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Abstract

A high-throughput multiconstriction microfluidic channels device can distinguish human breast 

cancer cell lines (MDA-MB-231, HCC-1806, MCF-7) from immortalized breast cells (MCF-10A) 

with a confidence level of ~81–85% at a rate of 50–70 cells/min based on velocity increment 

differences through multiconstriction channels aligned in series. The results are likely related to 

the deformability differences between nonmalignant and malignant breast cells. The data were 

analyzed by the methods/algorithms of Ridge, nonnegative garrote on kernel machine (NGK), and 

Lasso using high-dimensional variables, including the cell sizes, velocities, and velocity 

increments. In kernel learning based methods, the prediction values of 10-fold cross-validations 

are used to represent the difference between two groups of data, where a value of 100% indicates 

the two groups are completely distinct and identifiable. The prediction value is used to represent 

the difference between two groups using the established algorithm classifier from high-

dimensional variables. These methods were applied to heterogeneous cell populations prepared 

using primary tumor and adjacent normal tissue obtained from two patients. Primary breast cancer 

cells were distinguished from patient-matched adjacent normal cells with a prediction ratio of 
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70.07%–75.96% by the NGK method. Thus, this high-throughput multiconstriction microfluidic 

device together with the kernel learning method can be used to perturb and analyze the 

biomechanical status of cells obtained from small primary tumor biopsy samples. The resultant 

biomechanical velocity signatures identify malignancy and provide a new marker for evaluation in 

risk assessment.

Graphical Abstract
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breast cancer cells; kernel learning; multiconstriction microfluidic channels; machine learning; 
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The determination of risk for a patient with a primary tumor of the breast is of utmost 

interest to patients and clinicians alike. Clinical, pathological, biochemical, and most 

recently genetic tests have been developed in an attempt to inform treatment decisions based 

upon the risk for tumor metastasis and postsurgical recurrence rates. Tumors with aggressive 

markers will require adjuvant therapies, but in other primary tumors and conditions such as 

ductal carcinoma in situ (DCIS) more indolent markers are present. In such patients, there is 

still uncertainty what additional therapy beyond surgical resection is warranted or if no 

further therapy would be more appropriate in which case, physicians risk overtreatment of a 

nonaggressive condition.

Biomechanical properties of metastatic cancer cells provide a clue that the study of 

biomechanics of primary tumor cells might be of use as a marker of risk in primary breast 

cancer. Studies of cell lines derived from metastatic breast cancer show such cells have 

softer biomechanical strength, based on their cytoskeleton, microtubules and actin filaments, 

which result in a higher deformability in microfluidic constriction channels.1–3 Microfluidic 

devices utilizing constriction channels have been broadly applied to metastatic studies on 

different cell lines.4–8 Many studies have demonstrated the utility of circulating tumor cells 

as a minimally invasive cancer screening method for both the initial diagnosis of cancer and 

in monitoring patients for recurrent or metastatic cancer.9,10 An essential step in escape from 

the primary tumor is the epithelial-mesenchymal transition (EMT) that allows cancer cells to 

become more motile and more likely to survive in the patient circulation. Most of the studies 

on the mechanical properties of cell lines at single-cell level have been carried out in a single 

constriction microfluidic channel.4,5,11,12 Here, we show using an array of multiconstriction 

microfluidic channels a higher throughput is achieved. The multiple constriction channels 

can generate multiple deformations to cell structure, which increases the velocity-related 

variables for mechanical behavior analysis that can be correlated to metastatic 

characteristics.2,13
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Multiple technologies have confirmed the biomechanical softness is most pronounced in the 

more metastatic prone cell lines. Such technologies include atomic force microscopy 

(AFM),14–17 micropipet aspiration,18–20 optical deformability,21,22 and magnetic beads with 

selective antibodies assays.23 For clinical applications, the high-throughput of microfluidic 

approaches and lab-on-chip technologies are more attractive. What is unknown is how the 

biomechanical properties of breast cells derived from primary tumors in patients and breast 

cells grown in long-term culture compare. Here, we show in a multiconstriction microfluidic 

device that patient-derived primary human breast tumor cells and breast cell lines show 

similar incremental velocity profiles, providing proof-of-concept that biomechanical 

properties of primary tumors can be assessed. Furthermore, the primary tumor tissue is 

biomechanically distinguishable from the patient’s own adjacent normal breast tissue. This 

work represents an important development in microfluidic analysis of breast biopsies and 

how cell biomechanical properties might contribute to the assessment of patient risk.

EXPERIMENTAL SECTION

Materials and Methods.

Cell Culture and Sample Preparation.—MDA-MB-231 cells (passage #6, American 

Type Culture Collection (ATCC), Manassas, VA) were grown in F12:DMEM (Lonza, Basel, 

Switzerland) with 10% fetal bovine serum (FBS), 4 mM glutamine, and penicillin-

streptomycin (100 units per mL). HCC-1806 cells (passage #5, ATCC) were grown in 

ATCC-formulated RPMI-1640 medium with 10% FBS. MCF-7 cells (passage #5, ATCC) 

were grown in EMEM with 10% FBS, and 2× L-glutamine. MCF-10A cells (passage #19, 

Lombardi Comprehensive Cancer Center, Georgetown University in Washington, DC were 

grown in F12:DMEM with penicillin-streptomycin (100 units per mL), 2.5 mM L-glutamine, 

20 ng/mL epidermal growth factor (EGF), 0.1 μg/mL cholera toxin, 10 μg/mL insulin, 0.5 

μg/mL hydrocortisone, and 5% horse serum. All of the cells were grown in T-25 cm2 culture 

flasks at 37 °C in a 5% CO2 in air atmosphere until cells were ready for subculture. The 

morphology of the cells was observed before trypsinization. The cells were then detached 

from the flask with trypsin-EDTA solution (SigmaAldrich). The MDA-MB-231, HCC-1806, 

MCF-7, and MCF-10A cells were trypsinized at 37 °C for 2, 8, 7, and 15 min, respectively. 

All of the cells were diluted to a final count of ~4 × 104cells/mL.

Human Subjects and Clinical Data.—For this study, two fresh breast tissue samples 

were collected along with clinical/pathological information with Institutional Review Board 

approval (IRB#2016–0601) from the Pathology Department at Providence Hospital and 

samples were coded to preserve patient confidentiality. Tumor diagnoses were confirmed by 

routine histopathological examination. (Detailed information available in the Supporting 

Information.)

Patient Sample Preparation and Postexperiment Collection.—The patient samples 

were frozen and transported from Howard Cancer Center to Virginia Tech. The thawing 

procedure for patient samples was different from the thawing of cell lines. Unlike the quick 

thawing procedure for cell lines, the patient samples in vials needed to be thawed slowly. 

The frozen samples were transferred to an ice pack for 10–15 min, followed by 4 °C fridge 
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for 10 min, and to room temperature until the samples melted. Then the vials were moved to 

a 37 °C water bath. The cancer samples were diluted with culture medium to reach the 

required cell concentration for microfluidic experiments.

After experiments, the patients’ samples were collected from the sample collection outlet of 

the microfluidic device and stained for the epithelial markers (e.g., Pancytokeratin, CD45, 

CD68). (Detailed information available in the Supporting Information.)

Device Fabrication.—The microfluidic channels were fabricated by 

polydimethylsiloxane (PDMS) soft-lithography, followed by PDMS-glass bonding after 

plasma treatment. The molds for microfluidic channels were fabricated on a silicon wafer 

with two layers of SU-8 (SU-8 3005 and SU-8 3025, MicroChem, Newton, MA) 

photolithography. The detailed fabrication procedures are presented in the Supporting 

Information.

Experimental Setup.

The multiconstriction microfluidic channel array was treated with EDTA before experiment 

for 30 min to reduce the chance of cells attaching to the microchannel surfaces. Then, the 

device was washed with cell culturing medium to remove the residuals. The microfluidic 

device was mounted on an inverted microscope (Zeiss Axio Observer LSM-510, 

Thornwood, NY) with a 20X lens. The cell sample was connected to the inlet of the delivery 

channel. A constant pressure on the sample reservoir of 100 mbar was applied by a pressure 

pump. A negative pressure of 150 mbar was applied at the cell outlet collection channel. The 

pressure on the cell sample was kept constant during all the experiments on both cell lines 

and patient samples. Instead of using a high speed camera, a smartphone with slow motion 

function was used to record videos of the cell movement at a frame rate of 240 frames per 

second (fps). The overall magnification is 200X in smartphone video with a 1920 X 1080 

resolution. The velocity information on the cells was extracted from the video using tracking 

software named “Tracker” (developed by “Open Source Physics”, supported by the National 

Science Foundation). An example of a cell passing through the device is demonstrated in 

Supporting Information Figure S1. After the experiment on patients’ cancer and adjacent 

normal samples, the used cells were collected at the outlet for secondary hematoxylin and 

eosin (H&E) staining studies. The cells were collected into vials, and 5% (v/v) DMSO was 

added into the vial for freezing purpose. The vials were frozen at −18 °C for 1 h before 

transferred into −80 °C freezer. The following H&E staining was performed at Howard 

Cancer Center.

Statistical Analysis.

We conduct variable selections and then obtain the prediction accuracy using 10-fold cross-

validations. Three methods based on Ridge,24 Lasso,25 and NGK26 methods are compared. 

Ridge and Lasso methods are popular variable selections methods based on multivariate 

linear and additive model, while NGK is a variable selection based on a nonlinear and 

nonparametric multivariate model. Ridge regression has been used the most popular when 

the data is not sparse, while Lasso has been used when the data is sparse. However, both 

methods are developed using multivariate linear and additive model. Hence, these two 
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methods are not appropriate when variables are interacted and highly correlated. Since NGK 

is developed under the nonlinear and nonadditive model, it automatically built the complex 

interaction among variables using kernel function. The main advantage of this kernel-based 

approach is very flexible: (1) it can automatically identify what variables are most 

significant; (2) it can automatically model unknown and complicated interactions; (3) it 

provides flexibility for both additive and nonadditive nonparametric models; (4) it also 

provides flexibility for both parametric and nonparametric model. That is, if there are no 

complicated interactions or nonparametric model, it automatically becomes additive model 

or parametric model.

RESULTS

Cell Lines.

The morphologies of two human triple-negative breast cancer (TNBC) cell lines, MDA-

MB-231 and HCC-1806, the endocrine-responsive (ER+/PR+/Her2−) MCF-7 cell line, and 

the immortalized breast epithelial cell line MCF-10A used in these studies are shown in 

Figure 1. Their cell sizes measured as the longest axial dimension were determined from 

video recorded images of the cells entering the microfluidic channel using a smartphone 

with slow-motion setting on an inverted microscope. The difference between the smartphone 

and a high-speed camera, such as IDT Redlake NX-3 (IDT vision, Pasadena, CA)1,2,27,28 

that we have in the lab, is the available memory and the subsequent time we can record the 

videos without interrupting the experiment. A smartphone used in this work has an internal 

memory of 64GB while the high-speed camera provides only 5GB for video recording. 

Also, apps can be developed to perform all postprocessing analysis of the videos taken on 

the smartphone. Using the videos taken with the smartphone, the distribution of cell sizes 

derived from ~100 cells for each cell line are shown in Figure 1 adjacent to the images of the 

cell monolayers. MDA-MB-231 (Figure 1a) cells exhibit a biphasic size distribution with 

peaks at 13 and 16 μm. HCC-1806 (Figure 1b), MCF-7 (Figure 1c), and MCF-10A (Figure 

1d) cells have monophasic size distributions with peaks at 13, 15, and 16 μm, respectively.

Multiconstriction Channel Array Microfluidic Chip.—The microfluidic device 

contains two rows of multiconstriction channels, named sequential deformation channel 

(SDC) 1 and 2, referred to as SDC1 and SDC2 in Figure 2a, respectively. Each row has six 

identical multiconstriction channels with four constriction regions (width, 8 μm height, 8 

μm; length, 50 μm) and three relaxation regions (width, 25 μm; height, 30 μm; length, 25 

μm). A transition channel (TC) (center channel in blue, vertical to the multiconstriction 

channels) between SDC1 and SDC2 is created to function as a buffer for maintaining the 

constant pressure before the cells enter the SDC2. In addition, the width of 100 μm in the 

center channel allows the cells to relax longer and possibly recover to their original spherical 

shape before entering SDC2. It is noteworthy that, in this chip, we have separated the 

sensing channels and the delivery channel. This will minimize the possibility of channel 

clogging at the introduction of cells. We also treated the microchannel with EDTA before 

experiment for 30 min to reduce the chance of cells being stuck in the constriction channel. 

However, clogging may still be happening due to the small microchannel dimensions and the 

presence of larger and stiffer particles. We used 30 μm filters during the sample preparation. 
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When large particles go inside the channel and disturb the flow, we reverse the negative 

pressure to push the large particles/cells back to the delivery channel, whose flow was kept 

constant during this procedure. We performed this operation as needed (not more than once 

per minute). We had six parallel channels and we did not have clogging on all channels. So, 

practically, we did not have to do this until all channels are clogged. The reason we did this 

though was to ensure that the videos and subsequent data analysis are being carried out 

while all channels are performing as normal and no very large particles have obstructed the 

flow. There are ways to address this in the future: by making more channels in parallel, 

using a finer filter, using a filter array as part of the chip to prevent the large particles from 

flowing, and even programming the pressure pump to reverse the pressure automatically for 

any possible clogging.

Incremental Velocity Profiles of Breast Cell Lines.—Single cell suspensions were 

introduced to the delivery channel and the transit of individual cells through SDC1 and 

SDC2 were monitored by video imaging. In the case of both cell lines and patient samples, 

~45–50% of the cells were passing through SDC1 and SDC2. Other cells were flowing 

along the delivery channel into the cell waste outlet. The data were collected from the videos 

of cells passing through the channels under a constant pressure. If a large particle/cell was 

clogging any part of SDC1 or SDC2, the data from that cell will not be used in data analysis. 

Transit velocities were measured from the videos. To gain greater resolution in the velocity 

profile, we obtained two velocity measurements in each constriction segment (Figure 2b). 

For example, in SDC1, the transit velocity through the initial constriction segment was 

designated 1 and 2. The velocities in segments 1–16 were recorded as v1, v2, …, v16, 

respectively. The velocity increments between two different sections were defined as

αm, n = vm − vn /vn (m = 1, 2, …, 16; n = 1, 2, …, 16) (1)

where m and n were the sequence number to identify the velocities. It is noteworthy that our 

chip can provide other information including aspect ratio of each cell after going through 

SDC1 and SDC2 as well as the deformed length of each cell at each section of SDCs. 

However, collection of these data requires heavy image processing which is beyond the 

scope of this work. We only analyzed and included the velocity profiles as biomechanical 

properties as a simpler and faster technique. We can envision, however, that in future, by 

establishing automated image processing algorithms for more complex video analysis, we 

can include data from other parameters in our machine learning system.

The experiments on each cell line were repeated on more than three devices to prove the 

repeatability and reliability of this device. The velocity results of the three malignant cell 

lines, illustrated in Figure 2b, all showed a characteristic profile in which the transit 

velocities through successive constriction segments in SDC1increase, then this repeats as 

cells enter SDC2. The nontumorigenic MCF-10A cells do not follow this pattern. The entry 

velocities of MDA-MB-231 (segment 1 in red) and HCC-1806 (segment 1 in pink) in SDC1 

are higher than the entry velocities of MCF-7 (segment 1 in orange) and MCF-10A (segment 

1 in blue). The initial velocities of the MDA-MB-231 and HCC-1806 are 457 ± 598 μm/s (n 
= 96) and 376 ± 242 μm/s (n = 108), respectively. The velocity profiles at population level 

and the trends of the velocity variations of MDA-MB-231 and HCC-1806 are similar. The 
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variations of velocities are related to cells’ dynamic biomechanical properties which are 

functions of cells’ cytoskeletal architecture, cell size, cell morphology and surface 

roughness, and possibly the mitosis cell cycles.13,29–34 The microfluidic channels were 

treated with EDTA to minimize the cell stickiness to the surface of PDMS channel. The cell 

adhesion is an important component of the properties of the cells; however, the cell will not 

adhere to channel surface in the short time of cells passing through the microchannels. The 

cell requires a much longer time to adhere to the channel wall. The velocity profile reveals 

the biomechanical properties of the cell stiffness and cytoskeleton strength. To analyze the 

different cell lines by velocity profiles, we used the kernel-based machine learning method 

to find the variables that represents the biomechanical properties of different cell lines. After 

passing through the SDC1, the cancer cell lines MDA-MB-231, HCC-1806, and MCF-7 

show a higher entry velocity in SDC2 (segment 9 in red, pink, and orange, respectively) than 

MCF-10A (segment 9 in blue). Based on the t test results of velocities at segment 9, the 

velocity of MDA-MB-231 being higher than that of MCF-10A has a t = 11.1, p < 0.0001; 

even assuming the velocity of MDA-MB-231 being three times higher than that of 

MCF-10A has a t =2.132, p = 0.017. The velocity of HCC-1806 being higher than that of 

MCF-10A has a t = 12.1, p < 0.0001; assuming the velocity of HCC-1806 twice higher than 

that of MCF-10A has a t = 3.65, p = 0.0002. The velocity of MCF-7 higher than than that of 

MCF-10A has a t = 11.5, p < 0.0001; assuming the velocity of MCF-7 2.5 times higher than 

that of MCF-10A has a t = 2.37, p = 0.009.

The cancer cell line MDA-MB-231 deformed faster at the segment 2 of SDC1. After passing 

through SDC1, the MDA-MB-231 cells are recovered back to spherical geometry and 

become easier to deform at the entrance (segment 9) of SDC2. The normal cell line 

MCF-10A cells experience a different passing procedure. MCF-10A cells, which are stiffer 

than cancer cells,15,31–33,35–38 require a longer deformation time at the segment 1 of SDC1. 

After passing through SDC1, the MCF-10A cells are not fully recovered back to spherical 

structure, which, due to cell rotation in TC, can result in a longer time to deform again and 

move into the entrance of SDC2 (segment 9). (Additional images available in Supporting 

Information Figure S1). However, when they deform completely and get into SDC2, their 

transit is generally slower compared to their velocities in SDC1. As illustrated in Figure 2b, 

the average velocity of MCF-10A in SDC2 (segments 9–16 in blue) is lower than those of 

the three cancer cell lines. The three cancer cell lines show similar velocity profiles in SDC2 

(segments 9–16 in red, pink, and orange) and SDC1.

The multiconstriction microfluidic device improves the resolution in distinguishing cancer 

cells from normal cells compared with single constriction channel microfluidic devices.
3,37,39,40 The two rows of channels create 16 velocity segments in constriction regions for 

data analysis, which yields 120 variables using the definition in eq 1. We select eight 

velocity increments at the same segments of SDC1and SDC2 as variables:
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α16, 08 = v16 − v08 /v08

α15, 07 = v15 − v07 /v07

α14, 06 = v14 − v06 /v06

α13, 05 = v13 − v05 /v05

α12, 04 = v12 − v04 /v04

α11, 03 = v11 − v03 /v03

α10, 02 = v10 − v02 /v02

α09, 01 = v09 − v01 /v01

(2)

Together with the size information, 16 velocity segments, and eight additional velocity 

increments defined by eq 1, we can analyze 25 variables by three methods, Ridge,24 NGK,26 

and Lasso.25 The kernel-based machine learning algorithm can be applied on a group of 

cells with limited sample size. The key is to extract sufficient quantity of variables, which 

can be considered as high-dimensional variables combinations.26,41

Consider n observations for each cell type t, t = 1, …, T, and p variables data set (y,Xt), 

where Xt = [x1t,x2t, …, xpt], xjt = [xj1t,xj2t, …, xjnt]T is an n × 1 vector for the jth variable, j 
= 1, …,p. Ridge and Lasso conduct variable selections based on the following generalized 

linear model for multinomial response,

Pr y = t Xt = H β0 + β1x1t + … + βpxpt (3)

where H(·) is a logit function and

∑
t = 1

T
Pr y = t Xt = 1 (4)

Ridge and Lasso conduct variable selection using L2 norm ||β||2 and using L1 norm ||β||, 

respectively, where β = (β0, β1 …, βp)T Ridge’s objective function is to minimize the 

following objective function,

log ∏
t = 1

T
Pr y = t Xt

t + λ β
2

(5)

while Lasso is to minimize the following objective function

log ∏
t = 1

T
Pr y = t Xt

t + λ β (6)
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However, NGK performed variable selection using non-parametric and nonlinear model 

using kernel function. According to the Representer theorem, the nonparametric regression 

model can be expressed as

Pr y = t Xt = H f Xt = H(Kα) (7)

where f(Xt) is the unknown nonparametric function, K is the kernel matrix corresponding to 

the function Hilbert space, and α is unknown parameter. Our kernel can be expressed in a 

nonlinear function form because the Gram matrix

K ξ, Xt = g ∑
j = 1

p
ξ jD

j
(8)

where g is a known function (i.e., Gaussian form), Dj is the matrix with (k,l)th entry 

dkl
j = − x jk − x jl

2
. We performed variable selection using ξ = (ξ0, ξ1, …, ξp). The objective 

function for NGK is to conduct the variable selection for minimizing the objective function,

log ∏
t = 1

T
H Kα(ξ) t + λ ξ (9)

The prediction accuracy is calculated using 10-fold cross-validations (CV). This means that 

we have 10 training and 10 test data sets. Using a given training set, we perform variable 

selections. We then build the classifier and calculate the prediction accuracy using the test 

set. This procedure is repeated 10 times. The probability of correctly predicting the test 

group is named as the prediction value. Then, we are able to find the prediction value to 

distinguish between two different groups, either cell lines or patient samples. The full table 

of prediction values of different combinations of the selected variables is available in 

Supporting Information.

One test of our approach is its reliability in distinguishing malignant and nonmalignant 

breast cell lines. The prediction values (Figure 3) calculated by the Ridge, NGK, and Lasso 

methods show how well individual cell lines are distinguished based on their cell size and 

incremental transit velocities. All three statistical methods distinguished the malignant cell 

lines from the immortalized MCF-10A line with prediction values of 0.80–0.85 (Figure 3a).

Next individual malignant cell lines are compared. Here, there are some interesting 

observations. The two TNBC cell lines (MDA-MB-231 and HCC-1806) which are both 

metastatic in nude mice42 exhibited differential biomechanical properties with predictive 

values between 0.65 and 0.7; thus even though both are TNBC, there is modest confidence 

(65–70%) to distinguish between them (Figure 3b). The differences between breast cancer 

cell lines MDA-MB-231 and MCF-7 have been studied form both biochemical and 

biophysical43–45 points. The biophysical differences were studied by impedance 

spectroscopy that focuses on the specific membrane capacitance and cytoplasm conductivity.
2,27,46 Surprising at first, there is even less confidence (between 0.6 and 0.65) in the ability 

to distinguish the MDA-MB-231 from the MCF-7 cell line which is not metastatic in nude 
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mice47 (Figure 3c). However, the Lasso method distinguished the HCC-1806 and MCF-7 

cell lines with a high predictive value of 0.8 (Figure 3c). We conclude that the results in 

Figure 3b and c are more consistent with the patient origins of each of these cell lines rather 

than their metastatic behavior in nude mice or their hormone receptor status. This makes our 

multiconstriction channel approach unique, possibly more representative of metastatic risk 

in patients. By way of explanation, the HCC-1806 cell line is derived from a patient with a 

nonmetastatic primary tumor classified as a grade II acantholytic squamous carcinoma of the 

breast (ATCC) with basal B characteristics.42 In contrast, both the basal B TNBC MDA-

MB-231 cell line and the hormone-responsive ductal adenocarcinoma line MCF-7 are 

derived from the pleural effusions of patients with metastatic breast cancer (ATCC). Thus, 

our approach might key on an as yet unidentified mechanical property characteristic of the 

metastatic, pleural effusion origin of MDA-MB-231 and MCF-7 cells. In support of this 

idea, even though studies have shown MCF-7 cells have a stiffer cytoskeleton structure with 

a higher Young’s modulus,7,48 others reported single constriction channel devices has 

limited capability in differentiating between MDA-MB-231 and MCF-7.49

Cell Recovery from Human Breast Biopsies.

From patients undergoing partial or complete mastectomy, cancer cells (CA) and adjacent 

normal cells (NR) were collected separately and prepared identically by a method to enrich 

epithelial organoids. Slides were prepared from each single cell suspension; epithelial cells 

(pancytokeratin+), lymphoid cells (CD45+), macrophages plus and histiocytes (CD68+) 

were enumerated after immunohistochemical (IHC). Slides were then stained with H&E. 

Representative images were shown in Figure 4(a–d). In the cancer samples, epithelial cells 

were cancer (CA) while in the adjacent normal samples, the epithelial cells were normal 

(NR) as assessed by a pathologist.

The nuclear-cytoplasmic ratio (N/C ratio) of normal epithelial cells is 1:4–1:6, while the N/C 

ratio of malignant carcinoma cells can reach 2:1. The epithelial cells in cancer samples show 

a larger nucleus in dark color. The large epithelial cells with hyperchromasia and increased 

N/C ratio represent carcinoma cells in patient A and patient B. Differential cell counts 

estimated the percentage of epithelial cells, lymphoid cells, and macrophage/histiocytes 

(M/H) in each of the patient samples. Individual cell sizes by cell type are measured in 

1000× images. The average size of epithelial, lymphoid and M/H populations in each of the 

patient samples is presented in Table 1.

Incremental Velocity Profile Analysis of Primary Human Tissue Samples.

Cell suspensions were passed through 30 μm filter screens to remove large cell clusters prior 

to velocity testing. The patient A, CA sample contained ~2.5 × 104 cells/mL; the patient A 

NR contained ~0.5 × 104 cells/mL. The patient B, CA sample was ~2.5 × 104 cells/mL; the 

patient B NR sample was ~1.5 × 104 cells/mL. The total number of cells in each velocity 

analysis is indicated by “n” in Figure 4e.

The velocity profile of CA and NR from both patient samples (Figure 4) exhibited the same 

incremental velocity profile as observed for the cell lines (Figure 2b). There was progressive 

increase in velocity with each segment in the first channel and then a repeat of this pattern in 
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the second channel. These data largely reflect the epithelial cells in each sample. The small 

mature lymphocytes had a cell size around 8–10 μm, which was smaller than the dimensions 

of constriction channels. Without deformation in the constriction channels, the lymphocytes 

passed through all channels at the flow velocity of the medium.

The Lasso analysis yields the highest predictive value in discriminating CA and NR cells 

from patient samples (Figure 5). For patient A, CA and NR cells show a prediction value of 

0.79 which approaches that achievable in the cell lines. The CA and NR cells from patient B 

show a less robust prediction value of 0.7. These results are obtained using patient biopsies 

that received minimal processing in order to retain all elements of tumor heterogeneity 

within the sample provided. We suggest that this high content microfluidic approach coupled 

with kernel based learning analysis has promise for distinguishing patient-derived cancer 

cells in small biopsy samples with less than a 24 h assay turn-around time. The Lasso 

analysis also indicates that the two patient CA samples are more similar to each other 

(prediction value 0.6) than either CA compared to its patient-matched NR sample. This is of 

interest considering that patient A and B have undergone different therapeutic regimens prior 

to biopsy. Patient A has both chemotherapy and radiation therapy, while patient B does not 

receive any therapy. This suggests that prior treatment may not interfere with the ability of 

this microfluidic approach to identify cancer cells in patient biopsies. There is no gold 

standard for applying prediction values for clinical cancer diagnosis. Our results indicate 

that this device can be used in patient samples to reach a quantitatively comparison for 

clinical samples other than standard image reading in IHC studies.

DISCUSSION

The evaluation of the risk of tumor recurrence and metastasis, and localized tumor 

infiltration status of breast cancer is a challenge. Typically, IHC technology is used in cancer 

diagnosis today to assess tumor grade and local infiltration status. These well-established 

IHC protocols are expensive, time-consuming and labor intensive, and still cannot 

definitively assess metastatic or recurrence risk in every patient.50–52 With the assistance of 

machine learning methods, the analysis of IHC studies can be improved.53 Genetic screens 

are available for predicting cancer recurrence but are not widely available to all patients.54,55 

One confounding factor in diagnosing risk is the heterogeneous nature of cells within patient 

biopsy samples.56 As reviewed by Marjanovic et al., patient mastectomy samples collected 

at surgery usually contain a heterogeneous mixture of both cancerous and normal cells. 

When adjacent normal samples are dissociated into single cell suspensions, proliferating 

cancer cells are also seen.56 Consequently, adjacent normal tissue is not commonly regarded 

as completely normal due to admixture with infiltrating cancerous cells. Here we 

demonstrated using heterogeneous patient breast tumor and normal tissue samples and a 

high-throughput microfluidic channel array device, cell biomechanical properties can be 

recorded at a rate of over 500 cells in 10 min with an inexpensive disposable microchip. In 

addition, we only analyzed ~45–50% of the cells passing through SDC1 and SDC2. This can 

also contribute to a reduction in prediction rate especially in patient samples containing a 

heterogeneous population of cells. Recycling the unanalyzed portion of the sample and 

performing the microfluidic analysis on those cells can enhance the prediction accuracy of 

our assay. The smartphone slow motion video can record sufficient velocity information as a 

Ren et al. Page 11

ACS Sens. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



replacement of expensive high-speed camera. This approach indicates that our device and 

method has a promising potential to be utilized in clinical applications with the development 

of smartphone technologies. Cell transit velocity data analysis using kernel learning-based 

statistical analysis identifies normal and tumor cells in very small biopsy samples based 

upon their biophysical traits which can augment current clinical diagnostic assessments.

Microfluidic technologies to study cancer cells have been carried out with a multitude of 

microfluidic platforms.5,6,11,46,57 Single constriction channel technology with added 

impedance spectroscopy has shown promise in distinguishing between cancerous and 

normal cells from multiple cell lines.4,49,58,59 However, characterization and separation of 

different subtypes of cancer cell lines are still challenging by microfluidic single constriction 

channel with impedance spectroscopy.6,7,60 Single channel designs with multiconstriction 

regions were found to amplify the biomechanical differences between breast cancer cell 

lines and nontumorigenic breast epithelial cell lines. The studies of channels with five 

constriction regions showed differentiation between breast cancer cell line MDA-MB-231 

and normal cell line MCF-10A could be achieved with 95% accuracy.3 Cells entering the 

constriction channel undergo dynamic cell deformation changes. Analysis of the constriction 

channel entry velocity versus the constriction channel exit velocity indicate that cells of the 

nontumorigenic breast cell line has difficulty recovering from their deformed elliptical shape 

to their original spherical geometry. This differential recovery of shape plays a key role in 

differentiating the tumorigenic and nontumorigenic breast cell lines. To scale up throughput 

toward use of this design in clinical applications, here we test a microchip design with 

parallel channels containing four constriction regions each. Combining the machine learning 

technology has attracted the attention of the lab-on-a-chip community on cell research. 

Starting from the American Association of Cancer Research (AACR) annual meeting 2017 

in Washington, DC.,61–63 the application of artificial intelligence and machine learning 

gained more progress in cancer research. Many approaches were made by involving many 

different machine learning algorithms in their cancer research.64–66 Nyberg et al. presented a 

cancer invasion study by k-nearest neighbor machine learning algorithm in 2018.67 The 

Nyberg et al.67 paper is based on short constriction channels they developed with Rowat’s 

group.68,69 They developed their multiple constriction channels to detect the deformation 

parameters of different cell lines. The constriction channel they presented were short, which 

did not cause the full deformation of the single cells. As presented in Nyberg et al.,67 they 

studied the cell invasion by performing k-nearst neighbor (kNN) machine learning on six 

parameters from the multiple short constriction channels. The short constriction channel can 

collect the dynamic motions of the cell deformation as a model to study invasiveness. The 

Rowat paper, in fact, is a good method of using multi-parametric single cell analysis for 

predicting cell invasion behavior. Both their work and our work are a testimony that not just 

a single parameter but a collection of physical attributes are powerful to differentiate cells 

and to predict their disease status. Our work is different from that of Rowat et al. in that we 

use multiconstriction structures and collect different biophysical parameters when compared 

to Rowat et al. Rowat et al. use a single transition channel and then utilizes parameters such 

as size, elastic modulus, transit time, and maximum strain (some of these parameters are not 

directly measured by the microfluidic channel with kNN method to achieve 94–100% 

identification rate of 5 cell lines. The Rowat paper extracted elastic modulus and cell fluidity 
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parameters by preselecting the cell size population median ±1 μm. In our work, we 

considered all cells sizes from 11 to 21 μm to guarantee the heterogeneity of the sample we 

used. The size distribution is presented in Figure 1. If we only analyze the cells by size 

median ±1 μm, we will lose 51.0% of the MDA-MB-231 cells, 33.3% of the HCC-1806 

cells, 43.6% of the MCF-7 cells, and 42.3% of the MCF-10A cells. The elastic modules and 

cell fluidity parameter collection in the Rowat paper requires post calculation and data fitting 

a rheology model with time dependent strain data. On the contrary, we can harvest 

parameters directly from velocity profiles to minimize the work load of data post processing. 

Consistent with our previous work,1,70 we used our longer constriction channels to allow the 

cells to fully deform and transit through the channel, which is another model to study the 

tumor metastasis by biomechanical properties. The short channel in the work of Rowat et al. 

can only provide two time variables: entry time and transit time. Based on their kNN 

method, the time variables provided 0.33–0.86 positive rates. Our multiconstriction channels 

provided more time variables. Together with kernel method, we can reach 81–85% 

prediction values. Our approach does not require the calculation of other biophysical 

parameters from the cells, which demonstrated an easier way to analyze dynamic motions of 

the cells. The Rowat paper concluded that a more sophisticated machine learning method 

can further improve the performance of study invasiveness. Our kernel-based algorithm is a 

significant improvement of the machine learning approach. It is also notable that the kNN 

classifiers used in Nyberg et al.67 are memory-based and require no model fit. This kNN 

approach is a nonparametric algorithm that does not assume the underlying data fits a 

particular model. It is a machine learning tool. The class assigned to new data points is 

determined by the most common class of the k number of nearest neighbors in the training 

set. These neighbors are determined using Euclidean distance. Hence this approach depends 

on the selection of k and distance measure; our NGK does not. Our NGK classifier is a 

nonparametric kernel machine based approach. Our NGK is not memory-based. We can 

consider NGK is a hybrid approach which is a mixed of nonparametric model and kernel 

machine tool. Using a training set, we built NGK classifier which is required to estimate 

nonparametric function but does not assume the particular function form. This 

nonparametric function is estimated via Gaussian process, which is known as a family of 

nonparametric functions. Unlike kNN, the class assigned to new data points is determined 

by the probability that new point is assigned to the certain class.

The TNBC MDA-MB-231 is representative of a highly invasive, rapidly proliferating basal 

breast malignancy expressing markers of cells, including P-cadherin and/or cadherin-11.71,72 

Both P-cadherin and cadherin-11 promote motility and invasiveness.73 The MCF-7 cell line 

is a model of endocrine therapy responsive luminal A breast cancer expressing both ER and 

progesterone (PR) receptors and also differentiation markers more typical of its epithelial 

cell origin such as E-cadherin74 which is associated with lower motility and lower 

invasiveness. MDA-MB-231 express vimentin which makes them more mesenchymal in 

nature than HCC-1806 which exhibit a more vimentin.75

The TNBC cell lines MDA-MB-231 and HCC-1806 show similar velocity profiles in the 

high-throughput microfluidic channel array. The first deformation and secondary 

deformation indicate that both cells have similar deformation and transition times. The 

similar recovery ability to their original spherical shape indicates that both cells have similar 

Ren et al. Page 13

ACS Sens. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biomechanical properties, such as cell membrane and cytoskeleton elasticity. The 

comparison of these two cell lines by the high-dimensional variables analysis of Ridge, 

NGK, and Lasso indicates that there are still differences between the two cell lines. Since all 

cells are breast cells, interactions among these variables within the same cell type and 

interactions between different cell types are not expressed as parametric models. The 

performance between Lasso and NGK is similar which means that the model for the data is 

more likely parametric model. NGK provides flexibility for both additive and nonadditive 

nonparametric models and it also provides flexibility for both parametric and nonparametric 

modeling. This kernel-based classifier is developed by connecting a kernel machine with the 

multivariate nonparametric regression model. This approach can simultaneously perform a 

variable selection in nonadditive multivariate nonparametric model for analyzing high-

dimensional large data. Using NGK, we nonparametrically model unknown interaction 

terms among high dimensional variables. Especially in patient primary tumor samples, the 

heterogeneous status may include more nonlinear relationships among all the velocity-

related variables we established.

The heterogeneous character of human tumors is commonly accepted.76 We are able to 

distinguish cells isolated from biopsies of tumors and adjacent normal tissue based solely on 

their biomechanical properties with a prediction rate of 70.07%–75.96% considering that we 

processed only 50% of each sample. Therefore, in tests of two patients, the prediction rate, 

i.e., the ability to accurately identify a cell as tumor or normal, was 5–10% less than that 

achieved with the cell lines. Considering the greater heterogeneity of the patient samples, 

this result is quite strong. Of note is the observation that the tumor cells removed from the 

patient A whose primary tumor has already metastasized concludes a higher prediction value 

than patient B with the nonmetastatic tumor when compared to adjacent normal tissue. 

Clearly, the multiconstriction microfluidic channel is not a stand-alone assay for patient risk 

assessment at this point; many more patient samples need to be analyzed. Significantly, our 

patient population is primarily African American. As has been documented repeatedly, 

African Americans have much higher breast cancer mortality rates than Caucasian patients, 

and a substantial component lies in as yet unidentified differences in cancer biology;77–79 

thus, a biomechanical diagnostic test might prove particularly of benefit to this patient 

population.
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Refer to Web version on PubMed Central for supplementary material.
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DCIS ductal carcinoma in situ

EMT epithelial-mesenchymal transition

AFM atomic force microscopy

FBS fetal bovine serum

EGF epidermal growth factor

PDMS polydimethylsiloxane

TNBC triple-negative breast cancer

SDC sequential deformation channel

TC transition channel

IHC immunohistochemical

N/C nuclear-to-cytoplasmic

M/H macrophage/histiocytes

kNN k-nearest neighbor
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Figure 1. 
Cell morphology before trypsinization and cell size distribution: (a) MDA-MB-231; (b) 

HCC-1806; (c) MCF-7; (d) MCF-10A.
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Figure 2. 
(a) High-throughput multiconstriction microfluidic channel device and channel labeling. (b) 

Velocity at different segments of four cell lines; error bars represent standard deviation.
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Figure 3. 
Prediction values of (a) comparing cancer cell lines MDA-MB-231, HCC-1806, and MCF-7 

to normal cell line MCF-10A; (b) comparing MDA-MB-231 and HCC-1806; (c) comparing 

TNBC cell lines MDA-MB-231 and HCC-1806 to ER+/PR+/Her2− cell line MCF-7.
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Figure 4. 
H&E stained slides of cell suspensions: (a) patient A cancer (CA) tissue; (b) patient A 

adjacent normal (NR) tissue; (c) patient B CA tissue; (d) patient B NR tissue. (e) Velocity 

profiles for patient A (CA, red; NR, blue) and patient B (CA, violet; NR, lime).
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Figure 5. 
Prediction values of comparing the CA and adjacent NR cells in patient A, CA and adjacent 

NR cells in patient B, and comparing the CA cells in patients A and B.
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Table 1.

Average Size and Cell Type Distribution in Patient Cancer Samples

patient A patient B

cell types cell size (μm)
a

cell counts (%, n
b
) cell size (μm)

a
cell counts (%, n

b
)

epithelial 18.6 ± 7.1 37.6%, 34 16.0 ± 3.6 29.4%, 17

lymphoid 10.5 ± 1.7 39.8%, 14 8.4 ± 3.5 32.4%, 34

M/H 14.3 ± 3.7 N/A,
c
 3 11.1 ± 1.7 25.0%, 12

a
Error is one standard deviation.

b
n is cell counts.

c
Sample size from patient A is limited (only 3 cells observed in IHC study).
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