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Genomic analyses of Burkholderia
cenocepacia reveal multiple species with
differential host-adaptation to plants and
humans
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Abstract

Background: Burkholderia cenocepacia is a human opportunistic pathogen causing devastating symptoms in
patients suffering from immunodeficiency and cystic fibrosis. Out of the 303 B. cenocepacia strains with available
genomes, the large majority were isolated from a clinical context. However, several isolates originate from other
environmental sources ranging from aerosols to plant endosphere. Plants can represent reservoirs for human
infections as some pathogens can survive and sometimes proliferate in the rhizosphere. We therefore investigated if
B. cenocepacia had the same potential.

Results: We selected genome sequences from 31 different strains, representative of the diversity of ecological
niches of B. cenocepacia, and conducted comparative genomic analyses in the aim of finding specific niche or host-
related genetic determinants. Phylogenetic analyses and whole genome average nucleotide identity suggest that
strains, registered as B. cenocepacia, belong to at least two different species. Core-genome analyses show that the
clade enriched in environmental isolates lacks multiple key virulence factors, which are conserved in the sister clade
where most clinical isolates fall, including the highly virulent ET12 lineage. Similarly, several plant associated genes
display an opposite distribution between the two clades. Finally, we suggest that B. cenocepacia underwent a host
jump from plants/environment to animals, as supported by the phylogenetic analysis. We eventually propose a
name for the new species that lacks several genetic traits involved in human virulence.

Conclusion: Regardless of the method used, our studies resulted in a disunited perspective of the B. cenocepacia
species. Strains currently affiliated to this taxon belong to at least two distinct species, one having lost several
determining animal virulence factors.
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Background
Over the past years, the genus Burkholderia has been
progressively revised, leading to the description of six
current genera, Burkholderia sensu stricto, Paraburkhol-
deria, Caballeronia, Trinickia, Mycetohabitans and
Robbsia [1, 2]. Burkholderia sensu stricto englobes at
least 31 distinct species, including 22 that belong to the
Burkholderia cepacia complex (BCC) [1]. The BCC

harbors species that are opportunistic human pathogens,
causing devastating symptoms in immunocompromised
individuals. These pathogens are mainly causing nosoco-
mial infections and severely affect patients suffering
from cystic fibrosis (CF). In some cases, the infected pa-
tients can develop the fatal “cepacia syndrome” charac-
terized by progressive respiratory failure and necrotizing
pneumonia, often resulting in early death [3]. However,
some BCC strains seem to be more virulent than others
as most infections are caused by either Burkholderia cen-
ocepacia or Burkholderia multivorans [4]. In some re-
gions of Europe as well as Canada, B. cenocepacia
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infections account for over 80% of bacterial infections in
CF patients [5–7]. One lineage in particular, ET 12, is
highly transmissible and responsible for most B. cenoce-
pacia outbreaks [8]. It is no surprise that this deadly spe-
cies has received a considerable amount of attention
considering its clinical implication in human health [9].
The specific description of B. cenocepacia occurred in

2003. It was originally part of Burkholderia cepacia whose
type strain, LMG1222, was isolated from decaying onions
and identified as a plant pathogen [10]. B. cepacia later ap-
peared to be recurrently isolated from immunocomprom-
ised patients and was recognized as an opportunistic
pathogen. However, B. cepacia also proved to be useful as
a biocontrol agent against plant pathogens, inhibiting
growth of diverse oomycetes, fungi, bacteria and nema-
todes [11, 12]. With the advancements of genomics, it was
demonstrated that the presumed B. cepacia species should
be divided in five genetically distinct but phenotypically
undistinguishable genomovars [13]. With further studies,
the number of B. cepacia genomovars increased and were
progressively classified into nine separate taxa, mostly
using recA-based identification [14–16].
B. cenocepacia (initially genomovar III) was distin-

guished from B. cepacia by DNA-DNA hybridization
studies but recA sequence phylogeny still suggested dif-
ferent subgroups within B. cenocepacia [17]. At least
four different recA-lineages (IIIA, IIIB, IIIC and IIID) are
observed with lineages IIIA and IIIB being predominant
in clinical isolations. The highly virulent strains of the
ET 12 lineage belong to group IIIA [17–19]. Moreover,
using microarray experiments, it was observed that vari-
ous B. cenocepacia strains reacted differentially to condi-
tions mimicking the human host environment. Out of
several hundreds of differentially regulated genes, only
nine displayed similar regulations across the different
strains, suggesting important differences in infection
capacity across strains of B. cenocepacia [20–22]. Des-
pite the apparent genetic contrast between B. cenocepa-
cia strains, no large scale comparative genomics study
has been conducted on this species yet [23].
Albeit it has received most its attention from clinical

studies, it is not uncommon to recover B. cenocepacia
isolates from soil samples. Isolates of this species have
also been frequently sampled from plant material [19,
24–26]. Plants could thus represent alternative hosts and
potential reservoirs for BCC strains. Still, their adapta-
tion for plant infection or colonization remains poorly
documented. Four studies investigated the biocontrol
potential of recognized B. cenocepacia strains that all be-
long to the IIIB recA-lineage. Altogether, they suggest
strong biocontrol potential of plant-associated B. cenoce-
pacia strains against diverse plant-pathogens [26–29].
Our study aims at clarifying the taxonomic position of

B. cenocepacia strains isolated from different sources by

investigating the correlation between genomic identity
and environmental distribution within the species. We
also strive to elucidate if plants may represent a reservoir
of human opportunistic B. cenocepacia strains. By using
bioinformatics and phylogenetic tools, we compared the
whole genome sequences of 31 B. cenocepacia strains
isolated from either clinical or environmental sources.
We highlight the existence of a new Burkholderia spe-
cies and describe its reduced adaptation to animal infec-
tion and virulence as compared to its closest parent, B.
cenocepacia.

Results
Characteristics of selected B. cenocepacia strains selected
for comparative analyses
Two hundred forty-six of the 303 genomes (either full or
draft) of B. cenocepacia strains available on the NCBI
database, at the time of this study, are clinical isolates
(Additional file 1: Figure S1). They were sampled from
patients suffering from CF, from other pathologies or
from healthy patients. The isolates also vary according
to the source of biological sample they originate from.
Most clinical isolates were obtained from sputum or
blood samples, but some were also isolated from hospital
equipment [30] as B. cenocepacia is resistant to many
common antibiotics as well as several sanitizers [31, 32].
The remaining B. cenocepacia strains with available

genomes come from environmental sources. These can
be aerosol and water samples but also agricultural soil
and plant roots (Additional file 1: Figure S1, Table 1).
The recA phylogeny of all genomes available showed
that the recA-IIIA lineage includes in a very large major-
ity strains isolated from a clinical context (228 isolates;
94.2%), with only 10 strains obtained from an environ-
mental context and four with an unknown origin (Add-
itional file 1: Figure S1). Conversely the recA-IIIB clade
mixed clinical isolates (18; 43.9%), environmental iso-
lates (15; 36.6%), plant isolates (4; 9.8%) and isolates with
unknown origin (4; 9.8%). It should however be noted
that, among the 228 isolates clinical isolates of the recA-
IIIA clade, 188 were isolated from the same place, a hos-
pital in Vancouver, Canada. Similarly, 12 of the 18
clinical isolates of the recA-IIIB clade are from the same
hospital. There is thus a strong bias in the sampling, and
highly similar strains might coexist in the database.

Core-genome phylogenetic analysis
The genomes of 31 B. cenocepacia strains were com-
pared and their core-genome extracted (Additional file 4:
Table S1; refer to Methods section for details on strain
selection). The resulting 1057 conserved genes were
aligned and studied in a phylogenetic analysis using the
Maximum Likelihood method (Fig. 1).
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This result was validated through a Bayesian predic-
tion using the BEAST software (Additional file 2: Figure
S2). Both approaches yielded comparable reconstruc-
tions. An additional tree resulting from a Neighbor Join-
ing analysis with 1000 bootstrap repetitions is also
available (Additional file 3: Figure S3). Among the 31
strains labelled as B. cenocepacia, three (869 T2, DDS
22E-1 and DWS 37E-2) fall outside the main clade. The
28 other strains fall within three main clades. One clade
gathers the strains belonging to the recA-IIIA lineage, in-
cluding the ET 12 lineage (J2315T, BC-7, K56) plus 11
other strains, among which only one was isolated from
the environment (F01, from a soil in Burkina Faso). The

sister clade of this latter group is composed of 11 strains
which belong to the recA-IIIB lineage. Seven originate
from a plant environment and four from a hospital
environment.
The closest outgroup of these two clades contains

three strains (Bp8974, Bp9038 and CEIB S5–2) isolated
from soil in Mexico and Puerto Rico. These three clades
are all extremely well supported by bootstrap values
(Additional file 3: Figure S3).

Whole-genome comparisons
Based on the ANI analyses and considering the 95%
threshold for species delimitation, most input strains

Table 1 Key information on the 31 B. cenocepacia strains used in the phylogenetic analysis

Strain Isolation sourcea Localization Affiliationb Reference

842 Human nasal scrub Malaysia B. cenocepacia Unpublished

895 Human cord blood Malaysia B. cenocepacia Unpublished

BC-3 Human blood India B. cenocepacia [33]

BC-7 CF patient sputum Canada, Toronto B. cenocepacia [34]

F01 Soil Burkina Faso B. cenocepacia [23]

GIMC4560Bcn122 Human sputum Russia, Moscow B. cenocepacia [35]

H111 CF patient sputum Germany B. cenocepacia [36]

J2315 T CF patient UK, Edinburgh B. cenocepacia [37]

K56-2Valvano CF patient sputum Canada, Toronto B. cenocepacia [38]

MSMSB384 Water Australia B. cenocepacia [39]

ST32 Human sputum Czech Republic B. cenocepacia [40]

VC1254 Human sputum Canada, Vancouver B. cenocepacia [41]

VC2307 Human sputum Canada, Vancouver B. cenocepacia [41]

VC12308 Human sputum Canada, Vancouver B. cenocepacia [41]

ABIP444 Rice rhizosphere Cameroun Burkholderia sp. nov. This study

AU1054 CF patient blood USA Burkholderia sp. nov. [42]

CR318 Maize rhizosphere Canada, Ontario Burkholderia sp. nov. [25]

FL-5-3-30-S1-D7 Soil USA, Florida Burkholderia sp. nov. [43]

HI2424 Agricultural soil USA, New York Burkholderia sp. nov. [42]

KC-01 Coastal saline soil Bangladesh Burkholderia sp. nov. [44]

MC0–3 Maize rhizosphere USA, Michigan Burkholderia sp. nov. [19]

PC184Mulks Human sputum USA, Ohio Burkholderia sp. nov. Unpublished

Tatl-371 Tomato rhizosphere Mexico, Morelos Burkholderia sp. nov. [26]

VC7848 Human sputum Canada, Vancouver Burkholderia sp. nov. [41]

VC12802 Human sputum Canada, Vancouver Burkholderia sp. nov. [41]

Bp8974 Soil Puerto RIco Undefined species Unpublished

Bp9038 Water Puerto RIco Undefined species Unpublished

CEIB S5–2 Agricultural soil Mexico, Tepoztlan Undefined species [45]

DWS 37E-2 Soil Australia B. latens [46]

DDS 22E-1 Aerosol Australia B. pseudomultivorans [46]

869 T2 Vetiver endophyte Taiwan B. seminalis [47]
aFor human isolates, the patient’s condition is specified when known
bBased on the information acquired during this study
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cluster in three main species identity groups (Fig. 2a,
Additional file 5: Table S2). This distribution is identical
to the three clades detected in the previous phylogenetic
analyses. The first group includes mainly clinical strains
with the exception of strain F01. Consistently, this clus-
ter contains the highly transmissible strains belonging to
the ET 12 lineage and can thus be considered as the B.
cenocepacia sensu stricto (s.s.) species. Eleven strains be-
long to the sister clade of B. cenocepacia s.s. and their
average nucleotide identity to this latter ranges from 92
to 94% (Additional file 5: Table S2). No closer ANI was
found with any of the phylogenetically closest Burkhol-
deria species (data not shown). Similarly, the three
strains of the third clade do not display any ANI ≥ 95%
with B. cenocepacia. Their closest Burkholderia relative
is B. cenocepacia strain FL-5-3-30-S1-D7 with 94% ANI
value.
Finally, three strains that were originally described as

B. cenocepacia show closer identity with other species
(Additional file 5: Table S2). Strain 869 T2 should be

affiliated to the Burkholderia seminalis taxon (98.99%
identity with 88.85% cover). Strain DDS 22E-1 shares
high ANI scores with Burkholderia pseudomultivorans
(97.57% identity with 80.85% cover) while strain DWS
37E-2 is related to Burkholderia latens with 99.01%
homology and 89.92% cover.
Two genome alignment methods were used for the

ANI analyses, one based on BLAST+ (ANIb) and the
other on MUMmer (ANIm). ANIb resulted in a ro-
bust species delimitation between B. cenocepacia and
Burkholderia sp. nov. as the values between those
clusters are below the 95% threshold. ANIm improved
the proximity among species within the clusters. The
minimal identity value between B. cenocepacia and
Burkholderia sp nov. strains respectively increased
from 94.86 to 97.57% and 97.97 to 98.92%. However,
the maximal identity values between the clusters in-
creased as well going from 94.76 to 95.32% and thus
passing, although marginally, the threshold value for
species delimitation.

Fig. 1 Phylogeny and distribution of host-adaptation genes for 31 B. cenocepacia strains. The evolutionary distances were computed using the
Maximum Composite Likelihood method. A total of 1057 conserved core-genes, totaling 1,039,265 positions were used in the final dataset.
Branch label colors are indicative of the isolation source of the respective strains. These can either be clinic (red), rhizospheric (green) or
environmental (grey). The colored shapes indicate the presence of genetic elements in the genomes of the corresponding strains. Squares
correspond to genes that were found to be preferably enriched in clinical (vir.) or environmental (env.) species. From left to right: cable pilus
(cblA), 22 kDa adhesion (adhA), Burkholderia cenocepacia epidemic strain marker (BCESM), transcriptional regulator kdgR, bile acid 7-alpha
dehydratase (baiE), taurine dehydrogenase (tauX), sulfoacetaldehyde acetyltransferase (xsc), tellurite resistance cluster (telA), low oxygen activated
locus (lxa), respiratory nitrate reductase cluster (narIJHGK), nitrate sensor and regulation cluster (narLX), lectin like bacteriocin 88 (llpA), nitrile
hydratase cluster (nthAB), phenylacetaldoxime dehydratase (oxd), feruloyl-esterase (faeB), pyrrolnitrin biosynthesis cluster (prn), galacturonate
metabolism genes (uxaAB). Circles indicate the presence of the pC3 megaplasmid and the afc cluster. This figure was generated using iTOL [48]
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The species delimitation was validated through a
digital DNA-DNA hybridization (dDDH) analysis (Fig.
2b, Additional file 5: Table S2). For a pairwise compari-
son between two genomes, a dDDH value ≤70% indi-
cates that the tested organisms indeed belong to
different species. Considering this threshold, the species
delimitation between B. cenocepacia and Burkholderia
sp. nov. is very well supported with values ranging from
49.9 to 61% .

General genomic features of Burkholderia sp. nov.
In the following parts, we will refer to the clade harbor-
ing in majority environmental strains as Burkholderia sp.
nov., while isolates that fall together in the same clade as
the ET 12 lineage will keep the name B. cenocepacia s.s..
Occasionally, the group formed by those two main
clades will be referred to as B. cenocepacia sensu
lato (s.l.). The third clade englobes strains with high
similarity originating from only two sampling sites and
needs to be completed with other isolates from other
sites to be confirmed as a new species. As the quality of
genome sequences is heterogeneous for the strains used
in this study, no comparison of the global genomic
architecture was carried out. We screened the strains for
the presence of the pC3 megaplasmid containing the
virulence associated afc cluster [50, 51]. Although we

cannot confirm its megaplasmid structure from the draft
genomes, large genetic portions of the pC3 were de-
tected in all strains but FL-5-3-30-S1-D7. Strains 869 T2,
DDS 22E-1 and DWS 37E-2 harbor a pC3 lacking the
afc cluster (Fig. 1). On average, Burkholderia sp. nov.
strains have a slightly, yet significantly (Student’s t-test,
p < 5.10− 5), smaller genome than their closest related
species, with a median value of 7.51Mb as compared to
8.03Mb for B. cenocepacia (Fig. 3). Accordingly, the pu-
tative new species has an average of 509 coding se-
quences less than B. cenocepacia with a mean of 6711
and 7220 CDS respectively. The GC % content of both
species is comparable with approximately 67% (Fig. 3,
Additional file 6: Table S3). Nevertheless, both species
share a relatively large genome in regards to the genus
Burkholderia which averages at 7.2 Mb.

Analysis of core-genome features involved in host-
adaptation
We analyzed the core-genome of B. cenocepacia s.s. and
looked for genes that are strictly absent from the core-
genome of Burkholderia sp. nov. and reciprocally. This list
was further curated from genes with convergent functions
when those were successfully annotated. The core-
genome of Burkholderia sp. nov. comprises 150 genes that
are missing from B. cenocepacia whereas the latter harbors

Fig. 2 Whole-genome comparisons of 31 B. cenocepacia strains. The calculations were performed using the Python module PYANI [49]. Two
major identity clusters are formed. The bottom cluster consists of B. cenocepacia strains and the second cluster consists of Burkholderia sp. nov.
strains. One minor identity cluster is formed by the three outlier strains (Bp9038, CEIB_S5–2, Bp8974) and the last three strains are neither
genetically related to B. cenocepacia nor to each other. A double entry heatmap was used to depict the ANI results with ANIm as left entry and
ANIb as right entry (a). the dDDH results are depicted on a single heatmap (b). The species demarcation threshold is at ≥95% identity on ≥70%
aligned genomic sequence for ANI and at ≥70% identity for dDDH. The exact values and sequence cover ratios are available in Additional file 5:
Table S2
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244 genes which Burkholderia sp. nov. strains do not har-
bor. These genes sets were further curated from uncharac-
terized genes which yields 67 core-genes for Burkholderia
sp. nov and 37 core-genes for B. cenocepacia (Add-
itional file 7: Table S4). For both groups, we found several
antimicrobial-compound coding genes as well as metabo-
lical genes contributing to environmental competitiveness
or improved survival inside their respective hosts. Still,
many of the conserved genes play an unknown role.
Below, we further elaborate on conserved genes that are
susceptible to play a role in specific ecological adaptation.
The conservation of these genes of interest across the dif-
ferent taxa and 303 genomes of B. cenocepacia s.l. is given
in Additional file 8: Table S5.

Distribution of virulence-associated genes
Based on the literature [50–54], all 31 strains were
screened for the presence of several genes previously
demonstrated to be involved in virulence (Fig. 1,
Table 2). Two well described virulence genes have a
striking unbalanced repartition between B. cenocepacia
and Burkholderia sp. nov.: The cable pilus coding gene,
cblA, is only present in the ET 12 lineage strains and
strain F01, and its associated 22 kDa adhesin coding
gene, adhA, is ubiquitously found among B. cenocepacia
strains but strictly absent from Burkholderia sp. nov. We
further focused on candidate genes that are potentially
involved in human-host adaptation and specific to B.
cenocepacia (Table 2). We found a putative bile-acid
dehydratase (BCAM1585–86), a taurine dehydrogenase
(BCAM1182–83) and a cluster potentially involved in
fatty acid degradation (BCAM1620–48).
We also searched for genes putatively involved in

defense against the host immune system but also in host
specific resilience and virulence. In those categories B.

Fig. 3 Variations in genomic organization between B. cenocepacia and Burkholderia sp. nov.. The data of 304 genomes presented in Additional
file 6: Table S3 was used to represent the differences in genomic organization between B. cenocepacia and Burkholderia sp. nov. strains.
Significant levels in variations were determined using Student’s t-test (p < 2.10− 4, p < 2.10− 5 for *** and **** respectively)

Table 2 List of human virulence-facilitating genes

Gene Product Function Reference

cblA cable pilus Promotes adhesion
to host epithelial
cells

[55]

adhA 22 kDa-adhesin [56]

esmR BCESM Burkholderia
cenocepacia
epidemic strain
marker region

[53, 57]

amiI

cciI

cciR

opcI

kdgR transcriptional
regulator of
metabolic genes

Can improve
virulence

[58–60]

baiE bile acid 7-alpha
dehydratase

Putatively involved
in a steroid
degradation pathway
Allows viability within
host macrophage

[61–65]

tauX taurine dehydrogenase

xsc sulfoacetaldehyde
acetyltransferase

telA tellurite resistance
protein

tellurite resistance [66, 67]

terCEF integral membrane
protein

narIJHG nitrate reductase
gamma subunit

anaerobic metabolism
through nitrate reduction

[68]

narL DNA-binding
response
regulator

narX Nitrate/nitrite
sensor protein

lxa low oxygen
activated locus

maintains cell viability
after oxygen depletion

[69]
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cenocepacia specifically possesses resistance genes to-
wards tellurite (BCAL2268–71) as well as adaptation
genes towards anaerobic metabolism. Considering the
different pathways and components potentially allowing
anaerobic survival of bacteria (Fig. 1, Table 2), only B.
cenocepacia s.s. and the third cluster harbor the required
operon for respiratory nitrate reduction (narIJHGK).
Within B. cenocepacia, this operon is absent from the
ET 12 lineage and strain H111 (Fig. 1, Table 2). Still, all
B. cenocepacia s.s. strains possess the genes coding for
the nitrate/nitrite sensor (narX) and the associated regu-
lator (narL). However, the gene clusters necessary for
subsequent respiratory reduction of nitrite, nitric-oxide
and nitrous-oxide are missing in every B. cenocepacia s.l.
strain. The lxa genomic island spans over 50 genes and
is involved in cell viability after oxygen depletion [69].
This cluster was detected in most B. cenocepacia strains
(BCAM0275a-323) as well as in those of the third clus-
ter, but was completely lacking or missing vast genetic
portions (at least 37% of the total cluster length) in Bur-
kholderia sp. nov. strains.

Distribution of plant-adaptation and environmental-
resilience genes
We investigated the presence of five genes or gene clusters
which are, according to previous studies, involved in im-
proving the fitness of plant associated bacteria [70, 71].
Two genes involved in defense strategies were detected in
Burkholderia sp. nov., the lectin-like bacteriocin LlpA-88
(Bcen_1091) and the antifungal antibiotic pyrrolnitrin
(Bcenmc03_6983–86).
Regarding metabolic features, Burkholderia sp. nov.

strains were found to possess several enzymes such as a ni-
trile hydratase (Bcen_4082–85), a phenylacetaldoxime dehy-
dratase (Bcen_4078–81), a feruloyl-esterase (Bcen_1301)
and a galacturonate metabolism operon (Bcen_6467–68)
allowing these bacteria to catabolize plant derivatives. It is
important to point out that numerous additional plant-
adaptive genes are present in the genomes of Burkholderia
sp. nov. strains. However, these genes are not addressed
here as they are shared with B. cenocepacia strains.

Evolutionary history of B. cenocepacia
The clade, formed by the third identity cluster, possesses
several plant-adaptive traits which are part of the Bur-
kholderia sp. nov. specific core-genome (i. e. nitrile
hydratase, phenylacetaldoxime dehydratase, pyrrolnitrin
synthase) (Fig. 1, Table 3). Conversely, these isolates do
not possess any of the investigated genes suggested to
confer a direct advantage to B. cenocepacia during hu-
man infection (i.e. BCESM, cblA, adhA) (Fig. 1, Table 2).
This observation can be extended to the outgroup spe-
cies B. seminalis, B. latens and B. pseudomultivorans.

The phylogenetic reconstructions also support a differ-
ent pattern of molecular evolution between the two
main clades. The reconstruction shows a longer branch
leading to B. cenocepacia followed by short inner
branches. Burkholderia sp. nov displays an opposite pat-
tern, with a shorter basal branch and longer inner
branches (Fig. 1, Additional file 2: Figure S2 and Add-
itional file 3: Figure S3).

Discussion
B. cenocepacia strains have a polyphyletic organization
Regardless of the method used for their genomic com-
parisons (phylogenetic and ANI analyses), the results
yielded a disunited perspective of the B. cenocepacia spe-
cies (Figs. 1 & 2). The ANIb and dDDH analyzes yielded
strong separations of the different clades based on the
conventional threshold values for species delimitation.
While the ANIm analysis strengthened the proximity
within the clusters, it did not provide as clear differences
between B. cenocepacia and Burkholderia sp. nov. as the
two previous approaches. However, given the results
from the remaining whole-genome comparison methods
and the MLSA approach, we are confident that our re-
sults showed that the B. cenocepacia taxon should be
split in two or possibly three distinct species (not con-
sidering three strains for which we proved a clear false
taxonomic attribution).
Here, we propose to keep the B. cenocepacia name for

all strains clustering with the epidemic ET 12 lineage,
representing B. cenocepacia in its most studied state, as
a potential human opportunistic pathogen. We further
propose to reclassify its sister clade, Burkholderia sp.
nov., as a new species (see below for a suggested name
description). The third cluster, sister clade of the two
latter species could also represent a novel Burkholderia
species and deserve to be investigated independently.
Still, more sampling is needed since the species are very
similar to each other and were isolated from only two
different geographic areas (Additional file 1: Figure S1).

Table 3 List of genes improving plant interaction and
environmental fitness

Gene Product Function Reference

nthAB nitrile hydratase Metabolism of plant
derivatives and/or IAA
synthesis pathway

[72, 73]

oxd phenylacetaldoxime
dehydratase

[73, 74]

llpA lectin-like bacteriocin Antibiotic [26]

faeB feruloyl-esterase Metabolism of plant
derivatives

[75, 76]

prnA-D pyrrolnitrin Antibiotic [77]

uxaAB altronate dehydratase
/oxydoreductase

Galacturonate
metabolism

[78]

Wallner et al. BMC Genomics          (2019) 20:803 Page 7 of 15



Unexpectedly, four clinical isolates, namely AU1054,
PC184Mulks, VC12802 and VC7848, fall in the Burkhol-
deria sp. nov. clade. As a first hypothesis, these strains
could have survived in a clinical environment solely as
commensal bacteria, causing no harm to their host. The
previous isolation of Burkholderia strains from CF
patients or patients suffering from another infectious
pathology, without being the apparent causative agent
supports this hypothesis [79–81]. Although strain
AU1054 was shown to cause high mortality rates in
diverse plant and animal models [50, 82], this is not suf-
ficient to assess its pathogenesis against humans. Indeed,
strain H111, which belongs to the B. cenocepacia s.s.
clade, presents the same characteristics as AU1054 on
several pathogenesis models [83] and yet does not cause
any symptoms in humans. When detected in patients,
the bacterial population of H111 decreases over time,
unable to maintain itself in a CF context [84]. At this
point, we cannot exclude the alternative hypothesis that
these clinical strains are in fact human opportunists.
However, as discussed in the next section, these isolates
lack many key virulence traits that are present in B. cen-
ocepacia s.s.. Still, more virulence and pathogeny tests
are needed on strains of this clade to fully rule out their
potential human virulence.

B. cenocepacia possess specific key virulence traits
compare to Burkholderia sp. nov
Over the past years, many genetic markers have been in-
vestigated for their involvement in B. cenocepacia patho-
genesis. When mapping some of these virulence factors,
the most striking pattern in the distribution between the
two clades concerns the adhA and cblA genes. Both cable
pilus and the associated 22-kDa adhesin have been shown
to be involved and decisive for host cell binding [55, 56].
Their distributions are congruent with previous studies
that found adhA to be mandatory and sufficient for cell
binding but cblA required for optimal binding [54]. Our
data supports that the presence of adhA is essential for
the opportunistic potential of B. cenocepacia strains.
Additionally, a genomic island termed B. cenocepacia

epidemic strain marker (BCESM) was frequently found in
CF isolates [53]. However, it was demonstrated that the
BCESM is not an absolute marker for the ability of B. cen-
ocepacia to cause CF infection [57]. In our study, the
distribution of this cluster is less clear, as it was detected
at a lower frequency in the Burkholderia sp. nov. strains
compare to B. cenocepacia (58 and 83% respectively, Add-
itional file 8: Table S5). This difference might just be ran-
dom, but we believe that it reflects a specialization trend
of the BCESM cluster for pathogenicity.
As a counter example, the pC3 megaplasmid was

detected in every B. cenocepacia strain and all but one
Burkholderia sp. nov. strains. This replicon was shown

to play an important role in the pathogenesis of various
BCC strains, including B. cenocepacia, in diverse infec-
tion models [50]. Located on this pC3, the afc cluster
and the adjacent transcriptional regulator shvR were re-
cently demonstrated to be required for acute infection of
B. cenocepacia in the zebrafish model [51]. However, the
virulence levels of B. cenocepacia strains are strongly de-
pending on the host model. To date, strains of B. cenoce-
pacia s.s. and Burkholderia sp. nov. have been tested on
nematodes, wax moth larvae and zebrafish and the
strains respective virulence sometimes varied drastically
depending on the tested host [51, 85, 86]. Tests that aim
to study the human infection route through the lungs
have only been performed with ET-12 representatives
and we support that clinical research would greatly
benefit if a wider diversity of strains including Burkhol-
deria sp. nov. representatives were tested in future
studies.
The following genes have not yet been described in B.

cenocepacia but their homology to virulence factors of
other pathogens might indicate a similar role in our spe-
cies of interest.
While analyzing the specific core genome of each

clade, we detected that Burkholderia sp. nov lacks two B.
cenocepacia specific enzymes, a bile-acid dehydratase
and a taurine dehydrogenase. Bile acids can be conju-
gated to taurine before they are secreted inside the
digestive track. Furthermore, bile acids are cholesterol-
derivatives formed by conversion in the liver [87] and it
has been previously demonstrated that several human
pathogens could thrive on cholesterol compounds as a
carbon source [61, 62]. Mycobacterium tuberculosis is
able to maintain itself within host macrophages through
this same steroid degradation pathway [63]. Thus, in
addition to an improved ability to bind epithelial cells, B.
cenocepacia also displays key features that could pro-
mote its survival inside host cells as compared to Bur-
kholderia sp. nov..
A resistance gene for tellurite is also present in the

core-genome specific to B. cenocepacia. This antimicro-
bial compound has strong oxidizing abilities but is also
believed to be a substitute for sulfur in various cellular
functions with drastic outcomes for cell metabolism.
Tellurite resistance is widespread in pathogenic bacteria
and was taken advantage off for generic screening of
pathogens using tellurite in selective media [88]. More
recently, the human pathogen Yersinia pestis was shown
to express several tellurite resistance genes during
macrophage infection and subsequent studies led to
speculate that these genes are part of a bacterial adaptive
strategy to macrophage associated stress [66, 67].
Finally, in a CF endobronchial context, important

amounts of mucus are secreted, leading to partial or
total anaerobiosis [89]. Several bacterial species, such as
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P. aeruginosa or the B. cenocepacia related Burkholderia
pseudomallei, can maintain themselves in micro-oxic
conditions through denitrification [90, 91]. The complete
respiratory nitrate reduction process works sequentially
and involves genes responsible for the reduction of ni-
trate, nitrite, nitric-oxide and nitrous-oxide [92]. B. ceno-
cepacia is usually considered to be an obligate aerobic
non-fermenting bacterium, and doesn’t possess all the
required genes to perform the complete nitrate reduc-
tion reaction. However, most B. cenocepacia s.s. strains
have the genetic material to use nitrate as electron ac-
ceptor and transfer the resulting nitrite from the cyto-
plasm to the periplasm. This chain reaction allows the
transfer of 2 H+ from the cytoplasm to the periplasm.
These protons can be thereafter used for ATP synthesis.
An additional specificity of B. cenocepacia over Burkhol-
deria sp. nov. is the presence of the lxa locus. This 50
gene cluster is crucial for the bacterium’s survival in low
oxygen conditions [69]. It should be noted that the lack
of both respiratory nitrate reduction and the lxa cluster
in H111 might explain why this strain cannot maintain
itself in CF patients [84]. Overall, Burkholderia sp. nov.
lacks several adaptation genes for survival in anaerobic
environments.
Taken together, the distribution of these pathogenic or

adaptive genes showed a strong tendency in favor of an
adaptation of B. cenocepacia strains for human patho-
genicity compared to Burkholderia sp. nov. strains.

B. cenocepacia lacks environmental traits present in
Burkholderia sp. nov.
Burkholderia sp. nov. encompasses mostly strains that
have been retrieved from diverse environmental samples,
including healthy plant roots. These bacteria are under
the selection of a fluctuant environment and heavy com-
petition from other microorganisms that thrive in these
niches. Following this view, several strains of Burkhol-
deria sp. nov. possess the gene cluster coding for the
lectin-like bacteriocin LlpA88 and for the antifungal me-
tabolite pyrrolnitrin. Both these metabolites have a very
broad-spectrum antibiotic activity [26, 93].
Adaptation to these constraints also requires the abil-

ity to exploit various nutriments, including root exu-
dates. When mining in the core-genome of Burkholderia
sp. nov., but also the core genome of the third identity
clade, we detected two genes supporting a clear adapta-
tion to the plant environment. The first is a nitrile
hydratase allowing these bacteria to use nitrile as carbon
and nitrogen source. Several natural sources for nitrile
are known and many are plant-based [94]. In the same
genomic cluster, a gene coding for a phenylacetaldoxime
dehydratase was also found. Aldoximes are volatile
plant-derived metabolites which can be used as defense
mechanisms against insect herbivores and pathogens

[74]. Moreover, phenylacetaldoxime dehydratase is very
efficient at catalyzing the production of phenylacetonitril
which could be further used by the previously described
nitrile hydratase [72]. Alternatively, both enzymes can be
involved in indole-3-acetic acid (IAA) production, which
is one of the traits that is commonly used to screen for
endophytic and rhizosphere competent bacteria [73, 95,
96]. One additional advantage of Burkholderia sp. nov.
on B. cenocepacia in the effective use of rhizodeposits as
carbon source may come from a feruloyl-esterase. This
enzyme liberates polysaccharides, such as xylan, from its
bond with ferulic acid as it is commonly found in plant
cell walls [75]. One other major component of plant cell
walls is pectin, a polymer of galacturonic acid. Burkhol-
deria sp. nov. possess the import and catabolism genes
to process D-galacturonate and use it as a carbon source
[78].
Genes associated with adaptation to the soil environ-

ments can be highly multifarious and are more elusive
than genes conferring adaptation to a single niche such
as the human body. A more profound analysis is re-
quired to determine how efficient and how generalized
environmental adaptation is for Burkholderia sp. nov.
strains.
Figure 4 summarizes the discussed genes and func-

tions conferring Burkholderia sp. nov and B. cenocepacia
specific ascendancy in soil environments and human in-
fections respectively.

The opportunistic pathogens might have evolved from
plant-adapted bacteria
One approach to determine the ancestral state of the two
clades of B. cenocepacia and Burkholderia sp. nov. is to
focus on the outgroup life style. The conservation of en-
vironment and plant adaptive traits and the absence of key
virulence genes in strains of the third identity cluster and
more distant outgroup species, indicate that B. cenocepa-
cia might have evolved from a plant-associated life style
towards a human opportunist state.
The pattern observed using the phylogenetic recon-

struction, reflects a significant evolutionary trend. It
shows a lower within-species diversity in B. cenocepa-
cia which may have undergone a rapid evolution, by
either positive selection and/or population bottleneck,
before diversification. Following this view, the core-
genome of B. cenocepacia strains is higher than that
of Burkholderia sp. nov. (69.9 and 49.7% of the aver-
age amount of genes across strains respectively), con-
firming that B. cenocepacia is less diversified than
Burkholderia sp. nov.. This might again be a sign for
higher selective pressure applied by its environment
on B. cenocepacia during a pathogenic lifestyle, and/
or a more recent evolution, leaving less time for gen-
etic divergence. This would implicate that B.
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cenocepacia has evolved the human-pathogen trait
after its ancestors had adapted for interactions with
plants.

Proposition of Burkholderia servocepacia sp. nov.
Proposition of name Burkholderia servocepacia sp. nov.
(servocepacia: ser.vo.ce.pa’cia. M.L. v. servare, protect /
guard; specific epithet, cepacia; N.L. n. servocepacia, pro-
tecting cepacia). The prefix “ceno” from the Greek “kai-
nos” was initially chosen to mean “new” since B.
cenocepacia was a derivative of the B. cepacia species.
Interestingly, the Latin meaning of the same prefix is “to
dine”. Given that cepa is Latin for onion, inspired by the
isolation source of the first Burkholderia species, the com-
bination ceno-cepacia can be understood as “feasting on

onions”. This interpretation also has the benefit of har-
monizing the etymological origins of both components.
Additionally, this predatorily name is in accordance with
the serious harm the bacteria can cause in humans. As a
sequel, we propose the name Burkholderia servocepacia
sp. nov. coined from the same epithet and using as a prefix
the Latin “servo” meaning “to protect/watch over” in re-
gard of the biocontrol potential of this species.
We propose that B. servocepacia Tatl-371 be used as

type strain. Its phenotype has been extensively character-
ized and it was deposited in the BCCM/LMG database
under accession number LMG30279 [26]. As a type
strain should be representative of its species, it is rele-
vant that Tatl-371 possesses a central position in the
phylogeny of its clade (Fig. 1).

Fig. 4 Summary diagram of differential adaptation of B. cenocepacia and Burkholderia sp. nov. to different environments. Strains of B. cenocepacia
and Burkholderia sp. nov. have been isolated from soils (brown), where they compete with other microbes, plants (green) and animals (red).
Burkholderia sp. nov. was repeatedly isolated from soil environment (but also plants, water and aerosols) and possesses several genes improving
its fitness in those contexts (green factors). While B. cenocepacia can also thrive in soils, it is often found as an opportunistic pathogen of humans
and bears several genes improving its virulence (red factors). Burkholderia sp. nov. can use different plant derivatives (galacturonic acid, xylans,
pectin) as carbon sources. It is also proposedly able to synthetize the plant hormone auxin (IAA) through a pathway involving Oxd to convert
indole-3-acetaldoxime (IAG) to indole-3-acetonitrile (I3A) which is processed to IAA though the action of Nth. It is also able to produce antibiotics
with activity against bacteria (Llpa88) and fungi (pyrrolnitrin). B. cenocepacia strains possess a 22 kDa adhesin which improves its binding to target
cells and their invasion. Proposedly, they can also metabolize bile acids, derivatives of cholesterol. In anoxic conditions, B. cenocepacia can survive
using its low oxygen activated locus (lxa) and the respiratory nitrate reduction pathway (narIJHG). It also possesses the resistance genes against
tellurite, for which the exact functions remain elusive. Source: authors’ design
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Conclusion
The recurrent isolation of B. cenocepacia from plant en-
vironments was the premise for the investigation of 31
B. cenocepacia strains using comparative genomics.
Despite the nature of plants as environmental reservoir

for diverse human pathogens, our study suggests that
multiple B. cenocepacia affiliated strains are instead spe-
cialized for an environmental lifestyle and interactions
with plants, and potentially unfit to colonize and cause
harm to humans. We demonstrate that those strains are
phylogenetically distinct from B. cenocepacia s.s. and
should be affiliated to a new species. We also suggest
that B. cenocepacia has acquired the human opportunist
trait from a plant adapted basis. B. cenocepacia is not a
united group at the genomic level. This disunity has high
chances to impact the metabolism and the virulence of
these bacteria, especially considering the specific or
over-represented genes we detected in each clade. We
hope that these insights will open promising leads in re-
search on virulence promoting factors of B. cenocepacia.
It would be most noteworthy if future studies were to
consider the large diversity of the cenocepacia group
and especially in lung infection models. This study is
one of many example that underlines the benefits of
interdisciplinary research and in the present case, be-
tween environmental microbiology and health sciences.
Enhanced communication and collaboration between
disciplines is a worthy pursuit which can positively im-
pact the global knowledge.

Methods
Bacterial strains & genome sequencing
For the 303 B. cenocepacia genomes, publicly available
at the time of the study, the recA sequences were re-
trieved (except for VC5279, no recA sequence in gen-
omic data) and used to build a phylogenetic prediction
using the Maximum Composite Likelihood method
(1000 bootstrap repetitions). The resulting tree is avail-
able as Additional file 1: Figure S1 and in interactive
form online: https://itol.embl.de/tree/9120334143566
01565192630#. We chose 31 different strains, represen-
tative of the diversity in source of isolation. We priori-
tized fully annotated genomes and included draft
genomes when those increased the global diversity. All
genomes from plant- or rhizosphere-isolated strains,
available at the time of the study, were included in the
analyses. All genomes from environment isolated strains
outside the recA-IIIA clade were also included, plus 2 of
the 5 genomes that fall in the recA-IIIA clade.
Three hundred one of the bacterial genomes studied

here are publicly available on the NCBI database. One
strain, CEIB S4–3, is publicly available on the JGI web-
site. The respective strains are all registered as belonging

to the B. cenocepacia species and are listed in Additional
file 6: Table S3 with additional genomic data.
Strain ABIP444, was isolated during a survey of rice

roots endophytes in Cameroon (E. Ngonkeu, unpub-
lished). A single colony was grown in Luria low salt
medium (Merck, Inc., Darmstadt, Germany) for 24 h at
28 °C and its DNA was extracted using a modified JGI
protocol for bacterial DNA isolation using CTAB. A
genomic library with average insert size of 350 bp was
prepared for sequencing using a TruSeq Nano DNA li-
brary preparation kit (Illumina, Inc., San Diego, CA,
USA). Paired-end sequencing was performed by the
MGX platform (CNRS, Montpellier, France) using a
HiSeq 2500 (Illumina), generating 12,709,495 raw read
pairs. Reads with overlapping sequence were assembled
using CLC Genomics Workbench version 7.04 resulting
in 292 contigs ranging from 586 bp to 20.2 kbp. The
genome sequences can be found at the European Nu-
cleotide Archive with accession number PRJEB31911.

Core-genome calculation
The general core-genome of the 31 strains labeled as B.
cenocepacia was retrieved from protein sequences using
the Roary pipeline [97]. Protein clusters are initially pro-
duced with CD-HIT using iterations with similarity
thresholds going from 100% down to 98% with 0.5% dec-
rements. An all-against-all comparison is performed on
the resulting set of protein sequences with BLASTP at
95% sequence identity. The genome annotations and
GFF3 format files were obtained through the Prokka
pipeline [98].
Further analysis of the data generated by core-genome

calculation (described below), identified two main clades.
Their specific (i.e. strictly absent from the neighbor
clade) core-genome (gene conservation across ≥80% of
strains) were generated using the Roary pangenome out-
put files.

Genomic comparisons
Pairwise genome comparison using Average Nucleotide
Identity (ANI) based on BLAST+ (ANIb) or MUMmer
(ANIm) was performed using the PYANI software [49].
Two strains were considered co-specific when they
shared more than 95% nucleotide identity on at least
70% of their whole genome sequence [99]. For the
strains that did not fall within a clear ANI cluster, com-
parisons to the phylogenetically closest Burkholderia
species were carried out [1].
Digital DNA-DNA hybridization was carried out

using the GGDC 2.1 web platform [100]. Briefly, this
tool uses BLAST+ to align one genome against an-
other and reciprocally and generate high-scoring seg-
ment pairs (HSPs). The intergenomic distance is
then calculated by dividing the sum of all identities
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found in HSPs by overall HSP length. A logistic re-
gression is used for reporting the probability that
the distance value is above 70%, the similarity
threshold to consider two organism as distinct spe-
cies. Compared to ANI, dDDH can offer more
robust estimations of genomic similarities for incom-
plete genomes as the distance calculation is inde-
pendent of genome length.

Phylogenetic analysis
The phylogenetic analyses were conducted using the
MEGA v7.0.26 software [101]. The core-genome output
of 1057 genes (1,039,265 positions) was evaluated using
a Maximum Likelihood phylogenetic reconstruction ap-
proach with a General Time Reversible model (Gamma
distributed rates with invariant sites and 5 discrete
gamma categories). We validated the resulting tree
through an independent Bayesian analysis using BEAST
v1.10.2 [102], with the same substitution model, a strict
clock model and the tree prior calculated using the Yule
model. The MCMC length of chain was set to 1.107 and
the burn-in value was set to 1.106 for analysis. The
resulting consensus tree was constructed using a max-
imum clade credibility prediction.

Host-adaptive gene detection
The specific core genomes of the two main clades,
were screened for genes described as involved in host
adaptation in the literature [50–54, 70, 71]. The
complete sequence of the 875 kbp long virulence
plasmid from B. cenocepacia J2315 and the 24 genes
of the afc pathogenic cluster were also searched in all
31 genomes by BLAST [50, 51].
Gene clusters involved in anaerobic metabolism, show-

ing potential adaptation to CF lung environments, were
identified through similarity with their B. pseudomallei
homologues [68]. We also searched for the low-oxygen-
activated locus (lxa) which was discovered in B. cenoce-
pacia [69].
The antiSMASH 4.0 software [103] was used to screen

for gene clusters allowing the production of secondary
metabolites such as antibiotics and siderophores, in-
volved in environmental resilience and competition with
other microorganisms.
The specificity to one taxa was validated for each gene

through its alignment against a database of the 303 avail-
able B. cenocepacia s.l. sequences using BLAST.
At the first occurrence of each genetic element, we

provide its gene name in UniProt format. When pos-
sible, we use the gene name of the B. cenocepacia type
strain J2315. When the gene is absent from the type
strain, the next best annotated genome is used.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6186-z.

Additional file 1: Figure S1. recA based phylogeny for 302 B.
cenocepacia strains. The recA sequence of B. pseudomallei K96243 was
used to root the tree. The evolutionary history was inferred using the
Neighbor-Joining method. The associated taxa that clustered together in
> 95% of replicate trees in the bootstrap test (1000 replicates) are dis-
played as black dots on the tree branches. The color ranges delineate the
two recA lineages: IIIA (orange) and IIIB (blue). The colored strip indicates
the isolation source (when known) of the respective strains: clinical (red),
plant (green) and environmental (grey). The strains which were included
in whole-genome analyses are marked by a black arrowhead. The outer-
most blue histogram is representative of the genomic completeness for
the respective strains according to the NCBI annotation. In increasing bar
size order: contig, scaffold, chromosome and complete. An interactive
version in full quality is available online (https://itol.embl.de/tree/912
033414356601565192630#).

Additional file 2: Figure S2. BEAST-generated phylogenetic tree of 31
B. cenocepacia strains. A Bayesian analysis using the BEAST v1.10.2 soft-
ware was used to generate this tree. The input data is the same as for
Fig. 1. A General Time Reversible model (GTR; Gamma distributed rates
with invariant sites and 5 discrete gamma categories) was used as substi-
tution model. A strict clock model was applied and the tree prior was cal-
culated using the Yule model. Finally, the MCMC length of chain was set
to 1.107 and the burn-in value was set to 1.106 for analysis. The resulting
consensus tree showing mean branch lengths was constructed using a
maximum clade credibility prediction.

Additional file 3: Figure S3. Phylogenetic tree of 31 B. cenocepacia
strains. The input data is the same as for Fig. 1. The evolutionary history
was inferred using the Neighbor-Joining method. The associated taxa
that clustered together in > 95% of replicate trees in the bootstrap test
(1000 replicates) are displayed as black dots on the tree branches. The
tree is drawn to scale. The evolutionary distances were computed using
the Maximum Composite Likelihood method and are in the units of the
number of base substitutions per site. The analysis involved 31 nucleotide
sequences. All positions with less than 95% site coverage were elimi-
nated. That is, fewer than 5% alignment gaps, missing data, and ambigu-
ous bases were allowed at any position. There were a total of 1,118,599
positions in the final dataset.

Additional file 4: Table S1. Core-genome of the 31 B. cenocepacia
strains. The 1065 genes used in the MLSA approach are detailed with
their function, average gene length and nucleotide sequence.

Additional file 5: Table S2. Detailed whole genome comparison data.
Percentage identity and percentage coverage values for the ANIb and
ANIm approaches as well as percentage identity for the dDDH approach.
Taxonomic classification of strains 869 T2, DS 22E-1 and DWS 37E-2 based
on their genomic alignment with B. seminalis, B. pseudomultivorans and B.
latens respectively as estimated by ANIb.

Additional file 6: Table S3. Additional genomic information on all
available B. cenocepacia strains. Each strain is detailed with its specific
affiliation, genome completeness, genomic size, GC content, genomic
architecture, number of genomic scaffolds, gene count and protein
count. The 31 strains used in the study are highlighted in yellow.

Additional file 7: Table S4. Specific core-genomes of B. cenocepacia
and Burkholderia sp. nov. Each gene is detailed with its function, abun-
dance within the species and average length. Their presence within a
genome is marked with an “X”. The genes further described in the study
are highlighted in yellow.

Additional file 8: Table S5. Distribution across taxa of virulence
facilitating and environmental fitness improving genes. For each gene,
their product and their function in virulence or environmental fitness are
described. The nucleotide sequence of each gene was aligned against a
database of 304 B. cenocepacia genomes using BLAST. The percentage of
occurrence among strains of each major taxon (B. cenocepacia,
Burkholderia sp. nov. and the third undefined taxon) is given. The table
also shows if a gene was found in a least one outgroup strain.
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