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ABSTRACT
Introduction  Fibromyalgia (FM) is a common debilitating 
condition with limited therapeutic options. Medications 
have low efficacy and are often associated with adverse 
effects. Given that FM is associated with a defective 
endogenous pain control system and central sensitisation, 
combining interventions such as transcranial direct current 
stimulation (tDCS) and aerobic exercise (AE) to modulate 
pain-processing circuits may enhance pain control.
Methods and analysis  A prospective, randomised 
(1:1:1:1), placebo-controlled, double-blind, factorial 
clinical trial will test the hypothesis that optimised tDCS 
(16 anodal tDCS sessions combined with AE) can restore 
of the pain endogenous control system. Participants with 
FM (n=148) will undergo a conditioning exercise period 
and be randomly allocated to one of four groups: (1) active 
tDCS and AE, (2) sham tDCS and AE, (3) active tDCS and 
non-aerobic exercise (nAE) or (4) sham tDCS and nAE. 
Pain inhibitory activity will be assessed using conditioned 
pain modulation (CPM) and temporal slow pain summation 
(TSPS)—primary outcomes. Secondary outcomes will 
include the following assessments: Transcranial magnetic 
stimulation and electroencephalography as cortical 
markers of pain inhibitory control and thalamocortical 
circuits; secondary clinical outcomes on pain, FM, quality 
of life, sleep and depression. Finally, the relationship 
between the two main mechanistic targets in this 
study—CPM and TSPS—and changes in secondary 
clinical outcomes will be tested. The change in the primary 
efficacy endpoint, CPM and TSPS, from baseline to week 4 
of stimulation will be tested with a mixed linear model and 
adjusted for important demographic variables.
Ethics and dissemination  This study obeys the 
Declaration of Helsinki and was approved by the 
Institutional Review Board (IRB) of Partners Healthcare 
under the protocol number 2017P002524. Informed 
consent will be obtained from participants. Study findings 
will be reported in conferences and peer-reviewed journal 
publications.
Trial registration number  NCT03371225.

Introduction
Fibromyalgia (FM) affects about 2% of the 
world population1 and is associated with 
poor quality of life mainly due to pain, 
fatigue, sleep disturbances, functional limita-
tions and cognitive impairments.2 Current 
treatments for this challenging complex 
condition lead to an average annual cost 
of $5945 in insurance claims per patient 
with FM, more than twice the amount of a 
typical beneficiary.3 The treatment of choice 
is a multimodal approach that includes self-
management strategies,4 but there is a large 
gap between supply and demand as access 
to such therapies is limited. Consequently, 
many patients with FM rely on pharmaceuti-
cals such as non-steroidal anti-inflammatory 
drugs, antidepressants and/or anticonvul-
sants, which usually do not provide enough 
symptom relief and are frequently associated 
with adverse effects.5 Therefore, there is an 

Strengths and limitations of this study

►► A sham-controlled, powered clinical trial on a novel 
low-cost therapy for fibromyalgia.

►► Endogenous pain system biomarkers will help re-
veal the mechanisms of fibromyalgia as well as the 
interventions.

►► This study will inform us on the number of sessions 
needed to induce significant changes in neuroplasti-
city reflected in the above mentioned markers.

►► The secondary outcomes of this study will evaluate 
the suitability of the proposed biomarkers to predict 
treatment response.

►► Exclusion of patients with increased risk during ex-
ercise may limit the generalisability of the findings.
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urgent need for the development of novel and targeted 
treatments with fewer side-effects.

Rationale and gap
Accumulating evidence6–9 shows that disturbances in the 
endogenous pain control system lead to chronic pain. 
Several neurophysiological10–16 and neuroimaging17–21 
studies showed altered pain processing mechanisms in 
FM; therefore, therapies that target and modulate the 
neural circuits involved in pain control are essential to 
treat FM characteristic chronic widespread pain. Different 
ways to potentially modulate these circuits include exer-
cise—which has a known evidence-based therapeutic 
effect on pain in FM,22 and non-invasive neuromodulation 
techniques such as transcranial direct current stimulation 
(tDCS)—which demonstrably improve several chronic 
pain conditions.23–28 Despite its investigated benefits to 
treat different pain conditions (typically targeting the 
primary motor cortex (M1)), tDCS effects in FM have 
been mixed.29–32 Yet, tDCS can be easily coupled to other 
therapies due to its low-cost and portability,33 and such 
combinations have been superior to either of the ther-
apies alone in other disorders.34–36 We have shown in a 
pilot study with 45 FM subjects that combining exercise 
and tDCS for FM leads to a significant pain decrease that 
also shows a different neural signature as compared with 
each therapy alone (tDCS or exercises).37 In this initial 
study, however, the endogenous pain inhibitory system 
was not assessed.

Given the extensive data showing that (i) FM has a 
defective endogenous pain inhibitory system10–16 and 
(ii) exercises38–40 and tDCS lead to modulation of this 
system,31 41 42 we then hypothesised that these two neuro-
modulatory techniques can help restore the endogenous 
pain inhibitory system in FM. Neurophysiological and 
clinical assessments including electroencephalography 
(EEG), transcranial magnetic stimulation (TMS), quan-
titative sensory testing and questionnaires for pain and 
quality of life can provide important data to understand 
how the endogenous pain inhibitory system is then modu-
lated by these two interventions.

Research question and hypothesis
We therefore aimed to test whether in subjects with FM 
16 sessions of M1 anodal tDCS combined with aerobic 
exercise (AE) decrease temporal slow pain summa-
tion (TSPS) and increase conditioned pain modulation 
(CPM) responses compared with each intervention alone 
and to sham when assessed on the last day of intervention. 
We hypothesise that this optimised tDCS plus AE tech-
nique will lead to a stronger engagement of the endoge-
nous pain regulatory system, which will ultimately lead to 
increased pain regulation in patients with FM.

Objectives
Primary objective

►► To evaluate the effects of 4 weeks of tDCS plus AE on 
the endogenous pain regulatory system (assessed by 
CPM) and central sensitisation (assessed by TSPS) 

compared to either interventions alone and to no 
intervention.

Secondary objectives
►► To determine the effect of these interventions on 

cortical markers of inhibitory control that are also 
altered in FM, such as intracortical inhibition assessed 
by TMS, and changes in thalamocortical dysrhythmia 
(TCD) and event-related desynchronisation (ERD) 
assessed by EEG.

►► To assess whether engagement of the two main targets 
tested in this study (TSPS and CPM) are associated 
with the secondary clinical outcomes (i.e., changes in 
pain outcomes: Brief Pain Inventory, Revised Fibro-
myalgia Impact Questionnaire).

►► To assess EEG changes across groups and their suita-
bility as potential markers of TCD normalisation.

►► To determine the number of sessions needed to 
induce significant changes in markers of the endog-
enous pain inhibitory system and central sensitisation 
(CPM and TSPS) and cortical changes (paired pulse 
TMS and EEG).

Methods and analysis
Trial design
This is a single centre 4-arm factorial Randomized Clin-
ical Trial (RCT). Participants will be randomised using a 
random blocked randomisation sequence generated by a 
computer software. We used a 1:1:1:1 allocation ratio to 
active or sham tDCS combined with AE or non-aerobic 
exercise (nAE) on the first day of the conditioning exer-
cise programme. The staff member performing rando-
misation will not be involved in the trial otherwise. 
Sequentially numbered sealed envelopes will maintain 
allocation concealment. Investigators providing assess-
ments will be blinded to tDCS but not exercise. Assessors 
of primary and secondary outcomes (and participants) 
will be blinded to group allocation (see figure 1 for group 
allocation).

Study setting
This is a single-site study, and all procedures will be 
conducted at the Neuromodulation Center, Spaulding 
Rehabilitation Hospital. Enrolment start date is 1 May 
2019 and expected end date is 31 December 2023.

Eligibility criteria
We will use broad-based recruitment strategies, including 
online advertisements, flyers, clinician referrals and so on. 
All eligible participants must fulfil the inclusion criteria 
and have none of the exclusion criteria listed in box 1.

As part of the eligibility criteria, participants will 
perform a pretraining visit to evaluate if they are comfort-
able with walking on the treadmill at a self-selected 
speed at their baseline heart rate (HR) for 30 min. Only 
subjects comfortable with this task will be randomised. If 
the subject is unable to walk for 30 min on the treadmill 
or reports discomfort or any side-effects precluding phys-
ical exercise (eg, excessive muscle soreness), they will be 
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Figure 1  Flowchart of the study based on CONSORT criteria. AE, aerobic exercise; nAE, non-aerobic exercise; tDCS, 
transcranial direct current stimulation.

screened out. Also, a demographic survey will be taken 
during the consent visit.

Intervention
Exercise
Conditioning exercise programme: 6 exercise sessions are 
divided in 3 days per week over 2 weeks. Duration of 
sessions will start with 10 min and increase gradually, 
ending with a 30 min session on the last day. The AE 
group will walk briskly at 60%–70% of their maximum 
HR and the nAE group will walk within 5% of their base-
line HR. If a participant on the AE group is unable to 
progress beyond 15 min at 60%–70% hour max over the 
initial 2 weeks, they will be screened out of the study. 
After the conditioning exercise programme, subjects 
will continue with the intervention part of the protocol. 
Participants will complete AE or nAE three times a week 
on non-consecutive days over 4 weeks.

Aerobic exercise (AE): Participants will undergo moderate 
intensity AE on a treadmill over 30 min (American Heart 
Association recommendation for adults). HR will be 
monitored throughout the entire procedure by a sensor. 
The investigator will sequentially increase the treadmill 
speed by 0.1 mph every 5 s, until the participant reaches 
60%–70% of age-predicted maximal heart rate (HRmax), 
following the formula HRmax=208 − (0.7 * age), as this 
has been found safe in various conditions.22 43–47 AE inten-
sity will be modulated based on the participant’s HRmax 
throughout the session. If the HRmax exceeds 70%, the 
investigator will decrease treadmill speed by 0.1 mph 
every 5 s until returning to the 60%–70% HRmax target. 
If HRmax reaches 80% or the subject shows any signs of 
discomfort, the session will be stopped.

Non-aerobic exercise (nAE): Participants will walk on the 
treadmill for 30 min with a workload intensity within 5% 

baseline HR, as we used this method in our preliminary 
study.37

As recommended by ACSM guidelines for AE in 
patients with FM, the participant will be questioned 
regarding any respiratory or cardiovascular symptoms 
on each visit before starting the exercise; we will monitor 
pain and fatigue levels after the first 5, 15 and 25 min 
of exercise using a numeric pain scale.48 Additionally, to 
evaluate adverse effects during AE or nAE training, we 
will record any musculoskeletal symptoms such as pain, 
muscle strain, muscle soreness, fatigue, dizziness and 
shortness of breath.

Transcranial direct current stimulation (tDCS)
A 1×1 low-intensity DC stimulator, the Soterix Medical 1×1 
tDCS-Clinical Trial, will be used with codes corresponding 
to active or sham stimulation, allowing a double-blinded 
procedure. Participants will receive 16 tDCS sessions over 
4 weeks of treatment. Weeks 1 and 2 will begin with five 
consecutive days of tDCS followed by weeks 3 and 4 with 
three alternating days of tDCS. The exercise and the 
tDCS will be performed simultaneously as explained in 
figure 2.

Active (anodal) tDCS: During active tDCS, a 2 mA constant 
current will be delivered for 20 min through rubber elec-
trodes encased in 35 cm2 saline-soaked sponges. The 
anode will be placed over the left primary motor cortex 
(M1) and the cathode over the contralateral supraorbital 
area. M1 will be localised using the 10/20 International 
EEG System (C3—adapted by measuring 5 cm below the 
vertex), a reliable method for tDCS.23

Sham tDCS: We will use the same montage and parame-
ters as active tDCS, but the active current will be applied 
for 30 s in the beginning and at the end of the procedure 
to simulate the same sensations of the current ramping as 
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Box 1  Inclusion and exclusion criteria

Inclusion criteria
1.	 Age range 18–65 years.
2.	 Diagnosis of fibromyalgia pain according to the American College 

of Rheumatology (ACR) 2010 criteria (existing pain for more than 
6 months with an average of at least 4 on a 0–10 Visual Analogue 
Scale (VAS) scale) without other comorbid chronic pain diagnosis.

3.	 Pain resistant to common analgesics and medications for chronic 
pain such as Tylenol, Aspirin, Ibuprofen, Soma, Parafon Forte DCS, 
Zanaflex and Codeine.

4.	 Must have the ability to feel sensation by Von-Frey fibre on the 
forearm.

5.	 Able to provide informed consent to participate in the study.

Exclusion criteria
1.	 Clinically significant or unstable medical or psychiatric disorder.
2.	 History of substance abuse within the past 6 months as self-reported 

(if subject reports a history of substance abuse, we will confirm us-
ing the Diagnostic and Statistical Manual of Mental Disorders, Fifth 
Edition (DSM V criteria).

3.	 Previous significant neurological history (eg, traumatic brain injury), 
resulting in neurological deficits, such as cognitive or motor deficits, 
as self-reported.

4.	 Previous neurosurgical procedure with craniotomy.
5.	 Severe depression (with a score of >30 on the Beck Depression 

Inventory).
6.	 Pregnancy—as the safety of tDCS in pregnant population (and chil-

dren) has not been assessed (though the risk is non-significant), we 
will exclude pregnant women (and children). Women of childbear-
ing age will be required to take a urine pregnancy test during the 
screening process and in every week of stimulation).

7.	 Current opiate use in large doses (more than 30 mg of oxycodone/
hydrocodone or 7.5 mg of hydromorphone (Dilaudid) or equivalent).

8.	 Patients will be excluded when they have increased risk for exercise 
defined as (i) not fulfilling the American College of Sports Medicine 
criteria (ie, risk of cardiovascular complication48) and in this case not 
cleared by a licensed physician.

Figure 2  Schematic view of the timeline. tDCS, transcranial direct current stimulation.

in active stimulation.49 Using 30 s of ramping is reliable 
for blinding50 and less than 3 min of tDCS induces no 
cortical excitability effects.49

A tDCS adverse events questionnaire will be admin-
istered after each stimulation session. Subjects will be 
instructed not to use other methods of electrical stimula-
tion during the trial.

Outcomes
Evaluation of endogenous pain inhibition system (primary 
outcomes)
During the CPM and TSPS protocols, heat pulses will 
be generated by a TSA-II Stimulator (Medoc Advanced 
Medical Systems, Ramat Yishai, Israel) delivered to 
the right proximal volar forearm using a 30 mm × 30 
mm embedded heat pain (HP) thermode. A minimum 
interval of 10 min between the two assessments will be 
respected.

Conditioned pain modulation (CPM) evaluates the ability 
to inhibit pain. When a pain test stimulus is given together 
with a conditioning pain stimulus, the test stimulus is 
perceived as less painful than when it was given alone.51 
We will follow the adapted protocol suggested by Granot 
et al (2008)52 and Nir et al (2011).53 We will first determine 
the pain-60 test temperature (which is the temperature 
that induces pain sensation at a magnitude of 60 on a 
60–100 numerical pain scale (NPS)) by applying a Peltier 
thermode (Medoc Advanced Medical Systems, Ramat 
Yishai, Israel) on the right forearm and delivering three 
short heat stimuli (43°C, 44°C and 45°C), each lasting 7 
s (starting from the time the stimulus intensity reaches 
the destination temperature). Subjects will be asked to 
rate the level of pain intensity using a NPS ranging from 
0=‘no pain’ to 100=‘the worst pain imaginable’. If the first 
temperature of 43°C is considered too painful (>60/100), 
we will stop the series and will provide additional stimuli 
at lower temperatures of 41°C and 42°C. If the three 
temperatures (43°C, 44°C and 45°C) are unable to 
achieve pain-60, we will deliver additional stimuli at 46°C, 
47°C and 48°C until reaching the desired pain level of 
60/100; in the unlikely event that none of those tempera-
tures elicits pain-60, we will consider it to be 48°C. On 
determining the pain-60 temperature, we will administer 
the test stimulus at that temperature for 30 s, and subjects 
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will be asked to rate their pain intensity at 10, 20 and 30 
s after the thermode reaches the pain-60 temperature 
(mean scores of the three pain ratings will be calculated). 
Five minutes after delivering the test stimulus, the condi-
tioning stimulus will be applied: the subject’s left hand 
will be immersed for 30 s in a water bath set at 10°C–12°C. 
Then, the same pain-60 temperature will be applied to 
the right forearm (left hand will still be immersed) for 
30 s and the subject will again be asked to rate their pain 
intensity three times after the thermode reaches the 
pain-60 temperature: at 10, 20 and 30 s (mean scores of 
the three pain ratings will be calculated). CPM response 
will be calculated as the difference between the average of 
pain ratings from the test stimulus minus the average of 
pain ratings during the conditioned stimulus.

Temporal slow pain summation (TSPS) represents summa-
tion of C fibre mediated pain, assesses central sensitivity 
and is used to probe pain processing abnormalities in 
several chronic pain disorders.54 55 Subjects will be trained 
to identify pain-60 test temperature (see CPM protocol 
above) and we will follow the adapted protocol suggested 
by Staud et al (2014)56 in which the HP-thermode was 
programmed to deliver pulses with rise/fall of 1–2 s, 
depending on subject’s pain-60 level, from adapting 
temperatures to peak temperatures, with a plateau of 0.7 
s. They will receive 1 train of 15 repetitive heat stimuli 
at 0.4 Hz, which (being suitable to elicit TSPS in most 
subjects) allows the rating of individual pain stimuli and is 
unlikely to induce peripheral sensitisation.57 TSPS will be 
calculated as the difference between HP rating after the 
1st and 15th stimuli.

Evaluation of cortical markers of inhibitory control (secondary 
neurophysiological outcomes)
Transcranial magnetic stimulation (TMS)
To assess tDCS and AE effects, we will measure the excit-
ability of pain-related pathways using TMS markers. TMS 
assessments will be similar to our previous study.58 Single 
pulse TMS will be performed to acquire resting motor 
threshold (rMT) and motor evoked potentials (MEPs); 
paired pulse technique will measure short interval 
cortical inhibition (SICI) and intracortical facilitation 
(ICF). We will use Magstim Rapid2 device with a figure-
of-eight magnetic stimulator coil placed on the right and 
left M1 (for all assessments) and will record surface elec-
tromyogram from the contralateral first dorsal interos-
seous muscle. TMS data will be recorded and stored in a 
computer for off-line analysis.
1.	 Resting motor threshold (rMT): Initially, we will investigate 

rMT following the technique described by Rossini and 
colleagues, where rMT is defined as the lowest stimulus 
intensity to evoke a MEP of 100 μV in 3/5 trials in the 
relaxed muscle.59

2.	 Motor evoked potential: We will initially adjust TMS ma-
chine output intensity to achieve a baseline MEP of 1 
mV peak-to-peak amplitude before the intervention. 
Stimulation intensity will be kept constant for each 
subject throughout the evaluation sessions. We will re-

cord 10 MEPs for each assessment and average their 
peak-to-peak amplitudes and areas-under the-curve.

3.	 Short interval intracortical inhibition (SICI) and intracor-
tical facilitation (ICF): We will use paired pulse testing 
with a subthreshold conditioning stimulus (80% rMT) 
followed by a suprathreshold test stimulus of 120% of 
the motor threshold. Interstimulus intervals will be 2 
ms for SICI and 10 ms for ICF. Ten randomised stimuli 
will be applied at each interval and the percentage of 
inhibition or facilitation for each interstimulus inter-
val before and after treatment will be calculated. The 
paired pulse MEP intensity will be the machine output 
intensity eliciting 1 mV peak-to-peak amplitude that 
day—not the baseline MEP intensity used for single 
pulse testing. If we cannot obtain rMT, we will not per-
form MEPs or paired pulse.

Electroencephalography (EEG)
EEG will take place over approximately 45 min: 25 min 
of participant and software preparation, 10 min of EEG 
recording divided into a resting EEG condition (5 min 
with eyes open, 5 min with eyes closed) and a task-related 
condition (8 min). Participants will be asked to relax in 
the resting condition; the investigator will ensure they do 
not fall asleep.

The task-related condition will include movement 
observation (MO), movement imagery (MI) and 
movement execution (ME). This will be recorded by 
connecting the Net Station software (for EGI) with 
E-Prime. The entire task-related condition part will 
consist of 60 trials, with 20 trials for each of MO, MI and 
ME in a randomised order.60 61 Each trial will involve 
initial fixation (on a cross on a screen), followed by a 
visual cue stating the task to be performed (‘imagine’ 
and ‘clench’), and a video will automatically play for 
observation. During each MO trial, the participant will 
view a video of a right hand clenching; during the MI 
task, the participant will be asked to imagine clenching 
her/his right hand once, and during the ME task, the 
subject will be asked to clench her/his right hand once. 
There will be a 4 s rest period between each trial. The 
purpose of the task-related condition is to evaluate ERD 
that reflects the motor cortex activation.62

We will record the EEG in a standardised way63 using 
the 64-channel EGI system (EGI, Eugene, USA). The 
EEG will be recorded with a band-pass filter of 0.3–200 
Hz and digitised at the sampling rate of 250 Hz64 by 
connecting the Net Station software (for EGI) with 
E-Prime. On acquiring the EEG data, the EEGs will be 
inspected and artefacts will be cleaned manually. We 
will use EEGLAB and analysis of EEG data will include 
a power analysis of the power bands in the resting EEG 
portion—delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz) 
and beta (13–30 Hz) bands—fast Fourier transformation, 
Independent Component Analysis (ICA) decomposition, 
ERD responses of the three different motor tasks, func-
tional connectivity measures and topographical analysis. 
The analysis will compare groups at baseline, during the 
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Table 1  Effect size in three scenarios

Study Population Intervention Effect size

Scenario I: tDCS effect on CPM in chronic pain

 � Ribeiro et al (2017)72 40 women with chronic pain 
undergoing hallux valgus surgery

Active versus sham tDCS Cohen’s d=0.79

Scenario II: tDCS effect on CPM in healthy volunteers

 � Braulio et al (2018)73 48 healthy males Active-tDCS+remifentanil versus 
sham-tDCS+remifentanil

Cohen’s d=0.98

 � Flood et al (2017)74 12 healthy males Active High-Definition 
transcranial Direct Current 
Stimulation (HD-tDCS) versus 
sham HD-tDCS

Cohen’s d=1.38

 � Flood et al (2016)75 30 healthy males Active versus sham tDCS Cohen’s d=0.89

 � da Silva et al (2015)76 20 healthy males Active tDCS+melatonin versus 
placebo+sham-tDCS

Cohen’s d=0.67

Pooled effect size 1.02

Scenario III: Exercise effect on CPM in chronic pain

 � Meeus et al (2015)77 16 rheumatoid arthritis Exercise pre and post Cohen’s d=0.78

CPM, conditioned pain modulation; tDCS, transcranial direct current stimulation.

Table 2  Two-tailed analyses

Alpha 
(%) ES

Dropout 
rate (%)

Final total 
sample size 
(four groups)

Power of 80% 5 0.78 15 124

Power of 85% 5 0.78 15 142

Power of 90% 5 0.78 15 165

Power of 80% 5 0.78 20 130

Power of 85% 5 0.78 20 148

Power of 90% 5 0.78 20 172

ES, effect size.

stimulation period, on the last day of the intervention 
and at the 3 months follow-up.

Secondary clinical outcomes
The following secondary outcomes will be assessed: 
average pain intensity as assessed by Modified Brief Pain 
Inventory; Revised Fibromyalgia Impact Questionnaire; 
quality of life assessed by Quality of Life Scale, Patient 
Reported Outcomes Measurement Information System; 
Pittsburgh Sleep Quality Index and Beck Depression 
Inventory.

Timeline
This trial has 25 visits divided into four components 
(consent and pretraining walking, conditioning exercise 
programme, intervention and follow-up). To increase 
adherence to protocol, we will adjust the calendar of 
sessions according to the subject’s availability (figure 2).

Study sample
Our target population is individuals with FM according 
to the ACR 2010 criteria. We plan to enrol 148 subjects 
divided into 4 groups (n=37/group).

Sample size calculation
We used the information from trials measuring the effects 
of tDCS and AE on CPM and TSPS according to different 
scenarios to do this sample size calculation (table 1).

►► In Scenario I, we considered the effects of tDCS on 
CPM in patients with chronic pain: this resulted in an 
effect size (ES) of 0.79.

►► In Scenario II, we evaluated the effect of tDCS on 
CPM in healthy volunteers: this resulted in a pooled 
ES of 1.02.

►► In Scenario III, we evaluated the effect of exercise 
on CPM in chronic pain and this resulted in an ES 
of 0.78.

Based on this analysis, we decided on a conservative 
approach and chose the lowest ES; thus, we used an ES 
of 0.78. In addition, it is important to underscore that 
we expect that the combination of tDCS+AE will have a 
higher effect than each intervention alone (tDCS, exer-
cise or placebo). Additionally, in this current proposal, 
the dosage of tDCS is higher than the studies we used to 
calculate the sample size (see tables 1 and 2).

We assumed a type I error of 5% (alpha) and made a 
sensitivity analysis with a type 2 error (beta) of 10%, 15% 
and 20% (therefore a power of 90%, 85% and 80%). We 
used a t-test for two independent means and considered 
dropout rates of 20% and 15% (table 2).

Although most studies used a power of 80% and a 
dropout rate of 10%–15%,22 29 65–70 we chose a dropout 
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rate of 20% and power of 85% as to be more conservative 
and also account for unexpected factors.

Data analysis
All data collected will be kept in a secured and pass-
word protected database, accessible only to IRB trained 
and approved study staff. All analyses will be performed 
as intention-to-treat in which all randomised subjects 
who receive at least one intervention session will be 
included. We will conduct sensitivity analyses and test 
different models of handling missing data: Last Obser-
vation Carried Forward and Multiple Imputation. The 
change in the primary efficacy endpoints, CPM and 
TSPS, from baseline to week 4, will be tested with a mixed 
linear regression model. This model will be adjusted for 
important demographic variables (eg, gender) and base-
line clinical parameters where appropriate. All tests will 
be two-sided (alpha level 0.05).

We will initially test our main hypothesis that active 
tDCS+AE increases CPM and decreases TSPS more 
than sham tDCS+nAE. If the effect is significant, we 
will then test differences between the active tDCS+AE 
group versus the two interventions alone. We will run 
a secondary mixed linear model to estimate the rate of 
change over time (using the secondary endpoints added 
in this model—Week 2 and follow-up) and also include 
the interaction term (treatment*time) to detect whether 
treatment effect changes differently over time. If the 
interaction is not significant, we will then test whether 
there is a main effect of time that is independent of treat-
ment level (interaction will be removed from the model). 
We will adjust this model for important covariates such 
as age, gender, pain levels (NPS) and other baseline clin-
ical outcomes where appropriate. For secondary clinical 
variables with significant effects, we will test whether they 
moderate the interventions’ effects on our mechanistic 
(TMS and EEG) outcomes, thereby gaining additional 
mechanistic insights. To complete our analysis, we will 
apply a path analysis71 to CPM and TSPS to determine if 
endogenous pain modulation changes (indexed by CPM 
and TSPS) associated with active tDCS+AE is related to 
direct effects versus indirect effects through secondary 
outcome improvements. We propose that a direct effect 
of active tDCS and AE on the endogenous pain inhibi-
tory system can be inferred if the treatment effect cannot 
be explained by changes in psychological or functional 
outcomes.

An independent monitoring committee will review 
data on recruitment, adherence and safety; meet-
ings will occur annually, after enrolment of 25% of 
the target sample or in case of reports of any serious 
adverse events. NIH will also perform annual site moni-
toring visits.

Patient and public involvement
Patients and public were not involved in the design of this 
study.

Ethics and dissemination
This protocol was approved by the IRB at the Part-
ners Human Research Committee (Protocol approval 
number: 2017P002524). All requirements regarding the 
welfare, rights and privacy of human subjects protection 
were fulfilled. The risks of this clinical trials were consid-
ered to be minimal and are addressed in the protocol and 
consent form. Informed consent will be obtained from 
all participants before any study procedures by the Prin-
cipal Investigator or coinvestigators. Trial registration 
number: NCT03371225. For a complete list of trial regis-
tration dataset and protocol version history, please refer 
to online supplementary file 1.

The study findings will be reported in conferences and 
in peer-reviewed journal publications.
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