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SUMMARY

Interferon-gamma (IFNG) augments immune function yet promotes T cell exhaustion through 

PDL1. How these opposing effects are integrated to impact immune checkpoint blockade (ICB) is 

unclear. We show that while inhibiting tumor IFNG signaling decreases interferon-stimulated 

genes (ISGs) in cancer cells, it increases ISGs in immune cells by enhancing IFNG produced by 

exhausted T cells (TEX). In tumors with favorable antigenicity, these TEX mediate rejection. In 

tumors with neoantigen or MHC-I loss, TEX instead utilize IFNG to drive maturation of innate 

immune cells, including a PD1+TRAIL+ ILC1 population. By disabling an inhibitory circuit 

impacting PD1 and TRAIL, blocking tumor IFNG signaling promotes innate immune killing. 

Thus, interferon signaling in cancer cells and immune cells oppose each other to establish a 

regulatory relationship that limits both adaptive and innate immune killing. In melanoma and lung 

cancer patients, perturbation of this relationship is associated with ICB response independent of 

tumor mutational burden.

Graphical Abstract:
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Abstract

The opposing effects of interferon-gamma in terms of regulating immune function but also driving 

T cell exhaustion through PDL1 is explained by its differential effects in tumor and immune cell 

populations.

INTRODUCTION

Immune checkpoint blockade (ICB) of the inhibitory receptors CTLA4 and PD1 can result 

in durable responses in multiple cancer types (Ribas and Wolchok, 2018). Resistance and 

relapse are common and can be influenced by factors inherent to immune cells, cancer cells, 

or both (Patel and Minn, 2018). Important immune features include the status of T cell 

infiltration and the differentiation or activation state of T cells and innate immune cells. 

Features intrinsic to cancer cells that can impact ICB outcome include their repertoire of 

neoantigens, the ability to present antigens on major histocompatibility complex class one 

(MHC-I), and the expression of inhibitory receptor ligands. The clinical relevance of these 

immune and cancer cell factors is highlighted by common biomarkers for ICB response such 

as type I or II interferon (IFN) stimulated genes (ISGs) (Ayers et al., 2017; Harlin et al., 

2009), tumor mutational burden (TMB) (Rizvi et al., 2015; Snyder et al., 2014), and 

expression of PDL1 (Taube et al., 2012; Tumeh et al., 2014).

Both IFN-gamma (IFNG) and type I IFN (IFN-I) are among the known pathways that have 

critical roles in anti-tumor immunity. IFN enhances immune function by inducing expression 

of MHC-I (Dighe et al., 1994), which is constitutively expressed on many tissues including 
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cancer cells, and by enabling dendritic cells (DCs) to cross prime T cells (Diamond et al., 

2011; Fuertes et al., 2011). In this way, IFNs are important in the early phase of antigen 

recognition and the interaction between adaptive and innate immune cells. Accordingly, 

loss-of-function mutations and genomic alterations in the IFN signaling pathway have been 

associated with clinical ICB resistance and/or relapse (Gao et al., 2016; Shin et al., 2017; 

Zaretsky et al., 2016), and unbiased genetic screens have identified this same pathway as 

being important for immunotherapy response in certain mouse models (Manguso et al., 

2017; Mezzadra et al., 2017). In contrast, some patients have tumors with mutations in the 

IFN pathway that nonetheless respond to ICB (Hellmann et al., 2018; Sade-Feldman et al., 

2017) or have high serum levels of IFNG that associates with ICB progression (Huang et al., 

2017). These apparently “paradoxical” observations may represent feedback inhibition 

properties of IFN signaling (Snell et al., 2017). In the context of chronic pathogen infection, 

persistent IFN signaling and ISGs dampen immune responses to prevent immune-mediated 

pathology while allowing for a host-pathogen stalemate (Cheng et al., 2017; Teijaro et al., 

2013; Wilson et al., 2013). In cancer, this dichotomous function of IFN is exploited through 

chronic signaling by tumor cells that can promote resistance to ICB (Benci et al., 2016). 

IFN-driven resistance can be inhibited by genetic ablation of the IFNG receptor (IFNGR) 

and/or IFN-I receptor (IFNAR) in cancer cells, resulting in a decrease in PDL1, other 

inhibitory ligands, and the GzmB antagonist SERPINB9 (Jiang et al., 2018). Expansion of 

exhausted T cells (TEX) can then ensue to restore ICB response through unknown 

mechanisms. Together, these observations highlight the importance of understanding how 

the opposing functions of IFN signaling impact cancer immunotherapy.

Loss of the beta-2 microglobulin (B2M) subunit of MHC-I appears to be a common 

resistance mechanism to ICB (Sade-Feldman et al., 2017). However, diminished expression 

or loss of B2M can also occur in patients who respond to ICB (Rizvi et al., 2018; Rodig et 

al., 2018), suggesting that innate immune cells might contribute to ICB response in some 

cases. Indeed, conventional NK cells and innate lymphoid cells (ILCs) are capable of 

destroying cancers through either perforin-mediated cytotoxicity or TNF-family death 

receptors such as TRAIL (Spits et al., 2016). NK/ILC effector function is regulated through 

cellular maturation, combinations of activating and inhibitory receptors, and possibly 

immune checkpoint receptors like PD-1, TIM3, and TIGIT (Gao et al., 2017; Zhang et al., 

2018). Recent evidence indicates that type one ILCs (ILC1s) can participate in anti-tumor 

immunity or cancer immune surveillance. This includes ILC1-like populations (Dadi et al., 

2016) and intratumoral ILC1s that are generally poorly cytotoxic (Cortez et al., 2017; Gao et 

al., 2017). Although the ability of NK/ILC1s to eradicate tumors with diminished MHC-I 

and/or a poor neoantigens is of significant interest, how to mobilize these innate immune 

cells to facilitate tumor response is unclear.

RESULTS

ISGs expressed by cancer cells predict resistance to immune checkpoint blockade while 
ISGs expressed by immune cells predict response

A large proportion of human cancers differentially express a subset of ISGs that can predict 

resistance to radiation and chemotherapy (Weichselbaum et al., 2008). Coincidentally, this 
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ISG resistance signature (ISG.RS) is also associated with resistance to ICB, as demonstrated 

by elevated expression in ICB-resistant melanoma tumors from Res 499 cells (Figure 1A), 

which were derived from a B16-F10 tumor (Twyman-Saint Victor et al., 2015). In contrast, 

ISGs can also predict clinical ICB response, especially ISGs typically associated with IFNG 

signaling (Ayers et al., 2017). To begin reconciling these seemingly disparate observations, 

we examined the ISG.RS and genes from the IFNG hallmark gene set (IFNG.GS) by 

dividing them into two non-overlapping subsets (Figure 1B and Table S1) and creating a 

metagene (the average scaled expression of all genes in the set). The expression of these ISG 

metagenes was then examined across different cellular populations in human melanomas 

using previously published single-cell RNA-seq data (Tirosh et al., 2016). This revealed that 

the IFNG.GS is predominantly expressed by intratumoral immune cells such as T cells, NK 

cells, and macrophages (Figure 1B and S1A). In contrast, the ISG.RS is predominantly 

expressed in cancer cells, albeit with variable expression.

To understand the potential consequences of these differences in IFNG.GS and ISG.RS 

expression patterns, we analyzed bulk RNA-seq data combined from two cohorts of 

melanoma patients treated with anti-PD1 (Figure 1C) (Hugo et al., 2016; Riaz et al., 2017). 

As expected, the majority of genes in the IFNG.GS are depressed in the majority of tumors 

from nonresponders to anti-PD1 (Figure S1B). However, like ICB-resistant murine Res 499 

tumors, most ISG.RS genes are enriched in tumors from non-responders (Figure S1B). 

Consistent with the importance of CD8 T cells in response, tumors with high IFNG.GS but 

low ISG.RS also have the greatest proportion of CD8 T cells (Figure 1D, top right quadrant) 

as inferred by CIBERSORT (Newman et al., 2015) (Figure S1C). The higher frequencies of 

CD8 T cells are accompanied by increased number of activated NK cells (Figure 1D, orange 

regression line), which also has been associated with clinical ICB response (Riaz et al., 

2017). To understand how these immune and interferon-related variables independently 

contribute to ICB response, we utilized a multivariable logistic regression model. This 

revealed that while higher IFNG.GS increases the odds ratio for response, ISG.RS 

independently decreases the likelihood (Figure 1E). The significance of both of these 

variables are independent of tumor mutational burden (TMB) status, which expectedly 

correlates with response. In contrast, neither the abundance of CD8 T cells nor NK cells are 

significant in the model. A random forest model, which does not assume linearity and 

incorporates interaction effects, revealed that ISG.RS exhibits a higher importance score 

than either IFNG.GS or TMB (Figure S1D). In total, these data suggest that while 

expression of IFNG.GS by immune cells is associated with CD8 T cell abundance, 

accumulation of activated NK cells, and ICB response, all of these effects are opposed by 

high levels of ISG.RS in cancer cells.

Although the IFNG.GS and ISG.RS predict opposite clinical outcomes, their expression is 

positively correlated, consistent with IFN controlling both metagenes (Figure 1F). An 

explanation for this apparent “paradox” lies in the relative expression of each metagene. 

When expression of the ISG.RS exceeds the IFNG.GS, resistance is favored (Figure 1F, left 

plot, red circles below diagonal). In contrast, most responses occur when IFNG.GS is similar 

to or greater than ISG.RS (Figure 1F, blue circles). Based on these findings, we combined 

the two metagenes into a ratio of IFNG.GS over ISG.RS (or, the difference of these two 

metagenes in log transformed space). By logistic regression, this composite variable (dISG) 
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is strongly associated with response and is independent of TMB (Figure 1F, right plot and 

inset). Specifically, the probability of response is low when either the ratio or TMB is low 

but increases when either increase. Furthermore, random forest machine learning and 

bootstrapping revealed that the ISG ratio has the highest robustness and average variable 

importance compared to TMB and multiple immune features (Figure S1E).

In total, the single-cell and bulk RNA-seq analysis suggests that distinct ISGs differentially 

expressed by cancer and immune cells can oppose each other to influence CD8 T cell 

infiltrate and NK activation, and can be combined into a ratio that predicts ICB response 

independent of TMB (Figure 1G). Motivated by these findings, we sought to understand the 

mechanistic underpinnings inferred by these statistical relationships.

Models differing in MHC-I, TMB, and neoantigen status for examining the effect of blocking 
tumor IFN signaling on ICB response

If the probability of ICB response is influenced by the ratio of IFNG-related ISGs expressed 

by immune cells over inhibitory ISGs expressed by cancer cells, one way to enhance the 

ratio in favor of response is to prevent IFN signaling in cancer cells. We first confirmed 

whether the ISG.RS, which is elevated in ICB-resistant Res 499 tumors, is regulated by IFN 

signaling in cancer cells (hereafter referred to as tumor IFN signaling). Indeed, CRISPR 

knockout of IFNGR and/or IFNAR significantly diminishes ISG.RS levels (Figure 1H). 

However, loss of tumor IFN signaling can render cancers less responsive to immunotherapy 

due to compromised MHC-I and antigen processing (Manguso et al., 2017; Zaretsky et al., 

2016), suggesting that the impact from ablating tumor IFN signaling might be context 

dependent. In light of this, we surmised two situations whereby the benefit of inhibiting 

IFN-driven resistance could outweigh the potential negative impact on MHC-I. The first is 

when constitutive MHC-I is high, minimizing effects that loss of IFN-inducible MHC-I has 

on CTL-mediated killing. A second situation is when tumors have depleted or poor 

neoantigens. Here, diminished CTL recognition presumably makes MHC-I status less 

consequential for T cell-mediating killing, but interference with IFN-driven resistance might 

improve killing by NK or other innate lymphoid cells.

We first characterized various mouse tumor models for differences in MHC-I expression, 

TMB, and predicted neoantigen status (Figure 2A). Of these, CT26 colorectal cancer has the 

highest TMB (Figure 2B) and maintains high MHC-I in the absence of IFNG signaling 

(Figure 2C–D). Similarly, TSA-derived Res 237 breast cancer cells also have high IFNG-

independent baseline MHC-I but exhibit lower TMB (Figure 2B–C and S2A). In contrast, 

B16 and/or Res 499 melanoma have intermediate TMB, low constitutive MHC-I, and relies 

on IFNG for high MHC-I expression (Figure 2B–D and S2B). Since Res 499 originated 

from an abscopal B16 tumor that relapsed several weeks after radiation (RT) plus anti-

CTLA4 (Twyman-Saint Victor et al., 2015), we surmised that Res 499 may additionally 

have undergone immunoediting prior to relapse. Recent evidence suggests that neoantigens 

that have clonal or near-clonal representation are predominantly targeted by the immune 

system, while neoantigens at low clonal fractions can remain immunologically silent 

(Gejman et al., 2018; McGranahan et al., 2016). In accord with this notion, there is a 

significant decrease in the cumulative frequency of predicted high affinity (<100 nM) 
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neoantigens with clonal (near-heterozygous or greater) frequencies in Res 499 compared to 

B16 (Figure 2E, leftward shift orange curve). In particular, a cluster of predicted neoantigens 

(cluster 6, Figure 2F) are present at clonal frequencies in B16 but fall to subclonal or near-

zero frequencies in Res 499 tumors (Figure 2F, lower right quadrant). This cluster of 

neoantigens is predicted to reside in a subpopulation of cells (subclone 3, Figure 2G) that is 

nearly eliminated in Res 499 compared to B16, consistent with immunoediting. In contrast, 

the subpopulation with the largest reciprocal increase in Res 499 (subclone 4) is 

characterized by a mutation cluster (cluster 7) with low clonal frequencies (Figure 2F, lower 

left quadrant), as expected for resistant subclones. Together, these data define several tumor 

models that differ in reliance on IFNG for high MHC-I and in predicted neoantigen 

availability.

Blocking tumor IFN signaling broadly improves ICB response through CD8 T and innate 
immune cells

We first used the CT26 model to examine whether tumors with high constitutive MHC-I and 

TMB demonstrate improved response when ISG.RS is decreased by blocking tumor IFN 

signaling. Remarkably, when IFNGR or both IFNGR and IFNAR are ablated, mice either 

show markedly slower tumor growth or spontaneous regression that is CD8 T cell dependent 

(Figure 3A), as determined by antibody-mediated depletion (Figure S3A). The addition of 

anti-PD1 further improves anti-tumor effects and survival. Both spontaneous regression and 

durable response to anti-PD1 requires B2M and hence MHC-I. All mice with complete 

response are also resistant to tumor rechallenge (8 out of 8 mice), further indicative of a T 

cell dominant response. Thus, decreasing ISG.RS by preventing IFN signaling in tumors 

with high baseline MHC-I does not interfere with CTL-mediating killing and markedly 

enhances immunogenicity.

Unlike CT26, B16 cells are reliant on IFN for high MHC-I expression (Figure S2B). B16 

tumors respond poorly to anti-PD1 but respond to RT + anti-CTLA4, a combination that 

enhances T cell repertoire diversity and improves response over anti-CTLA4 alone 

(Twyman-Saint Victor et al., 2015). Surprisingly, knockout of IFNGR and IFNAR in B16 

tumors does not negatively impact the efficacy of RT + anti-CTLA4 (Figure 3B, top left 

plots, red vs. orange), suggesting that other immune-mediated killing mechanisms may 

compensate for low MHC-I and compromised CTL recognition in this context. Indeed, 

partial response of IFNGR knockout tumors to RT + anti-CTLA4 is maintained even after 

B2M is ablated (Figure 3B, top left plots, grey vs. light blue). However, when B2M 

knockout is accompanied by depletion of NK1.1+ cells (Figure S3A), which are typically 

conventional NK cells and ILC1s, response is completely eliminated (Figure 3B, left top and 

bottom plots, grey vs red). In contrast to B16, Res 499 tumors are resistant to RT + anti-

CTLA4 and have relative depletion of predicted neoantigens (Figures 2E–G). Despite this, 

knockout of IFNGR and IFNAR restores Res 499 response to levels at least as high as 

parental B16 tumors (Figure 3B, right plots). Consistent with loss of neoantigens and 

reliance on innate immune killing, co-ablation of B2M has no discernible effect while 

depletion of NK1.1+ cells alone abrogates the benefit from IFNGR + IFNAR knockout 

(Figure 3B, right top and bottom plots). However, if the requirement for high MHC-I and 

antigen is bypassed by using a murine chimeric antigen receptor (CAR) T cell against 
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ectopically expressed human CD19 (Figure S3B), blocking tumor IFN signaling similarly 

improves response of both B16 and Res 499 tumors (Figure 3C). In the absence of CAR T 

cells, IFNGR + IFNAR knockout tumors grow similarly to control (Figure S3C). Thus, 

blocking tumor IFN signaling can impact both CD8 T cell and NK/ILC effector function.

In total, these data suggest that blocking tumor IFN signaling can improve T cell-mediated 

killing when antigen recognition is not limited by inhibiting IFN function, as in the case of 

CT26 tumors and use of CAR T cell therapy. In tumors with low MHC-I, preventing tumor 

IFN signaling may compromise CTL-mediated recognition but anti-tumor effects of NK/

ILC1s can compensate to maintain response, as in the case of B16 tumors. In tumors such as 

Res 499 that are highly resistant and otherwise poorly recognized by T cells, the 

dispensability of MHC-I allows for restored response through NK/ILC-mediated killing.

Inhibition of tumor IFNG signaling enables CD8 T cells to support NK/ILC-mediated killing

To understand how blocking tumor IFN signaling restores ICB response in resistant or 

relapsed tumors and to avoid conflating effects of type I and II IFN, we focused on how 

IFNGR knockout restores response in the Res 499 model. We also opted to use anti-CTLA4 

monotherapy given that addition of RT does not significantly improve response over anti-

CTLA4 alone (Figure 3D vs. 3B). As expected for NK/ILC-mediating killing, IFNGR 

knockout improves response to anti-CTLA4 in the absence of B2M (Figure 3D and S3D). 

This requires NK1.1+ innate immune cells (Figure 3D and S3A), is perforin-independent 

(Figure 3E), and does not generate durable immunity against tumor rechallenge of mice with 

complete response (Figure S3E). To test if NK/ILC-mediated cytotoxicity may be 

responsible for response after IFNGR knockout, we co-cultured poly I:C stimulated splenic 

NK cells with Res 499 cells in vitro (Figure S3F). This resulted in NK-mediated cytotoxicity 

as measured by CD107a, which is used as a general marker for NK effector function 

(Ahlenstiel et al., 2010). IFNG treatment of wild type but not IFNGR knockout Res 499 

cells prior to co-culture was sufficient to increase resistance even in the absence of B2M, 

consistent with tumor IFNG signaling impeding NK/ILC killing. Thus, like with inhibition 

of both type I and II IFN signaling, blocking tumor IFNG signaling can restore ICB 

response by enhancing NK/ILC-mediated effector function.

Surprisingly, although depletion of NK1.1+ cells abrogates ICB response of IFNGR 

knockout Res 499 tumors, depletion of CD8 T cells, but not CD4 T cells, also inhibits 

response (Figure 3D and S3G). A similar requirement for both CD8 T cells and NK/ILC1s is 

also observed after IFNGR knockout in the resistant TSA/237 breast cancer model that 

exhibits relatively low TMB and a paucity of predicted strong neoantigens (Figure 2B and 

S3H). These observations suggest that although CD8 T cells do not directly kill IFNGR 

knockout Res 499 tumors, they may have a supportive role.

Preventing tumor IFNG signaling enhances immune cell IFNG signaling, CD8 TEX function, 
and maturation of NK/ILC1 cells

To examine how CD8 T cells might support NK/ILC1s, we employed single-cell RNA-

sequencing (scRNA-seq) and 28-color flow cytometry. Analysis of intratumoral CD45+ 

immune cells by scRNA-seq revealed that a dominant effect of tumor IFNGR knockout is an 
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increase in the proportion of CD8 T cells (Figure 4A). Intratumoral CD8 T cells are 

typically exhausted and reside in either a progenitor exhausted or terminally exhausted 

population (Miller et al., 2019). Although terminally exhausted PD1+ CD8 T cells have 

limited long-term proliferative potential, they can carry out various effector functions such 

as cytotoxicity and IFNG production (Miller et al., 2019; Paley et al., 2012). Gene set 

enrichment analysis (GSEA) using transcriptional signatures of these exhausted subsets 

(defined using the LCMV infection model) revealed that the expanded CD8 T cells resulting 

from IFNGR knockout show a marked increase in terminal exhaustion genes (e.g., Pdcd1, 

Eomes, Cd38) and a decrease in progenitor exhaustion genes (e.g., Tcf7) (Figure 4B and 

S4A). Accordingly, there is a per cell increase in the amount of IFNG protein produced by 

PD1+ CD8 T cells (Figure S4B), and after anti-CTLA4 there is a large increase in IFNG per 

gram of tumor (Figure 4C), which is not but observed with cytokines such as IL-6 (Figure 

S4C). Depletion of CD8 T cells largely abrogates this intratumoral increase in IFNG, 

highlighting the importance of exhausted CD8 T cells in generating this cytokine. 

Accompanying the increase in IFNG is a marked increase in the IFNG.GS primarily from 

myeloid/DC populations (Figure 4D). Among various IFNG.GS genes that increase include 

Cxcl9 and Cxcl10 (Figure 4E), which are chemokines implicated in NK cell recruitment, 

activation, or maturation (Pak-Wittel et al., 2013). Thus, disrupting tumor IFNG signaling 

not only decreases the ISG.RS in cancer cells but also increases production of IFNG by 

terminally exhausted CD8 T cells. As an apparent consequence, myeloid/DC populations 

increase expression of IFNG.GS that include chemokines important in innate immune 

function.

In order to investigate how preventing IFNG signaling in tumor cells impacts NK/ILC1 

status, we re-clustered NK/ILC1 populations identified by scRNA-seq (Figure 4F–G). This 

revealed NK populations differing in maturity and effector function (Chiossone et al., 2009), 

including an immature CD11blow population, an intermediate CD11bint population, and a 

mature CD11bhigh cluster that typically possesses the greatest effector function. Moreover, 

recently described ILC1 and intermediate ILC1 (intILC1) populations (Cortez et al., 2017; 

Gao et al., 2017) were also identified (Figure S4D). Knockout of tumor IFNGR results in a 

large shift in the NK populations toward the mature CD11bhigh cluster and an additional 

shift toward the ILC1 cluster (Figure 4F, density plots). These ILC1s exhibit relatively high 

levels of Pd1 (Pdcd1) and Trail (Tfnsf10) (Figure 4G), consistent with previously reported 

properties for this population. Using 28-color flow cytometry (Figure S4E–F), we confirmed 

that tumor IFNGR knockout leads to an increase in the proportion of NK/ILC1s that are 

CD11bhigh NK cells or PD1+ TRAIL+ ILC1s (Figure 4H–I and S4G). Flow cytometry also 

confirmed that this is accompanied by an increase in the proportion of terminally exhausted 

CD8 T cells, particularly after anti-CTLA4, as indicated by an increase in PD1+ Eomes+ 

CD8 T cells that express multiple inhibitory receptors and relatively high levels of Ki67 and 

GzmB (Figure 4H and S4G).

Together, these results indicate that preventing tumor IFNG signaling expands CD8 TEX 

toward terminal exhaustion and increased production of IFNG. In this way, disrupting tumor 

IFNGR not only decreases ISG.RS in cancer cells but conversely increases IFNG.GS 

expression by immune cells. This enhanced IFNG signaling in immune cells might then 
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drive maturation and function of NK/ILC1 subsets, including a PD1+ TRAIL+ ILC1 

population that potentially contributes to ICB response.

Preventing tumor IFNG signaling enables IFNG from CD8 TEX to drive NK/ILC1 function 
while removing inhibitory feedback from PD1/PDL1 and TRAIL/TRAILR2

Given the single-cell findings, we sought to investigate whether IFNG produced by CD8 

TEX is involved in NK/ILC1-mediated killing and whether the PD1/PDL1 and TRAIL/

TRAILR pathways, which are implicated due to their presence on intratumoral ILC1s, can 

contribute to response after IFNGR knockout. To test the role of IFNG produced by CD8 T 

cells, we adoptively transferred CD8 T cells from wild type or IFNG knockout mice into 

RAG-deficient hosts and then implanted the mice with Res 499 IFNGR knockout tumors 

(Figure 5A and S5A). This revealed that IFNG production by CD8 T cells is required for 

anti-CTLA4 response. Conversely, when CD8 T cells are depleted, there is a decrease in the 

proportion of mature CD11b+ NK/ILC1s (Figure S5B) as well as total NK/ILC1s (Figure 

5B). However, direct intratumoral injection of IFNG or CXCL10 can rescue or partially 

rescue the loss in NK/ILC1 cells (Figure 5B). NK/ILC1-dependent ICB response (Figure 

5C, blue boxplots) and survival (Figure S5C) that is also compromised after depleting CD8 

T cells is similarly rescued by injection of IFNG. Thus, these results suggest NK/ILC1-

dependent response resulting from blocking tumor IFNG signaling relies on IFNG produced 

by CD8 TEX and on downstream chemokines such as CXCL10.

Although IFNG has a critical role in promoting NK/ILC1 function, it also induces high 

levels of PDL1 on tumors. Given that PD1 is expressed on ILC1 cells, this suggests that the 

PD1/PDL1 axis may normally function as an IFNG-directed feedback inhibition mechanism 

to antagonize innate immune function, similar to its role in regulating T cell responses. If so, 

removal of this feedback inhibition by IFNGR knockout may contribute to the improved 

response resulting from blocking tumor IFNG signaling. To examine this, we ectopically 

expressed PDL1 in PDL1 knockout Res 499 tumors to make PDL1 levels independent of 

IFNG signaling (Figure S5D). In contrast to wild type or B2M-deficient Res 499 tumors, the 

ability of IFNGR deletion to improve anti-CTLA4 response is lost when PDL1 levels are 

fixed (Figure S5E). To remove effects of PD1 from CD8 T cells, we depleted CD8 T cells 

but restored NK/ILC1 function in IFNGR-deficient Res 499 tumors by intratumoral 

administration of IFNG (Figure 5C, red boxplots). Consistent with tumor PDL1 inhibiting 

NK/ILC1 killing, fixing high PDL1 expression despite IFNGR knockout blunted NK/ILC1-

dependent ICB response. Conversely, improved anti-CTLA4 response resulting from PDL1 

deletion requires NK/ILC1s (Figure 5D). The notion that PD1/PDL1 can directly inhibit 

NK/ILC1 killing was also corroborated by using CD49a+ PD1+ liver NK cells cultured with 

IFNGR-deficient Res 499 cells with and without ectopic PDL1 (Figure 5E and S5F). In 

total, these results suggest that tumor IFNG signaling normally drives feedback inhibition 

through tumor PDL1 to regulate NK/ILC1 function. Thus, ablating tumor IFNGR not only 

increases immune cell IFNG signaling but also enhances innate immune killing by 

interfering with the PD1/PDL1 inhibitory axis.

Besides PD1, intratumoral ILC1 cells also expresses TRAIL. Since response from tumor 

IFNGR knockout is independent of host perforin (Figure 3E), this suggests that tumor 
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killing may utilize the TRAIL/TRAILR pathway. Indeed, Res 499 tumors not only express 

PDL1 but also the TRAIL receptor (TRAILR2). Unlike PDL1, TRAILR2 decreases in direct 

response to IFNG in vitro (Figure S5G). Accordingly, knockout of tumor IFNGR 

significantly increases TRAILR2 in vivo, while PDL1 decreases (Figure 5F). Deletion of 

TRAILR2 in IFNGR-deficient Res 499 tumors (Figure S5H) reveals that tumor killing after 

anti-CTLA4 is largely dependent on TRAIL/TRAILR2 interaction (Figure 5G). These data 

suggest that IFNG controls an inhibitory feedback mechanism for NK/ILC1s not only by 

increasing tumor PDL1 but also by decreasing TRAILR2. Thus, preventing tumor IFNG 

signaling enables TRAIL- and NK/ILC1-dependent killing.

Adaptive immune cell requirements for innate immune killing after blocking tumor IFNG 
signaling

Despite our findings that response after IFNGR knockout of Res 499 tumors requires IFNG 

produced by CD8 T cells, the dispensability of tumor MHC-I argues that antigen 

presentation by tumor cells is not necessary for CD8 TEX to support NK/ILC1 function. To 

corroborate this, we implanted Res 499 tumors deficient in both IFNGR and B2M in either 

wild type mice or OT-1 mice expressing a transgenic T cell receptor to OVA antigen, which 

is not expressed by Res 499 tumors (Figure 6A). The accumulation of both intratumoral 

CD8 T cells and NK/ILC1s is reduced and ICB response is lost in OT-1 mice compared to 

wild type mice (Figure 6B). However, intratumoral injection of OVA peptide rescued the 

compromised CD8 T cell frequency and partially restored NK/ILC1 levels. Moreover, 

despite the absence of tumor MHC-I, response to anti-CTLA4 was also partially rescued 

(Figure 6C). Thus, the ability of IFNGR knockout to enhance NK/ILC1-dependent ICB 

response need not depend on antigen presentation by tumor cells themselves. Rather, cross-

primed and/or activated bystander T cells can suffice.

Although disrupting tumor IFNG signaling interferes with the inhibitory effects of PD1/

PDL1 between tumor cells and both adaptive and innate immune cells, anti-CTLA4 appears 

to provide a non-redundant function to PD1/PDL1 inhibition. In mouse models, and possibly 

in humans, antagonistic CTLA4 antibodies not only block CTLA4 but can also deplete 

CD4+ T regulatory cells (Tregs) (Arce Vargas et al., 2018; Romano et al., 2015; Simpson et 

al., 2013). Indeed, Tregs are among the most proliferative immune cells in Res 499 tumors 

and this does not appear altered by tumor IFNGR knockout (Figure 6D). To investigate the 

importance of inhibiting Tregs, we used the 4F10 antibody against CTLA4 that does not 

concurrently deplete Tregs (Simpson et al., 2013). In contrast to the Treg-depleting 9H10 

antibody, 4F10 fails to elicit a response against Res 499 IFNGR knockout tumors (Figure 

S6A). Conversely, depleting Tregs by stimulation of the diptheria toxin receptor under 

control of Foxp3 recapitulates the effects of 9H10 on IFNGR-deficient Res 499 tumors 

(Figure 6E). The non-redundant effect of a Treg-depleting antibody with tumor IFNGR 

knockout is also highlighted in the CT26 tumor model. Here, although IFNGR knockout 

results in complete responses to anti-PD1, all mice relapse when B2M is ablated (Figure 6F 

and S6B). However, the 9H10 anti-CTLA4 antibody results in complete response despite 

B2M loss, consistent with the anti-CTLA4 but not anti-PD1 antibody allowing for more 

optimal NK/ILC1-mediated killing. Corroborating the potential role of Tregs in suppressing 

innate immune cell activity, abundance of activated NK cells inversely associates with Treg 
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abundance in melanoma patients (Figure 6G). Thus, interfering with the suppressive effects 

of Tregs may be required to fully unleash both adaptive and innate immune killing resulting 

from blocking tumor IFNG signaling. These findings imply that dual therapy with anti-PD1 

plus anti-CTLA4 antibodies that inhibit Tregs may promote innate immune function better 

than monotherapy approaches.

Tumor mutations in IFN pathway genes predict clinical response to dual blockade of PD1 
and CTLA4

Our findings suggest that mutations predicted to reduce tumor IFN signaling might associate 

with decreased ISG.RS and improved clinical response to ICB. To investigate this, we 

extended the analysis of recently described exome-sequencing data of non-small cell lung 

cancer (NSCLC) patients from either TCGA or a clinical trial using anti-PD1 plus anti-

CTLA4 (Hellmann et al., 2018). After excluding common non-disease single-nucleotide 

variants, pathogenic missense and nonsense mutations were predicted using two algorithms, 

CADD and DANN, that were trained on a catalog of benign and pathogenic variants from 

the ClinVar database (Figure S7A; see Methods). Indels were also evaluated as damaging or 

neutral using SIFT. In the TCGA, there is an 8.6% incidence of patient tumors with at least 

one predicted pathogenic variant in a core set of 11 type I and II IFN pathway genes (Figure 

S7B–C). These tumors exhibit a decrease in ISG.RS genes, consistent with an enrichment 

for IFN pathway variants with defective signaling (Figure 7A and S7D). In the patients 

treated with anti-PD1 plus anti-CTLA4, 14.7% of patients have at least one IFN pathway 

variant and these patients have improved progression-free survival (PFS) with dual ICB 

(Figure 7B–C). In contrast, only 0.58% of random gene sets of similar size yield PFS 

differences that are as significant (Figure S7E), and IFN pathway variants do not associate 

with survival in TCGA patients (Figure S7F), arguing that variant status is not a general 

prognostic marker. Although the presence of IFN pathway variants is associated with higher 

TMB (Figure S7G), multivariable logistic regression and random forest reveal that variant 

status predicts ICB response independently of TMB and PDL1 expression (Figure 7D and 

S7H). Both models yield predicted probabilities of response (CR or PR) that correlate well 

to actual observed responses (Figure 7E, top panel; Figure S7H, right plot). Notably, despite 

a higher likelihood of response, variant-positive tumors exhibit lower percent tumor PDL1 

expression (5.4% versus 20.3%; Figure 7F), consistent with variants having a negative 

impact on tumor IFN signaling. In contrast, stratification by variant status of random genes 

rarely yields a difference in %PDL1 this large (frequency 5.7 × 10−3) (Figure S7I). Notably, 

one patient had a tumor with multiple alleles of B2M with a frameshift indel or predicted 

pathogenic missense mutations who nonetheless had a PR to ICB (Figure 7E, patient 40). 

This is consistent with previous reports describing a NSCLC patient responding to anti-PD1 

despite deleterious B2M mutations and loss of B2M expression confirmed by 

immunohistochemistry (Rizvi et al., 2018). Thus, genetic alterations of the IFN pathway in 

human NSCLC are associated with decreased ISG.RS, decreased tumor PDL1, and 

improved ICB response independent of TMB status.
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DISCUSSION

In this study, we describe how IFNG signaling in tumor cells antagonizes both T cell and 

innate immune responses. This is accomplished through an inhibitory feedback circuit 

orchestrated by tumor cells whereby IFNG from immune cells not only regulates its own 

inhibition but tightly controls adaptive and innate immunity (Figure 7G). Our current and 

previous findings suggest several main components to this IFNG circuit. First, we previously 

reported that persistent IFNG signaling can initiate epigenetic changes in cancer cells 

characterized by enhanced STAT1-associated open chromatin (Benci et al., 2016) that 

includes loci for ISGs belonging to ISG.RS genes (unpublished data). Since resistance 

caused by persistent IFNG signaling can take several weeks to establish, these results 

suggest that the first component of the feedback circuit is the establishment of an epigenetic 

landscape in cancer cells that is permissive for enhanced ISG.RS expression. The second 

component is enforcing T cell exhaustion through high levels of PDL1 and likely other 

inhibitory ligands, which may include HVEM, LGALS9, and others (Benci et al., 2016). 

How the increase in these inhibitory ligands are mechanistically related to the epigenetic 

changes is currently unclear. Nonetheless, the end result is interactions between cancer and 

immune cells that favor an exhausted T cell state characterized by decreased IFNG and CTL 

function. The third component is inhibition of innate immunity by impeding NK/ILC1 

effector function and differentiation. IFNG signaling in cancer cells not only increases PDL1 

but decreases TRAILR2, which is the receptor for TRAIL expressed by ILC1 cells. 

Consequently, cytotoxicity from PD1+ TRAIL+ NK/ILC1 cells is antagonized. Additionally, 

the decreased production of IFNG by T cells further safeguards against innate immune 

killing by stalling NK/ILC1 recruitment and/or maturation. This may be at least partly due to 

diminished expression of CXCL9/10 from myeloid cells. Thus, IFNG signaling in cancer 

cells orchestrates feedback inhibition on multiple levels to limit both adaptive and innate 

immune function.

By preventing tumor IFNG signaling, both adaptive and innate immune functions are 

unleashed (Figure 7G). However, the degree to which each of these effector arms contribute 

to response is context dependent. In tumors that are less reliant on IFNG for high MHC-I 

expression and antigen presentation (e.g., CT26 and TSA), blocking tumor IFNG signaling 

enables TEX to coordinate both CTL- and NK/ILC1-mediated responses. For tumors with 

low baseline MHC-I that are reliant on IFNG to elevate MHC-I expression (e.g., B16), a 

decrement in CTL killing is likely; however, the presence of innate immune killing can help 

to maintain overall response. For tumors such as Res 499 with poor neoantigens and low 

MHC-I, or for tumors that have lost B2M, compromised IFN-inducible MHC-I is likely 

inconsequential. Here, enhanced IFNG production by cross-primed TEX or possibly 

activated bystander T cells increases IFNG signaling in immune cells and maturation of NK/

ILC1s. Ablating tumor IFNG signaling may particularly help activate otherwise poorly 

cytotoxic PD1+ TRAIL+ ILC1 cells (Cortez et al., 2017; Gao et al., 2017) by increasing 

tumor TRAILR2, decreasing PDL1, and/or altering other inhibitory pathways present on NK 

cells and/or ILC1s (Figure 4G). Thus, preventing tumor IFNG signaling enhances both 

adaptive and innate immune effector function but the magnitude that each contributes to 

Benci et al. Page 13

Cell. Author manuscript; available in PMC 2020 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



response is context-dependent – in particular, MHC status and antigen availability are likely 

key determinants.

Besides cell-intrinsic properties that influence the extent to which adaptive and innate 

immunity contribute to response after tumor IFNGR knockout, another important 

determinant is the impact of therapy on Tregs. In our mouse models, intratumoral Tregs are 

highly proliferative, consistent with recent evidence from human tumors (Li et al., 2019). 

Preventing tumor IFNG signaling does not appear to impact the abundance or proliferative 

status of Tregs. Yet, inhibiting Tregs seems to be an important requirement to fully enable 

ICB response after tumor IFNGR knockout, particularly response driven by innate immune 

cells. This may explain why response can be worse when IFNG signaling is crippled in B16 

models using anti-PD1-based combination therapies (Manguso et al., 2017). Here, 

therapeutic efficacy is likely CTL-dominant and IFNG is needed to increase low baseline 

MHC-I levels. Primarily relying on enhanced CTL killing through PD1 blockade becomes 

inadequate because MHC-I levels are insufficient for T cell recognition, and NK/ILC1 

killing is not effective without concurrently inhibiting Tregs. This notion is illustrated using 

CT26 tumors that have high baseline MHC-I and is responsive to both anti-PD1 and anti-

CTLA4. Here, durable response of IFNGR knockout CT26 tumors to anti-PD1 is abrogated 

by B2M loss but maintained when using a Treg-depleting anti-CTLA4 antibody. This 

interpretation may explain why mutations in the IFNG signaling pathway can associate with 

relapse to anti-PD1 monotherapy if baseline MHC-I levels are inadequate (Zaretsky et al., 

2016). In such instances, inhibiting Tregs might promote tumor response through NK/ILC1-

mediated killing. Such non-redundant effects between anti-PD1 and potential Treg targeting 

antibodies may provide insight into why MHC-I levels appear not to correlate with clinical 

response in patients treated with combination nivolumab and ipilimumab (Rodig et al., 

2018). Notably, our cohort of lung cancer patients that show IFN pathway variants can 

predict improved survival was treated with nivolumab and ipilimumab.

Even if CD8 T cells are not able to effectively mediate direct cytolytic tumor killing, the 

ability of TEX to generate IFNG is important to promote NK/ILC1 function. Preventing 

tumor IFNG signaling both enhances CD8 T cell abundance and drives them toward 

terminal exhaustion, a state characterized by high IFNG production compared to progenitor 

TEX. Our studies also suggest that IFNG produced by cross-primed and/or activated 

bystander T cells might be sufficient to sustain NK/ILC1 maturation and NK/ILC1-

dependent tumor killing. These findings have relevance for bystander T cells to common 

viruses and other non-tumor antigens that not only are abundant in human tumors (Simoni et 

al., 2018) but can be leveraged for immunotherapy (Rosato et al., 2019). One reason why 

antigen-restriction may not be required is because the stimulatory effects of IFNG on NK/

ILC1s are indirect. IFNG from CD8 T cells appear to increase IFNG.GS expression 

predominantly in DC and myeloid cells, and IFNG.GS genes such as Cxcl10 then influences 

intratumoral NK/ILC1 abundance. In melanoma patients, IFNG.GS is also highest in 

macrophages (Figures 1B and S1A) and positively correlates with the proportion of activated 

intratumoral NK cells (Figure 6G). Thus, tumor-specific TEX or activated bystander T cells 

can enhance innate immune responses against cancer when tumor IFNG signaling is 

blocked.
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Besides tumor IFNG signaling, inhibiting IFN-I signaling in tumor cells also diminishes the 

expression of resistance-associated ISGs and in some cases result in greater anti-tumor 

responses than IFNGR knockout alone (Benci et al., 2016). Thus, how IFN-I contributes to 

IFN-driven resistance and differs from IFNG requires additional investigation, as do the 

roles of individual ISGs in ICB resistance.

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents may be directed to, and will be fulfilled by, the 

Lead Contact Andy Minn (andyminn@upenn.edu). This study did not generate new unique 

reagents except for cell lines described below.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—All animal experiments were performed according to protocols approved by the 

Institutional Animal Care and Use Committee of the University of Pennsylvania. Five to 

seven week old female C57BL/6 (stock# 027) and BALB/c (stock# 28) were obtained from 

Charles River Laboratory. Five to seven week old female C57BL/6 (stock# 000664), 

Perforin knockout (C57BL/6-Prf1tm1Sdz/J; stock# 002407), IFNG knockout (B6.129SJ-

Ifngtm1Ts/J; stock # 002287), RAG1 knockout (B6.129S7-Rag1tm1Mom/J; stock# 002216), 

OT1 (C57BL/6-Tg(TcraTcrb)1100Mjb/J; stock# 003831), FoxP3-DTR (B6.129(Cg)-

Foxp3tm3(DTR/GFP)Ayr/J; stock# 016958) were ordered from Jackson Laboratory (Bar 

Harbor, ME). Mice were maintained under specific pathogen free conditions and randomly 

assigned to each experimental group.

Cell Lines—B16-F10 melanoma cells (male C57BL/6 mouse), TSA breast cancer cells 

(female BALB/c mouse), and resistant sublines were derived and cultured as previously 

described (Twyman-Saint Victor et al., 2015). CT26 colorectal cancer cell lines (female 

BALB/c mouse) were purchased from ATCC and similarly cultured.

METHOD DETAILS

CRISPR gene targeting—Gene targeting by CRISPR/Cas9 was accomplished by co-

transfection of a Cas9 plasmid (Addgene, 41815), the guide sequence (selected using ZiFit 

Targeter) cloned into the gBlock plasmid, and a plasmid with the puromycin selection 

marker. Successful targeting of the gene(s) of interest was determined by treating cells with 

and without 100 ng/mL of IFNG (PeproTech), 1000 units/mL IFN-beta (PBL Assay 

Science), or both depending on the target gene, and examining PDL1, B2M, or TRAILR2 

surface expression by flow cytometry. Knockout cells were sorted from a bulk knockout 

population using Fluorescence Activated Cell Sorting (FACS) on the Aria (BD) or 

FACSJazz (BD) to maintain the diversity of the parent cells. The gene block contains 20 bp 

target size (N), U6 promoter, gRNA scaffold, and a termination signal. The common gene 

block sequence is:

TGTACAAAAAAGCAGGCTTTAAAGGAACCAATTCAGTCGACTGGATCCGGTACCA

AGGTCGGGCAGGAAGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGAT
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ACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACACAAAGATATTA

GTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAA

ATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTC

TTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGNNNNNNNNNNNNNNNNN
NNGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGA

AAAAGTGGCACCGAGTCGGTGCTTTTTTTCTAGACCCAGCTTTCTTGTACAAAGTT

GGCATTA

The guide sequences used are previously published (Benci et al., 2016) or listed in the Key 

Resources Table.

In vivo mouse studies—Tumor injection and treatment schedule were done as 

previously described (Twyman-Saint Victor et al., 2015). Except for some experiments to 

measure immune cell infiltration, both flanks were implanted. Blocking antibodies were 

given on days 5, 8, and 11 unless otherwise specified. Anti-CD8, anti-NK1.1., and anti-

Asialo-GM1 were given on days −2, 0, 4, 8, 12, and 16. Antibodies against CTLA4 (9H10), 

PDL1 (10F.9G2), or PD1 (RMP1–14) were all administered intraperitoneally at 200 ug/dose. 

Isotype controls were used to confirm the lack of non-specific effects and a similar response 

and survival to untreated mice.

Whole exome sequencing—Genomic DNA was isolated and purified from sorted 

cancer cells from mouse tumors using Purelink Genomic DNA Kit (Fisher). Exome libraries 

were prepared using the SureSelectQXT Kit (Agilent) with SureSelectXT Mouse All Exon 

bait. Libraries were sequenced on an Illumina HiSeq 2500 with 100 base paired end reads.

Single Cell Sequencing Preparation—Tumors were harvested on day 17 and viable 

CD45+ cells were FACS sorted. Single-cell emulsions were obtained using the 10x 

Genomics Controller and the v2 Library and Gel Bead kit (10X Genomics). RNA-

sequencing libraries were prepared as instructed by the 10× 3’ v2 kit protocol. Resulting 

libraries were sequenced on an Illumina NextSeq using a NextSeq 500/550 v2.5 High 

Output Kit.

Flow cytometry—Tumors were harvested at day 13–15 post tumor implantation. Single-

cell suspensions were prepared and red blood cells were lysed using ACK Lysis Buffer (Life 

Technologies). For in vitro cell lines, untreated or sub-confluent cells treated for 16 hours 

with 100 ng/mL of IFNG (PeproTech) were harvested and single-cell suspensions prepared. 

Live/dead cell discrimination was performed using Live/Dead Fixable Aqua Dead Cell Stain 

Kit (Life Technologies). Cell surface staining was done for 30 min at 4 degrees. Intracellular 

staining was done using a fixation/permeabilization kit (eBioscience). Data acquisition was 

done using an LSR II (BD) or FACSCalibur (BD) and analysis was performed using FlowJo 

(TreeStar) or the flowCore package in the R language and environment for statistical 

computing. For high-dimensional flow cytometry, a FACSymphony (BD) was used for data 

acquisition and data analysis was done using the cytofkit R package and a custom analysis 

pipeline described in Quantification and Statistical Analysis. For quantitation of immune 

infiltration, tumors were harvested and weighed and the entire tumor section was dissociated 

and stained. All events were collected on a flow cytometer and the total number of events of 
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a given immune cell type were divided by the weight of the tumor. The antibodies used in 

flow cytometry are provided in the Key Resources Table.

Intratumoral cytokine assay—Approximately 200 ug of tumor was harvested, weighed, 

and placed in complete RPMI media for 4 hours at 37 degrees. The media was then 

harvested, spun to remove any remaining cells, and analyzed for cytokine expression 

(Luminex) according to the manufacturer’s instructions. Resulting cytokine levels were then 

divided by the initial tumor weight for each sample.

In vivo cytokine rescue studies—All mice were pre-treated with anti-CD8 two days 

before tumor injection. Either 1 ug IFNG or 100 ng CXCL10 was mixed in the PBS/tumor 

cell suspension prior to injection of the tumor. Mice then continued receiving 500–1000 ng 

IFNG or 100 ng CXCL10 intra/peritumorally every 3 days post-tumor implantation. For 

flow cytometry experiments, mice were harvested at day 13 to examine the effects of 

cytokine addback on immune recruitment in the absence of CD8 T cells. For survival 

experiments, intra/peritumoral injections continued every 3 days for the remainder of the 

experiment.

OT1 and FoxP3-DTR mice studies—Transgenic OT1 mice or littermate wild type mice 

were implanted with tumors using Res 499 cells with IFNGR and B2M knockout. Groups 

receiving Ova peptide had 50 ng of peptide mixed into the suspension prior to tumor 

injection and continued to receive intra/peritumoral injections on days 3, 6, 9, and 12. For 

flow cytometry experiments, mice were harvested on day 13. For FoxP3-DTR mice studies, 

mice were implanted with Res 499 IFNGR knockout tumors and diptheria toxin was 

administered intraperitonally at 1 ug/dose/mouse on days 5, 8, and 11 post-injection.

Murine chimeric antigen receptor T cells—B16-F10 or Res 499 tumor cells were 

transduced with pCLPs-hCD19 lentivirus to express a truncated human CD19 antigen that is 

unable to drive intracellular signaling. Cells were double sorted for stable expression. 5×104 

tumor cells in log phase growth were implanted into flanks of B6 mice. Murine T cells were 

stimulated with CD3/CD28 Dynabeads (Invitrogen) for 24 hours and then transduced with 

pMSGV-h19BBz retrovirus. At 48 hours after transduction, CAR-expressing T cells were 

quantified and 5×106 CAR-expressing T cells were injected i.v. in mice bearing B16- or 

Res499-hCD19 tumors 5 days after tumor implantation. Controls were either mock PBS-

injected or control transduced CAR T cells, which gave comparable results.

Adoptive transfer of mouse T cells—T cells from spleens of wild type or IFNG 

knockout mice were isolated by negative selection, and 8 × 106 cells were adoptively 

transferred i.v. into RAG1−/− mice. Recipient mice were allowed to reconstitute for 4 weeks, 

verified for reconstitution, and then were injected with flank tumors and treated with ICB as 

described above.

In vitro NK cell assays—Mice were injected i.p. with poly I:C 18 hours prior to NK cell 

isolation from mouse spleens or livers by negative selection. NK cells were then cultured 

with tumor cells for 6 hours. Flow cytometry was performed to assess the effector function 

and activation status of NK cells by examining CD49a, CD49b, PD1, and/or CD107a.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of tumor growth, survival, and group differences—Tumor volumes were 

determined by caliper measurements. Differences in survival were determined for each 

group by the Kaplan-Meier method and the overall p-value was calculated by the log-rank 

test using the survival R package. For mouse studies, an event was defined as death or when 

tumor burden reached a pre-specified size to minimize morbidity. Using the MASS R 

package, a mixed effect generalized linear model with lognormal distribution for tumor 

volume data was used to determine differences in growth curves. The significance of all two-

way comparisons was determined by a two-sample two-tailed t-test, or by a one-tailed t-test 

when appropriate. For non-parametric data, a Wilcoxon rank-sum test was used.

Gene set enrichment analysis—RNA-sequencing data from Res 499 resistant cells and 

B16-F10 parental cells flow sorted from untreated tumor-bearing mice were used for gene 

expression analysis. Previously described upregulated ISGs associated with cancer and 

therapy resistance (Weichselbaum et al., 2008) were confirmed to be enriched in Res 499 

compared to B16 by gene set enrichment analysis (GSEA) and denoted the ISG Resistance 

Signature (ISG.RS). For genes associated with IFNG signaling, the IFNG gene set from the 

Hallmark gene sets was used (IFNG.GS). GSEA was performed and the normalized 

enrichment scores and p-values calculated using the fgsea R package. For some genes like 

OAS1, orthologs were used when converting between mouse and human gene names. See 

Table S1 for a list of genes in the ISG.RS and IFNG.GS.

Analysis of genomic features from clinical melanoma samples—Processed bulk 

RNA-seq data from two different cohorts of melanoma patients treated with anti-PD1 (Hugo 

et al., 2016; Riaz et al., 2017) were downloaded from the GEO. CIBERSORT (Newman et 

al., 2015) was used to infer relative frequencies of immune cells in the tumor. For immune 

cell types with values for both resting and activated states, the values for the resting state 

were subtracted from values for the activated state. To calculate metagenes, gene expression 

data were centered and scaled using the sample mean and standard deviation, respectively. 

Then, the average expression of the genes in each gene set was calculated for each sample to 

give the metagene value. For tumor mutational burden, the provided values were log10 

transformed.

Single-cell RNA-sequencing analysis—Single-cell RNA-sequencing data from 

melanoma patients were downloaded from the GEO (Tirosh et al., 2016) and converted to 

TPM values. Several filtering steps were performed including, eliminating genes with low 

average expression and genes with greater than 20% zero values. This resulted in 8213 genes 

that was then imputed using the SAVER R package (Huang et al., 2018) followed by log2 

transformation. Dimensionality reduction was performed using tSNE as implemented in the 

Rtsne R package and resulting clusters were annotated using the provided cell type labels. 

The expression of each ISG metagene for cells belonging to each cell type was calculated 

and compared by two sample t-test. For single-cell immune cell data from mouse tumors 

using the 10X Genomics platform, data were first processed using the Cell Ranger pipeline 

(10X Genomics). This included demultiplexing BCL files into FASTQ, performing 

alignment with STAR, UMI counting, and aggregating replicates of the same condition. 
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Cells that had fewer than 500 genes detected, over 10% mitochondrial content, or over 3.5 

times the median UMI count were removed. Genes expressed in less than 1% of cells were 

also removed. After these QC steps, UMI counts were imputed with SAVER. Seurat was 

then used to normalize data to sequencing depth using a LogNormalize implementation, and 

mitochondrial contamination and cell cycle effects were regressed out. Clustering was 

performed using Seurat’s graph-based clustering approach and visualized with tSNE. 

Clusters were classified using a collection of manually curated immune marker genes (Table 

S2). Metagene values for IFNG.GS was determined similarly to the clinical analysis. The 

average scaled values for Mki67 and Top2a, and the average scaled values for Cxcl9 and 

Cxcl10 were used to calculate the proliferation and Cxcl9/10 metagene, respectively. For 

visualization purposes, metagene values less than or greater than 2.5 times the interquartile 

range were removed. Comparison of expression values between groups was done using a 

Wilcoxon rank-sum test. GSEA was performed using the fgsea R package. Gene sets for 

LCMV terminal exhausted T cells, progenitor exhausted T cells, and intratumoral ILC1 

populations were curated from previously published reports (Gao et al., 2017; Miller et al., 

2019).

Multivariable classification, regression, and survival analysis—Random forest 

(RF) for classification, regression, and survival analysis is a multivariable non-parametric 

ensemble partitioning tree method that can be used to model the effect of all interactions 

between genes on a response variable (Breiman, 2001; Chen and Ishwaran, 2012). We used 

the randomForestSRC package version 2.5.1.14 and the following parameters: 5000 trees, 

node size of 2, and default values for mtry. The default splitting rule was used for 

classification and the log-rank slitting rule was used for survival analysis. The default value 

for nsplit was used except for models containing both two-level factor variables and 

continuous variables. In this case, the nsplit parameter was set to 2 in order to prevent bias 

against the factor-level variables. Importance scores were calculated using the random 

ensemble method. For classification problems where the two classes were imbalanced, a 

random forest quantileclassifier approach was employed. Response was defined as complete 

or partial response. All predicted values, error rates, and importance scores were based on 

cross-validation using out-of-bag samples. For variable selection and assessing variable 

robustness, we considered the set of immune cell frequencies (inferred by CIBERSORT), 

TMB, IFNG.GS, ISG.RS, and/or the difference between IFNG.GS and ISG.RS (dISG) in a 

model for immune checkpoint blockade response. Prior treatment status and cohort were 

included to ensure the lack of confounding from these variables. Balanced undersampling of 

the majority class was performed and variable selection was determined using minimal 

depth (Ishwaran et al., 2010). The frequency that each variable was selected and its 

associated importance score were averaged over 100 iterations.

To complement the RF approach for modeling probability of clinical response to immune 

checkpoint blockade, we also performed multivariable logistic regression. From this, odds 

ratios and 95% confidence intervals were determined for each log10 increase in TMB or 0.5 

unit increase in metagene expression values. To complement RF variable selection using 

minimal depth, we performed lasso regression using the glmnet R package. Both RF and 

linear regression methods yielded comparable results.
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High-dimensional flow cytometry analysis—Fluorescence intensity data were 

analyzed using the flowCore R package and transformed using the logicle method. After 

excluding debris, dead cells, doublets and CD45– cells, CD8 T cells and NK/ILC1 cells were 

gated and separately analyzed. CD8 T cells were identified as TCRB+ and CD8+, while NK/

ILC1 cells were identified as TCRB– and NK1.1+. For each population, an aggregate data 

matrix from random sampling of 1000 events from each sample was used for dimensionality 

reduction and for clustering analysis. Clusters were identified using Phenograph (Levine et 

al., 2015) as implemented in the cytofkit R package and visualized by tSNE. Using cluster 

membership as class definitions, a RF classifier was developed using the same aggregate 

data matrix. After confirming a low misclassification error rate for each class, this RF 

classifier was used to assign all cells in all samples to one of the clusters. Using the two-

dimensional tSNE coordinates, a RF classifier was also developed and used to assign all 

cells to the tSNE map, allowing the distribution and frequencies of immune cells across 

clusters to be estimated for each sample. To analyze which immune clusters are strongly 

associated with wild type or IFNGR knockout tumors, the frequencies of immune cells 

within each cluster were used as features in a RF model, and the resulting importance scores 

were examined.

Whole exome sequencing and neoantigen prediction—Preprocessing and variant 

calling were done with the Genome Analysis Toolkit (GATK) version 4.0.2.1 following its 

Best Practices workflow. In brief, raw paired-end reads were aligned to the reference mouse 

genome GRCm38 release 68 using the bwa-mem algorithm from BWA version 0.7.17. 

Duplicates were marked using MarkDuplicates from Picard tools version 2.17.11. 

Systematic errors in base quality scores were detected and recalibrated using GATK’s 

BaseRecalibrator and ApplyBQSR. Known variants for recalibration were downloaded from 

the Mouse Genome Project SNP and Indel release version 5. Somatic SNVs and indels were 

then called with Strelka and MuTect2 using a matched normal germline of either C57BL/6 

or BALB/c mice, and only variants shared by both methods were kept. Variants were then 

filtered with FilterMutectCalls using GATK’s preset thresholds that are tuned for diploid 

somatic analyses. Based on gene expression from RNA-seq data, variants from transcripts 

that were not detectably expressed were removed. The MHC-I binding affinities of variants 

were then predicted using NetMHC version 4.0 for H-2-Kb and H-2-Db using peptide 

lengths from 8 to 11. To examine the genomic contraction of variants in Res 499 compared 

to parental B16, the variant allele frequencies were analyzed for variants with near-

heterozygous frequency (0.2 for a tetraploid genome) in one cell line but subclonal 

frequency in the other. Significance between the distribution of allelic frequencies between 

the two groups was estimated by a KS-test and compared to 1000 random variants. In 

addition, subclonal structure and their frequencies within the tumor were examined using the 

Canopy R package (Jiang et al., 2016). High quality variants that meet all the following 

criteria were used for the analysis: 1) affects only single nucleotides, 2) resides in autosome 

exonic regions, 3) exhibits VAF variance greater than 0.01, and 4) has mutation calling 

QUALs that exceed 50. The number of subclones were selected based on a Bayesian 

information criterion (BIC) after 100000 rounds of simulation across 20 chains. The 

configuration with the highest posterior likelihood was utilized to generate a phylogenetic 

tree and the corresponding frequencies of the subclonal populations were determined.
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Variant analysis of clinical lung cancer tumors—We used previously published 

processed data for somatic non-synonymous variants from non-small cell lung cancer 

patients treated with anti-PD1 and anti-CTLA4 (CheckMate-012 study) or from TCGA 

(Hellmann et al., 2018). Variants in one of 11 genes involved in type I or II IFN pathway 

signaling (IFNGR1, IFNGR2, IFNAR1, IFNAR2, JAK1, JAK2, TYK2, STAT1, STAT2, 

IRF9, and B2M) were examined. To exclude likely normal or benign variants, missense 

variants were annotated with ANNOVAR. Any missense variant found in all individuals in 

the ExAC database at a relative frequency greater than 0.0001 was removed. In order to 

predict benign from pathogenic missense or nonsense variants, two algorithms for scoring 

deleterious variants were used that included DANN, a deep learning algorithm, and CADD, 

a machine learning algorithm. For each method, an optimal cut point was selected by 

training on ClinVar data. Here, ClinVar variants classified as likely benign were considered 

benign and those classified as likely pathogenic were classified as pathogenic. The optimal 

cut points based on ROC accuracy were then applied to test accuracy in predicting these 

labels. Any variant below the ROC cut points for both DANN and CADD was categorized as 

benign. This yielded an overall accuracy of 0.80, sensitivity of 0.95, and specificity of 0.54. 

This criterion was then applied to the TCGA lung cancer data and the lung cancer tumors 

from CheckMate-012. For indels, SIFT was used for evaluation and non-frameshift indels 

and indels predicted to be neutral were excluded. Examining the IFN pathway variants, any 

patient with at least one predicted pathogenic missense variant, pathogenic nonsense 

mutation, or deleterious indel resulting in a frameshift was classified as IFN pathway variant 

positive.

The progression-free survival (PFS) of patients stratified by IFN pathway variant status was 

determined by Kaplan-Meier survival. The likelihood of response was determined by a 

multivariable logistic regression using variant status, log10 transformed values for TMB, and 

a previously used %PDL1 staining cut off of greater than or equal to 1%. The p-value for 

odds ratios was calculated by bootstrapping. In addition, a non-parametric model for 

response employing multivariable random forest was also used and without the need to 

transform any of the variables. The out-of-bag error rate and importance scores from this 

random forest model was then determined. To evaluate the significance of the observed 

association between IFN pathway variant status with PFS and decreased %PDL1 staining, 

the variant status of random sets of 11 genes were evaluated and used to stratify patients. 

Then, the hazard ratio for PFS and the associated p-value, and the %PDL1 staining for 

variant-positive and negative patients were recorded for 10,000 iterations and compared to 

the observed values.

DATA AND CODE AVAILABILITY

All software used in this study are open source and/or publicly available. The datasets 

generated or used in this study are available at the Gene Expression Omnibus (GEO) at 

http://www.ncbi.nlm.nih.gov/geo, provided as supplementary data from cited studies, or 

available through other cited public repositories.

Software—The R language and environment for statistical computing and graphics (https://

www.r-project.org) was used for statistical and bioinformatics analysis. R packages 
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described in methods were obtained from Bioconductor (https://www.bioconductor.org) or 

from CRAN (https://cran.r-project.org/web/packages/). These packages and additional 

software for processing, alignment, and analysis of sequencing data are listed in the Key 

Resources Table.

Data Resources

Mouse sequencing data: The RNA sequencing data for sorted Res 499 tumor cells is 

available from the GEO under accession number GSE83848. The single-cell RNA 

sequencing data for immune cells from Res 499 tumors and whole-exome sequencing data 

from sorted B16 and Res 499 tumors have been deposited under accession number 

GSE131927.

Human gene expression data: Normalized transcriptomic data, summarized exome 

analysis, and annotations for human melanoma patients treated with anti-PD1 were 

previously described (Hugo et al., 2016; Riaz et al., 2017) and downloaded from the GEO 

under accession number GSE78220 or on GitHub at https://github.com/riazn/

bms038_analysis. Single-cell RNA-sequencing data from melanoma patients (Tirosh et al., 

2016) were downloaded from the GEO under accession number GSE72056.

Human lung cancer variant data: Processed variant data from non-small cell lung cancer 

patients treated with anti-PD1 and anti-CTLA4 and from TCGA have been previously 

described and made available as supplementary information (Hellmann et al., 2018).

ClinVar data: All available data from ClinVar were downloaded from the FTP link 

available at the website (https://www.ncbi.nlm.nih.gov/clinvar).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Blocking tumor IFNG signaling increases IFNG generated by exhausted T 

cells (TEX)

• Higher immune vs cancer ISGs disable inhibitory pathways, allows NK/

ILC1s to mature

• Tumors with adequate MHC-I and antigen are killed by TEX after checkpoint 

therapy

• Tumors with low/absent MHC-I or poor antigens are killed by PD1+ TRAIL+ 

NK/ILC1s
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Figure 1. Distinct ISGs are differentially expressed in cancer and immune cells and have 
opposing functions in predicting clinical ICB response.
A) Gene set enrichment analysis (GSEA) of resistance-associated ISGs (ISG.RS) in Res 499 

cells compared to parental B16 cells, both sorted from in vivo tumors. Heatmap (red is high 

expression, blue is low) and enrichment plot is shown along with the normalized enrichment 

score (NES) and p-value. B) Venn diagram of genes in the ISG.RS along with hallmark 

IFNG-related genes (IFNG.GS) partitioned into non-overlapping gene sets (color-coded) and 

used to create individual metagenes. Cell types from scRNA-seq data of pooled human 

melanoma tumors are shown in the tSNE plot along with expression of the ISG metagenes. 

C) Genomic and clinical features associated with anti-PD1 response in melanoma patients. 

Shown are tumor mutational burden (TMB), prior treatment with ipilimumab (Ipi), relative 

frequency of CD8 T cells and activated NK cells (activated minus resting) inferred by 

CIBERSORT, and bulk tumor expression of the ISG metagenes. D) Proportion of activated 

NK cells vs. CD8 T cells stratified by low/high IFNG.GS and ISG.RS expression. 

Regression line (orange), Pearson correlation and p-value, and percent CD8 T cells in each 

quadrant are shown. E) Odds ratio and 95% confidence intervals from a multivariable model 

for clinical anti-PD1 response. F) Expression of each metagene (left plot), and the predicted 

probability of anti-PD1 response (right plot) from a model using TMB and the ratio of 

IFNG.GS over ISG.RS (dISG). Odds ratios are shown in the inset. Circle color indicates 

response and size indicates TMB. G) Summary of cancer and immune cell relationships 

inferred by statistical modeling and how ISGs impact probability of ICB response. H) GSEA 
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for ISG.RS genes after KO of the indicated IFN receptor in Res 499 tumors. See also Figure 

S1.
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Figure 2. Mouse models differing in MHC-I, tumor mutational burden, and predicted 
neoantigen status.
A) Summary of key properties of mouse tumor models. N.D. is not determined. B) TMB for 

each of the indicated cell lines. The proportion of predicted neoantigens (MHC-I affinity ≤ 

500 nM) is shown. C) Constitutive (baseline) and D) IFNG-inducible (+IFNG) MHC-I on 

indicated tumor cells with or without IFNGR KO. E) Cumulative distribution function plot 

of the allelic frequencies for predicted high-affinity (≤ 100 nM) neoantigens. The p-value is 

determined by an empirical distribution of the KS statistic from random variants. F) Allelic 

frequency of predicted high-affinity neoantigens in B16 and Res 499 tumors. Values are 

transformed onto a log10 scale with a near-heterozygous value for a tetraploid genome 

indicated (dashed blue line). Circle size corresponds to neoantigen affinity. Circle color 

corresponds to neoantigen clusters predicted to be evolutionarily related and giving rise to 

G) subclonal populations (Subclone 1–4) inferred from high quality variants and displayed 

using a phylogenetic tree. Frequencies of these subclonal populations are shown. See also 

Figure S2.
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Figure 3. Preventing tumor IFN signaling promotes CD8 T cell-dependent and/or NK/ILC1-
dependent ICB response.
A) Survival of mice bearing CT26 tumors with KO of IFNGR +/− B2M or of both IFNGR 

and IFNAR (IFNA/GR) after no treatment (Cont), CD8 depletion (aCD8), or anti-PD1 

(aPD1). For each group, n=5–15. B) Survival (top) and tumor volumes (bottom) after 

treatment with RT + anti-CTLA4 or control (Cont) for mice bearing B16 or Res 499 tumors 

with the indicated KO. Unless indicated, displayed p-values are for comparisons within each 

genotype (legend). For tumor volumes, only groups of interest are shown. Groups with no 

depletion: WT, n=20–28; IFNA/GR KO, n=10–20; IFNA/GR + B2M KO, n=4–5. For 

aNK1.1 groups, n=5. C) Tumor volumes for B16 and Res 499 tumors expressing human 

CD19 (hCD19) with or without IFNA/GR KO after a single infusion with primary murine T 

cells transduced with a CAR (CART) against hCD19. D) Survival of mice bearing IFNGR 

KO Res 499 tumors with or without concurrent B2M KO after treatment with anti-CTLA4. 

Effect of immune cell depletion with anti-CD8 or anti-NK1.1 is shown. IFNGR KO, n=5; 

B2M KO, n=5; IFNGR + B2M KO, n=10–20. E) Survival of wild type (WT) or Perforin KO 

(Prf1 KO) mice bearing IFNGR KO Res 499 tumors after anti-CTLA4. aCTLA4, n=7–10; 

Cont, n=2–4. See also Figure S3.
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Figure 4. Blockade of tumor IFNG signaling promotes CD8 TEX expansion, IFNG production, 
immune cell IFNG signaling, and maturation of NK and PD1+ TRAIL+ ILC1 cells.
CD45+ immune cells from Res 499 tumors with or without IFNGR KO were profiled by 

scRNA-seq. A) tSNE plot with identified immune populations (left) and corresponding 

density plots (right). The percent of CD8 T cells is 6.4% and 16.8% in wild type (WT) and 

IFNGR KO tumors, respectively. B) GSEA on CD8 T cell clusters using T cell terminal 

exhaustion and progenitor exhaustion gene sets. C) Intratumoral IFNG protein levels from 

wild type or IFNGR KO Res 499 tumors treated with or without anti-CTLA4. Effect of CD8 

T cell depletion (aCD8) is also shown. D) Expression of IFNG.GS or E) average expression 

of Cxcl9 and Cxcl10 across intratumoral immune cells from wildtype or IFNGR KO tumors 

overlaid on the tSNE map shown in (A). F) NK1.1+ and NKp46+ NK cell clusters from (A) 

were re-clustered. Shown is a tSNE plot with identified NK and ILC1 populations (left) and 

corresponding density plots (right). G) Average expression of select NK/ILC1 genes for 

each of the indicated NK or ILC1 maturation stage. H) CD8 T cells and NK/ILC1 

populations were identified by 28-color flow cytometry. Shown is ratio of PD1+ Eomes+ 

CD8 TEX that belong to Ki67+ GzmB+ clusters over total PD1+ Eomes+ CD8 TEX (left) or 

the proportion of CD11bhi NK and PD1+ TRAIL+ ILC1 cells relative to total NK/ILC1s 

(right). I) Density plots of NK/ILC1 clusters and expression of indicated markers overlaid 

onto a tSNE plot. Points are colored by scaled MFI and overlaid with a contour plot. 

Clusters 3, 9, 10, and 11 are CD11bhi NK cells, and cluster 4 is PD1+ TRAIL+ ILC1 cells. 

See also Figure S4.
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Figure 5. NK/ILC1-mediated killing from blocking tumor IFNG signaling is regulated by IFNG 
produced by TEX, PD1/PDL1, and TRAIL/TRAILR2.
A) Wild type or IFNG-deficient CD8 T cells were adoptively transferred into Rag1−/− mice. 

Shown is survival after implantation of IFNGR KO Res 499 tumors and treatment with anti-

CTLA4 (n=4–5). B) Mice bearing IFNGR KO Res 499 tumors were depleted of CD8 T cells 

followed by intratumoral injection of the indicated cytokine. Shown is the percentage of 

intratumoral CD8 T cells and NK/ILC1s. C) Response of IFNGR KO Res 499 tumors in 

CD8 T cell-depleted mice. Mice were treated with anti-CTLA4 with or without intratumoral 

injection of IFNG. Effect of concurrent depletion of NK/ILC1s with anti-NK1.1 is also 

shown as well as effect of high constitutive PDL1 on IFNGR KO tumors (red boxplots). 

Tumor volumes are relative to initial control tumor volume. D) Survival after anti-CTLA4 

treatment of mice bearing Res 499 tumors with concurrent KO of PDL1 (n=5). The effect of 

anti-NK1.1 is shown. E) In vitro NK cell killing of Res 499 IFNGR KO tumor cells with or 

without constitutive ectopic PDL1 expression. Both CD49a+ PD1+ and CD49b+ PD1– 

populations were tested. Shown are relative proportions of CD107a+ NK cells. For each 

biological replicate, data are normalized to results from Res 499 IFNGR KO cells cultured 

with CD49a+ PD1+ NK cells. F) In vivo TRAILR2 and PDL1 expression on Res 499 tumors 

with or without IFNGR KO. G) Survival after anti-CTLA4 of mice bearing IFNGR KO Res 

499 tumors with (n=14–15) or without (n=5) concurrent KO of TRAILR2. See also Figure 

S5.
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Figure 6. Activated bystander T cells support and Tregs inhibit NK/ILC1-dependent response 
after blocking tumor IFNG signaling.
A) OT-1 mice bearing Res 499 tumors with combined IFNGR and B2M KO were treated 

with anti-CTLA4 with or without intratumoral injection of OVA peptide. Wild type mice 

with or without CD8 T cell depletion were used as comparison. B) Tumor infiltration by 

CD8 T cells and NK/ILC1s and C) growth of Res 499 IFNGR + B2M KO tumors after anti-

CTLA4 (95% confidence interval in grey). D) Proliferation status of Tregs and other 

intratumoral immune cells in control (WT) or Res 499 IFNGR KO tumors measured by 

average expression of Ki67 and Top2a. E) Tumor growth of Res 499 IFNGR KO tumors 

implanted into wild type or FoxP3-DTR mice treated with anti-CTLA4 or diptheria toxin 

(DT). F) Survival of mice bearing CT26 tumors with IFNGR +/− B2M KO after treatment 

with anti-PD1 or anti-CTLA4. For all groups, n=5. G) Top predictive features from a 

random forest model (and confirmed by lasso regression) for how the proportion of different 

intratumoral immune cells (x-axis) predicts the proportion of activated NK cells in human 

melanoma tumors (y-axis). Standard error is in yellow. See also Figure S6.
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Figure 7. Tumor mutations in the IFN pathway predict decreased ISG.RS and increased survival 
in lung cancer patients treated with anti-CTLA4 and anti-PD1.
A) GSEA of ISG.RS genes comparing TCGA NSCLC patients with and without a predicted 

pathogenic variant in the IFN pathway (IFN Path Var). B) CADD, DANN, and SIFT scores 

for IFN Path Var from a cohort of 75 NSCLC patients treated with anti-CTLA4 + anti-PD1. 

Variant type (color), optimal cut points for classification (dashed line), and mean value for 

benign ClinVar variants (solid line) are shown. C) Progression-free survival after anti-

CTLA4 and anti-PD1, and D) odds ratios for response (with 95% confidence intervals) from 

multivariable logistic regression. E) Response (top plot), clinical features (middle two plots), 

and variant allele frequency (VAF; bottom plot) of tumors with IFN Path Vars. The mean/

median values are indicated by dashed lines. Top plot shows predicted probability of 

response (from logistic regression) and observed best overall response (NE is nonevaluable). 

F) Boxplot of %PDL1 staining and response. G) Model for how the opposing roles of IFN 

signaling in immune and tumor cells regulate ICB response in tumors differing in 

neoantigen and MHC-I status. See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-mouse GzmB Invitrogen Cat# GRB18

Anti-mouse NKG2A/C/E BD Pharmagen Custom (Clone 20d5)

Anti-mouse CD4 BD Biogen Cat# 565978

Anti-mouse Ki67 BD Biosciences Cat# 563757

Anti-mouse NKG2D BD Pharmagen Custom (Clone CX5)

Anti-mouse KLRG1 BD Pharmagen Custom (Clone 2F1)

Anti-mouse CD11b BD Biogen Cat# 565080

Anti-mouse CD45.2 BD Biogen Cat# 564880

Anti-mouse NKp46 BD Biogen Cat# 561169

Anti-mouse CD69 BD Pharmagen Cat# 557392

Anti-mouse Ly49A BD Biogen Custom (Clone A1)

Anti-mouse CD49b Invitrogen Cat# 46-5971-81

Anti-mouse TCRB BD Pharmagen Custom (Clone H57–597)

Anti-mouse NK1.1 eBioscience Cat# 47–5941

Anti-mouse CD27 BD Pharmagen Custom (Clone LG3A.10)

Anti-mouse TRAIL Biolegend Cat# 109309

Anti-mouse Eomes eBioscience Cat# 50–4875

Anti-mouse TIGIT BD Biosciences Cat# 565270

Anti-mouse Lag3 Biolegend Cat# 125219

Anti-mouse CD127 Biolegend Cat# 135025

Anti-mouse Tbet BD Biogen Cat# 564142

Anti-mouse Ly49D BD Biogen Cat# 742559

Anti-mouse CD44 Biolegend Cat# 103031

Anti-mouse CTLA4 Biolegend Cat# 106306

Anti-mouse CD8a MBL International Cat# T03015

Anti-mouse PD1 Biolegend Cat# 109110

Anti-mouse CD3 Biolegend Cat# 107631

Anti-mouse CD49a Biolegend Cat# 142604

Live/Dead Aqua Life Technologies Cat# L34957

Anti-mouse PD-L1 eBioscience Cat# 46–5982

Anti-mouse TRAILR2 Biolegend Cat# 119905

Anti-human CD19 Biolegend Cat# 302211

Anti-mouse H2-Kb/Db Biolegend Cat# 114612

Anti-mouse CTLA4 (9H10) BioXcell Cat# BE-0131

Anti-mouse CTLA4 (9D9) BioXcell Cat# BE0164

Anti-mouse PD1 BioXcell Cat# BE0146
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REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-mouse CD8a BioXcell Cat# BE0061

Anti-mouse NK1.1 BioXcell Cat# BE0036

Anti-mouse asialo-GM1 Wako Chemical Cat# 986–10001

Anti-mouse IFNg Biolegend Cat# 505821

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

IFNG Peprotech Cat# 315–05

Ova Peptide Invivogen Cat# sin-vac

CXCL10 Peprotech Cat# 250–16

Poly I:C Invivogen Cat# vac-pic

Critical Commercial Assays

LegendPlex Cytokine Assay Biolegend Cat# 740005

Purelink Genomic DNA Kit ThermoFisher Scientific Cat# K182001

SureSelectQXT Kit Agilent Cat# G9683A

10x v2 Library and Gel Bead Kit 10x Genomics Cat# PN-120258

Fixation and Permeablization Kit eBioscience Cat# 00–5523

Deposited Data

499 WT v 499 IFNgR KO s.c. RNA-seq data GSE131927

B16 v 499 Whole Exome Seq GSE131927

Sorted 499 tumor cells GSE83848

Experimental Models: Cell Lines

B16-F10 melanoma ATCC Cat# CRL-6475

TSA breast carcinoma Laboratory of Sandra Demaria PMID: 19706802

CT26 colorectal carcinoma ATCC Cat# CRL-2638

Res 499, Res 237, associated CRISPR KO Laboratory of Andy Minn PMID:25754329,
PMID:27912061

Experimental Models: Organisms/Strains

C57BL/6 WT mice Jackson Laboratories Cat# 000664

C57BL/6 WT mice Charles River Laboratories Stock #027

Balb/c WT mice Charles River Laboratories Stock #028

RAG−/- mice (B6129S7-Rag1tm1Mom/J) Jackson Laboratories Cat# 002216

IFNg −/− mice (C57BL/6-Tg(TcraTcrb)1100Mjb/J) Jackson Laboratories Cat# 002216

FoxP3 DTR mice (B6.129(Cg)-FoxP3tm3(DTR/GFP)Ayr/J Jackson Laboratories Cat# 016958

OT-I mice (C57BL/6-Tg(TcraTcrb)1100Mjb/J) Jackson Laboratories Cat# 003831

Oligonucleotides
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REAGENT or RESOURCE SOURCE IDENTIFIER

B2M guide sequence
g1: GACAAGCACCAGAAAGACCA
g2: GTGAGTATACTTGAATTTGA

This paper

TRAILR2 guide sequence
g1: GTGGGCGTGCTGGGTCCTGG
g2: ATCGTCCAGCTGGCCTACAG

This paper

Recombinant DNA

Human-CD19 expression vector Laboratory of Carl June PMID:19384291

Anti-human CD19BBz CAR construct Laboratory of Carl June PMID:26885860

Software and Algorithms

Picard tools v2.17.11 https://broadinstitute.github.io/picard/

samtools v1.3.1 http://samtools.sourceforge.net

survival v2.41–3 https://cran.r-project.org/web/packages/survival/
index.html

MASS v7.3–48 https://cran.r-project.org/web/packages/MASS/
index.html

DESeq2 v1.14.1 https://bioconductor.org/packages/release/bioc/html/
DESeq2.html)

fgsea v1.4.1 https://bioconductor.org/packages/release/bioc/html/
fgsea.html

SAVER v1.1.1 https://github.com/mohuangx/SAVER

Rtsne v0.15 https://github.com/jkrijthe/Rtsne

CIBERSORT https://cibersort.stanford.edu/

randomForestSRC v2.5.1.14 https://github.com/kogalur/randomForestSRC

flowCore v1.44.1 https://bioconductor.org/packages/release/bioc/html/
flowCore.html

cytofkit v1.10.0 https://bioconductor.org/packages/release/bioc/html/
cytofkit.html

fastQC v0.11.5 https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/

GATK v4.0.2.1 https://software.broadinstitute.org/gatk/gatk4

bwa v0.7.17 http://bio-bwa.sourceforge.net/

Canopy v1.3.0 https://github.com/yuchaojiang/Canopy

NetMHC v4.0 http://tools.iedb.org/main/tcell/

ANNOVAR http://annovar.openbioinformatics.org/en/latest/user-
guide/download/

SIFT http://sift.bii.a-star.edu.sg/www/SIFT_indels2.html)

Seurat v2.3.4 https://satijalab.org/seurat/install.html

Cell Ranger v2.1.0 https://support.10xgenomics.com/single-cell-gene-
expression/software

Other

Diptheria Toxin Sigma Aldrich D0564
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