2, 3 and 4), we have used the default settings for
Virtual Microbes release 0.1.4, with the configuration files
provided in Additional file 1: Section S2. Further details
on the model and parametrisation are available online
https://bitbucket.org/thocu/virtual-microbes
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