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ABSTRACT
Influenza A virus infections occur in different species, causing mild to severe respiratory symptoms that lead to a heavy
disease burden. Eurasian avian-like swine influenza A(H1N1) viruses (EAS-H1N1) are predominant in pigs and occasionally
infect humans. An influenza A(H1N1) virus was isolated from a boy who was suffering from fever and headache and
designated as A/Tianjin-baodi/1606/2018(H1N1). Full-genome sequencing and phylogenetic analysis revealed that A/
Tianjin-baodi/1606/2018(H1N1) is a novel reassortant EAS-H1N1 containing gene segments from EAS-H1N1 (HA and
NA), classical swine H1N1(NS) and A(H1N1)pdm09(PB2, PB2, PA, NP and M) viruses. The isolation and analysis of A/
Tianjin-baodi/1606/2018(H1) provide further evidence that EAS-H1N1 poses a threat to human health and greater
attention should be paid to surveillance of influenza virus infection in pigs and humans.
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Introduction

Influenza A virus can be classified into different sub-
types based on antigenic variation in two surface glyco-
proteins, haemagglutinin (HA) and neuraminidase
(NA) [1]. Genetic mutations that encode a range of
amino acid substitutions result in antigenic changes
in the surface glycoproteins and lead to immunologic
escape, which is known as antigenic drift [2–4]. In
addition, gene segment exchange between two or
more viruses, known as genetic reassortment, can
also play an important role in the evolution of new
influenza viruses [5–6].

Influenza A virus infection occurs in different ani-
mals, including pigs. Both α-2,3-linked sialic acids
(Sias) (avian influenza virus receptor) and α-2,6-linked
Sias (human influenza virus receptor) are found in pigs;
hence, they are recognized as genetic mixing vessels for
humans and avian influenza viruses [7–8]. Classical
H1N1 swine influenza viruses (SIVs) cause sporadic
zoonotic infections and a reassortant, swine-origin
influenza A H1N1 virus (A(H1N1)pdm09) caused an
influenza pandemic among humans in 2009 [9].

The first EAS-H1N1 human infection was reported
in Switzerland in 1986 [10]. Since then, several human

infections with EAS-H1N1 have occurred in European
countries [11–12]. China is the largest pork-producing
country in the world and it is known that EAS-H1N1
circulates in swine [13–17]. Furthermore, four zoonotic
cases related to EAS-H1N1 infection have been
reported in China, indicating the potential to cause a
human influenza pandemic [18–21]. In this study, we
isolated and characterized a novel triple-reassortant
EAS-H1N1 from a nine-year-old boy.

Materials and methods

Epidemiologic information, sample collection
and virus identification

A nine-year-old boy, who lived in the countryside with
his family, presented with fever of 38.7°C and started
coughing with pharyngeal pain and headache on 10
December 2018. The following day, the boy was sent
directly to Baodi People’s Hospital (an influenza sur-
veillance network hospital) and a throat-swab speci-
men was collected and transferred to Jizhou District
Center for Disease Control and Prevention (Jizhou
CDC). A second throat-swab sample was collected on
14 December. Throat swabs from all his close contacts
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and 28 environmental specimens (including cage sur-
face wipes, poultry and swine excrement and drinking
water) were collected for influenza virus detection
using real-time reverse transcription polymerase
chain reaction (real-time RT–PCR). Nucleic acid was
extracted from 500 µl of the clinical specimen using
NucliSENS easyMAG (BioMetrix, France) and real-
time RT–PCR was carried out using FluA real-time
PCR kit (Bojie, Shanghai, China) in accordance with
the manufacturer’s instructions.

Virus isolation and antigenic characteristics

Clinical specimen was inoculated onto Madin–Darby
Canine Kidney cells (MDCK) and cultured with
serum-free minimum essential medium (MEM; Gibcol,
USA) in the presence of 2.0 µg/ml of trypsin (Sigma,
USA) at 34°C [22]. Checking for cytopathic effect
(CPE) was conducted every day. Medium was collected
when the CPE was up to 75–100% cells. Virus haemag-
glutination titre (HAT) and haemagglutination inhi-
bition (HI) titres using antisera raised against specific
A(H1N1)pdm09 reference viruses, distributed by the
Chinese National Influenza Center (CNIC), were
determined with 1.5% human-type “O” erythrocytes.
If the HI titre of test viruses with the reference anti-
serum was less than eight-fold different to that of the
reference virus, this result meant the test viruses were
antigenically similar.

Antiviral susceptibility

The susceptibility of A/Tianjin-baodi/1606/2018
(H1N1) to the NA inhibitor oseltamivir carboxylate
(Roche Diagnostics GmbH) was evaluated using an
NA-Fluor Influenza Neuraminidase Assay Kit
(Applied Biosystems). Oseltamivir-resistant virus (A/
Texas/23/2012(H1)Y275) and oseltamivir-sensitive
virus (A/Texas/23/2012(H1)H275), provided by
CNIC, were used as controls. The half maximal inhibi-
tory concentration (IC50), which represented the con-
centration of oseltamivir that could inhibit 50% of
NA activity, was used to evaluate the antiviral suscep-
tibility of the virus. Viruses are considered to show nor-
mal inhibition (NI) if IC50 is increased no more than
10-fold compared to the oseltamivir-sensitive control
virus, reduced inhibition (RI) if the IC50 is increased
10–100-fold and highly reduced inhibition (HRI) if
IC50 is increased >100-fold (see the WHO web site
https://www.who.int/influenza/gisrs_laboratory/
antiviral_susceptibility/nai_overview/en/).

Genome sequencing and phylogenetic analysis

Viral RNA was extracted from 140 μl of virus stock
using an RNeasy Mini Kit (QiaGen, Germany) as
described by the manufacturer. Primers specific for

each gene segment of influenza A virus were used for
RT–PCR [23] and the products were purified using a
QIAamp Gel Extraction Kit (QiaGen, Germany).
Whole genome sequencing was carried out using an
Illumina MiniSeq platform (Illumina, USA). Sequences
were edited using the Lasergene sequence analysis soft-
ware package (DNAStar, Madison, WI, USA).
Sequence alignments and phylogenetic analysis were
performed with MEGA X software and neighbour-
joining trees were assembled with bootstrap values
determined from 1000 replicates. All reference
sequences were downloaded from the EpiFlu database
of the Global Initiative on Sharing All Influenza Data
(GISAID). The key molecular features were observed
and analysed through the alignment with other refer-
ence viruses.

Results

The patient and epidemiology survey

A previously healthy nine-year-old boy, with no his-
tory of travel, presented with influenza-like illness
(ILI) symptoms on 10 December 2018, having a
fever of 38.7°C, pharyngeal pain and headache. He
recovered within a week with neither hospitalization
nor oseltamivir treatment. A retrospective investi-
gation was conducted to identify the potential source
of infection and any other possible cases. The patient
had no contact with individuals showing ILI symp-
toms within 10 days before onset of his symptoms
and his family raised eight chickens in captivity
while their neighbours raised pigs in captivity. He
lived with his parents and grandparents. None of
his close contacts developed ILI symptoms during
the period of the investigation.

Sample identification and viral isolation

The first throat-swab specimen was sent to the Jizhou
CDC influenza surveillance network laboratory. By
real-time RT–PCR, the sample was positive for
influenza A virus, but negative for H3N2,
H1N1pdm09, H5, H7 and H9 influenza viruses.
The second specimen was negative for influenza
virus. The influenza-positive specimen was sub-
sequently transferred to Tianjin CDC for further
investigation. Influenza A-positivity was confirmed
and shown to be caused by an H1N1 virus which
was different from H1N1pdm09. The virus, desig-
nated as A/Tianjin-baodi/1606/2018(H1N1) (TJ/
1606/18), was isolated using MDCK cells. All speci-
mens taken from his close contacts and the environ-
ment (including cage surface wipe swabs, poultry and
swine excrement and drinking water of the animals)
were negative for influenza virus.

1536 X. Li et al.

https://www.who.int/influenza/gisrs_laboratory/antiviral_susceptibility/nai_overview/en/
https://www.who.int/influenza/gisrs_laboratory/antiviral_susceptibility/nai_overview/en/


Antigenic characteristics

Results from HI revealed that TJ/1606/18 was antigeni-
cally similar to A(H1N1)pdm09 virus vaccine strains
A/California/07/2009(H1N1) and A/Michigan/45/
2015(H1N1) (Table 1).

Antiviral susceptibility

TJ/1606/18 displayed an NI phenotype, 1.2-fold
increase in IC50 compared to the oseltamivir-sensitive
control virus, with the NA inhibitor oseltamivir
(Table 2).

Molecular characteristics

Full-length sequences of the 8 gene segments of TJ/
1606/18 (PB2, PB1, PA, HA, NP, NA, M and NS)
were obtained, consisting of 2280, 2274, 2151, 1701,
1515, 1410, 982 and 838 nucleotides (only the nucleo-
tides in the Open Reading Frame were calculated),
respectively. Sequences of all eight segments have
been submitted to GISAID, accession numbers:
EPI1431720-EPI1431727.

Phylogenetic analysis revealed that TJ/1606/18 was a
novel EAS-H1N1 containing genes from Eurasian
avian-like swine H1N1 (HA and NA), A
(H1N1)pdm09 (PB2, PB1, PA, NP and M), and classi-
cal swine H1N1 (NS) (Figure 1 and Table 3). All eight
segments shared 93.6–97.9% and 94.9–97.1% nucleo-
tide identity with A/Hunan/42443/2015 and A/
Fujian-cangshan/SWL624/2016, respectively (Table
4), with94.5–98.8% and 94.0–99.6% identities in
deduced amino acids (Table 5). However, the gene seg-
ments PA, NP andM of TJ/1606/18 showed the highest
nucleotide homologies, 97%, 97.1%, and 98.1% respect-
ively, with A/California/07/2009 virus (Table 4) and
corresponding amino acid homologies of 98.5%,
98.6% and 99–100% (Table 5).

The key molecular features of TJ/1606/18 known to
be associated with increased virulence in mammals,
mammalian transmissibility and antiviral susceptibility
were shown in Table 6. TJ/1606/18 contained the

amino acid motif PSIQSR↓GL at the HA1/HA2 clea-
vage site, a characteristic of influenza viruses with
low pathogenicity [24]. Furthermore, seven potential
glycosylation sites (N-X-S/T) were found at positions
27, 28, 40, 212, 291, 498 and 557 in the HA protein
of the isolated virus. TJ/1606/18 had 190D and 225E
in HA, indicative of increased binding to swine or
human receptors.

The amino acid substitutions (H275Y and N295S)
associated with reduced susceptibility to NA inhibitors
were not observed in TJ/1606/18 NA, suggesting that
the isolated virus was sensitive to antiviral drugs osel-
tamivir and zanamivir. This was consistent with the
results of antiviral susceptibility test. However, the
M2 protein had S37N amino acid substitution like A
(H1N1)pdm09 viruses, indicative of resistance to the
antiviral drugs amantadine and rimantadine [25–26].

In PB1 polymerase, TJ/1606/18 owned 99H and
368I. The TJ/1606/18 PB1-F2 protein is unlikely to
function as the reading frame was interrupted by stop
codons at positions equivalent to amino acid residues
12 and 86.

In addition, several amino acid substitutions related
to virus virulence or host adaption have been reported,
including L89V, Q591R, E627K, and D701N in PB2
polymerase, L336M, K256R and S409N in PA, T215A
in M1 protein, P42S in NS1and Q357K in NP protein
[27–33]. TJ/1606/18gene sequences encoded all but
two, E627K and D701N in PB2 polymerase, of these
amino acid substitutions (Table 6).

Discussion

Influenza virus infection usually causes substantial
mortality and morbidity. Pigs play an important role
in the generation of novel influenza viruses with pan-
demic potential because they may be infected with
both humans and avian influenza virus [34]. Currently,
influenza viruses of subtypes H1N1, H3N2 and H1N2
are known to co-circulate in pigs [14]. Since 2005, the
EAS-H1N1 viruses have become dominant [13–14]
after their long-term evolution, the EAS-H1N1 viruses
in China have been reported to preferentially bind to
human-type receptors, and some of the viruses tested
were transmitted in ferrets by respiratory droplets.
This suggests that among the influenza viruses cur-
rently circulating in animals, the EAS-H1N1 SIVs
pose the greatest pandemic threat [13].

Sun et al. reported that novel triple-reassortant EAS-
H1N1 SIVs, containing gene segments from A

Table 2. Antiviral susceptibility.
Virusa IC50 (95% confidence interval)

A/Tianjin-baodi/1606/2018(H1N1) 0.46 (0.30–0.62)
A/Texas/23/2012(H1)H275 (NAI sensitive) 0.37 (0.27–0.47)
A/Texas/23/2012(H1)Y275 (NAI
resistance)

55.50 (45.70–65.31)

aNAI: neuraminidase inhibitor.

Table 1. Antigenic analysis of TJ/1606/18 using HI assay.

Virus

HI antibody titres of ferret antiserum againsta

A/California/7/
2009C

A/Michigan/
45/2015E

A/Michigan/
45/2015C

A/California/7/2009
(H1N1)Cb

2560 160 640

A/Michigan/45/2015
(H1N1)Ec

1280 1280 2560

A/Michigan/45/2015
(H1N1)Cb

2560 2560 2560

A/Tianjin-baodi/
1606/2018(H1N1)

640 640 1280

aHomologous titres are shown in boldface. Antiserum was obtained from
ferret after immunized with virus stock once.

bViruses were isolated using MDCK cells.
cViruses were isolated using embryonated hens’ eggs.
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(H1N1)pdm09 (PB1, PB2, PA and NP), EAS-H1N1
(HA, NA and M) and Classical SIVs (NS),were isolated
from pigs in Tianjin, together with human-like H1N1,
classical swine H1N1 and Eurasian swine H1N1 viruses
[35], which indicated that multiple genetic lineages of

swine H1N1 viruses were co-circulating in the swine
population in Tianjin, China. Here, we show that TJ/
1606/18 had close antigenic and genetic relationships
with EAS-H1N1 viruses that were circulating in pigs
in China. As the gene sequences can’t be available

Figure 1. Phylogenetic analysis of eight gene segments on A/Tianjin-baodi/1606/2018(H1). The reliability of the trees was assessed
via bootstrap analysis with 1000 replications. Pandemic H1N1 means A(H1N1)pdm09.
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from GenBank or GISAID, we couldn’t analyse the
detailed molecular characteristics between TJ/1606/18
and the novel triple-reassortant EAS-H1N1 isolated
in pigs in Tianjin (mentioned above), and based on
the phylogenetic trees published by Sun et al. in 2013
[35], it can be recognized that the novel triple-reassor-
tant EAS-H1N1 viruses were closely related to TJ/1606/

18, with only a difference that M gene derived from
EAS-H1N1. This means EAS-H1N1 viruses have con-
tinued to circulate in pigs in Tianjin, with mutation
and recombination occurring, yielding reassortant
viruses that occasionally infect humans.

At the time of manuscript preparation, TJ/1606/18
was isolated from the fifth case of human infection

Figure 1 Continued
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with an EAS-H1N1 reported in China; the other four
yielding A/Jiangsu/1/2011(H1N1) (JS), A/Heibei-
yuhua/SWL1250/2012(H1N1) (HB), A/Hunan/42443/

2015(H1N1) (HN) and A/Fujian-cangshan/SWL624/
2016(H1N1) (FJ) [18–21]. The first case, which began
in late December 2010 in a three-year-old boy in

Figure 1 Continued

1540 X. Li et al.



Jiangsu, resulted in death; however, the child had a his-
tory of renal disease [18,36]. The second case, which
began in December 2012 in a three-year-old boy in
Hebei Province, caused mild influenza-like illness
[19]. The third case was a 30-month-old boy in late
June 2015 in Hunan Province, who developed severe
pneumonia and recovered after hospitalization treat-
ment for 38 days. The fourth case was a 46-year-old
man with severe pneumonia in October 2016 in Fujian
province, and the patient died due to multi-organ fail-
ure. The fifth case reported here was a nine-year-old
boy with mild ILI symptoms in December 2018, and

recovered in a week without hospitalization and oselta-
mivir treatment. This is the first human infected with
novel EAS-H1N1 in northern China, and the second
case in China (the case from Fujian is the first one).

Of the four previous EAS-H1N1 virus causing
human infections (Tables 3 and 4), a full-genome
analysis of these viruses showed that they can be
divided into two main genotypes, represented by the
JS and HN viruses [33]. All eight gene segments of JS
and HB belonged to EAS-H1N1 (JS-like viruses),
while those of HN and FJ were derived from EAS-
H1N1, A(H1N1)pdm09 and classical swine H1N1

Figure 1 Continued
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viruses, as was the case for TJ/1606/18 (HN-like
viruses). And research has indicated than HN virus
showed higher infectivity, virulence, and substantially
higher replication in respiratory tract of mice than JS
virus [20]. TJ/1606/18 belonged to HN-like virus, but
caused mild respiratory infection in human. More
research about its pathogenesis in mice should be eval-
uated in future.

Based on previous studies, amino acid substitutions
E190D and G225D/E in HA could lead to a shift in
receptor-binding specificity from avian α-2,3-linked
sialic acid (Sias) to human α-2,6-linked Sias, thereby
increasing the binding of H1N1 virus to cells in the
human upper respiratory tract [37–38]; TJ/1606/18
had 190D and 225E, as was the case in other EAS-
H1N1 viruses isolated from humans (Table 6), indicat-
ing the potential risk of transmission among humans.
However, the amino acid motif PSIQSR↓GL was
found at the HA1/HA2 cleavage site, a characteristic
of influenza viruses with low pathogenicity.

The viral polymerase is a major determinant of
interspecies transmission and pathogenesis. It has
been reported that L89V in PB2 [21] can enhance the
polymerase activity, Q591R and E627K [21] can
increase virus replication in mammals, and most
recently published D701N in PB2 can indeed enhance
the viral polymerase activity, viral replication, and
pathogenicity in mice [17]. Here, TJ/1606/18 had
L89V substitution and 627E, which exist in all five
EAS-H1N1 viruses, but owned Q591R substitution
and 701D, which are specific to HN-like viruses
(Table 6).

Increased virus transmission between hosts has been
reported for viruses carrying X99H and I368V amino
acid substitutions in their PB1 polymerase [39]; TJ/
1606/18 possessed 99H and 368I, which are the same
as in all five EAS-H1N1 (Table 6). Furthermore, studies
have shown that the influenza virus PB1-F2, encoded
by a second reading frame, protein can play a key
role in viral infection and virulence [24,40–41] with

Table 3. Genetic origin of A/TJ/1606/18 based on phylogenetic analyses.
Lineage assigned to gene segment

Isolates PB2 PB1 PA HA NP NA M NS
A/California/07/2009(H1N1) PDM PDM PDM PDM PDM PDM PDM PDM
A/Jiangsu/1/2011(H1N1)a EAS EAS EAS EAS EAS EAS EAS EAS
A/Fujian-cangshan/SWL624/2016(H1N1)a PDM PDM PDM EAS PDM EAS PDM CS
A/Hebei-yunhua/SWL1250/2012(H1N1)a EAS EAS EAS EAS EAS EAS EAS EAS
A/Hunan/42443/2015(H1N1)a PDM PDM PDM EAS PDM EAS EAS CS
A/Tianjin/22163/2017(H7N9)b EAS EAS EAS AIV EAS AIV EAS EAS
A/swine/Guangdong/1/2010(H1N1) PDM PDM PDM EAS PDM EAS EAS CS
A/swine/Tianjin/9/2013(H1N1)c PDM PDM PDM EAS PDM EAS EAS CS
A/Tianjin-baodi/1606/2018(H1N1) PDM PDM PDM EAS PDM EAS PDM CS

Notes: PDM, genes closest homology to A(H1N1)pdm09 viruses; EAS, genes with closest homology to Eurasianavian-like swine influenza viruses; CS, genes
with closest homology to classical swine influenza viruses; AIV, avian influenza viruses.

aHuman infection with Eurasian avian-like swine influenza virus.
bHuman infection with avian influenza virus H7N9 in Tianjin.
cNoveltriple-reassortant H1N1 swine influenza viruses in pigs in Tianjin, China [35].

Table 4. Nucleotide homology analysis of the eight gene segments of A/TJ/1606/18.

Isolates

A/Tianjin-baodi/1606/2018(H1) (nucleotide identities %)

PB2 PB1 PA HA NP NA M NS

A/California/07/2009(H1N1) 96.6 97.4 97.0 66.6 97.1 88.2 98.1 91.2
A/Jiangsu/1/2011(H1N1)a 80.6 81.2 81.2 96.6 79.8 96.9 94.1 79.6
A/Fujian-cangshan/SWL624/2016(H1N1)a 95.2 97.1 94.9 96.1 95.6 97.1 97.1 96.4
A/Hebei-yunhua/SWL1250/2012(H1N1)a 80.1 81.5 80.8 96.4 80.0 96.7 93.6 78.6
A/Hunan/42443/2015(H1N1)a 97.0 97.9 96.9 97.5 96.4 97.2 93.6 97.0
A/Tianjin/22163/2017(H7N9)b 81.2 81.8 86.2 24.3 79.8 29.9 84.4 75.6
A/swine/Guangdong/1/2010(H1N1) 92.7 92.8 92.0 91.7 92.3 85.1 93.4 94.7
aHuman infection with Eurasian avian-like swine influenza virus.
bHuman infection with avian influenza virus H7N9 in Tianjin.

Table 5. Amino acid homology analysis of A/TJ/1606/18 proteins.

Isolates

A/Tianjin-baodi/1606/2018(H1) (identities %)

PB2 PB1 PB1-F2 PA HA NP NA M1 M2 NS1 NS2

A/California/07/2009(H1N1) 98.3 98.9 98.0 98.5 78.9 98.6 92.1 100 99.0 88.6 89.0
A/Jiangsu/1/2011(H1N1)a 93.8 94.5 64.0 92.3 97.0 92.2 96.4 98.8 93.8 78.5 87.7
A/Fujian-cangshan/SWL624/2016(H1N1)a 97.2 98.7 94.0 97.1 97.2 98.4 97.3 99.6 97.9 94.7 94.5
A/Hebei-yunhua/SWL1250/2012(H1N1)a 93.7 94.3 62.0 92.5 97.4 92.0 96.0 98.8 93.8 77.2 84.9
A/Hunan/42443/2015(H1N1)a 98.0 98.8 98.0 98.7 97.7 98.0 97.9 98.4 94.8 95.2 94.5
A/Tianjin/22163/2017(H7N9)b 96.3 95.5 56.0 95.0 42.4 92.6 48.9 92.1 88.7 75.4 83.6
A/swine/Guangdong/1/2010(H1N1) 96.4 97.4 90.0 95.5 92.4 97.4 93.6 99.6 93.8 92.1 89.0
aHuman infection with Eurasian avian-like swine influenza virus.
bHuman infection with avian influenza virus H7N9 in Tianjin.
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the protein locating in the mitochondria and leading to
apoptosis [42]. However, truncated PB1-F2 with fewer
than 87 amino acid residues lacks the mitochondria
translocation signal and cannot function [42]. Other-
wise, PB1-F2 plays critical roles in viral pathogenesis
by interfering with the host immune response and
influencing inflammatory responses [43]. However,
PB1-F2 has dissimilar functions in different virus
types/subtypes and hosts, which are determined by its
length. Usually, avian influenza viruses have full-length
PB1-F2 protein, enabling all functions [44], while clas-
sical swine H1N1 and A(H1N1)pdm09 viruses fre-
quently contain truncated PB1-F2 with associated
loss of function as seen in TJ/1606/18.

Recently research showed that Q357K substitution
in NP protein, which is a typical human signature mar-
ker, is an adaptive signature of the influenza A viruses,
allowing them to cross species barriers to circulate in
humans and induces a fatal infection in mice [33].
TJ/1606/18 possessed 357K, the same as the other
two HN-like viruses (HN and FJ) (Table 6), this may
indicate that EAS-H1N1 already acquired the trait
necessary to cause a human influenza pandemic.

Alternatively, amino acid substitutions related to
increased virulence were found in PA (336M and
356R, unique in HN-like viruses), M1 and NS1 pro-
teins of TJ/1606/18. This complex pattern of amino
acid substitutions and their interaction in determining
virus virulence, notably in relation to infection of
humans, requires further investigation.

TJ/1606/18, like other EAS-H1N1 viruses isolated
from humans, showed antiviral resistance to amanta-
dine and rimantadine due to S31N amino acid substi-
tution in M2 protein, but remained sensitive to
neuraminidase inhibitors. Hence, at the early stage of
infection by EAS-H1N1-like viruses, administration
of oseltamivir or zanamivir may reduce the severity
of infection [1].

In conclusion, human infection with EAS-H1N1 or
a reassortant EAS-H1N1virus could result in mild or
severe clinical symptoms. Whole genome sequencing
has revealed a number of gene mutations encoding
amino acid substitutions in a number of the virus pro-
teins, coming together by mean of gene reassortment,
which have been associated with increased virulence
and likelihood of transmission to other mammals
and humans. It is imperative to continue and enhance
surveillance of influenza in swine as they represent a
host species that can produce novel virus reasortants
that could lead to another human pandemic, as seen
with A(H1N1)pdm09 viruses.
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