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Genomic analysis of primary and 
recurrent gliomas reveals clinical 
outcome related molecular features
Longbo Zhang1,2,7, Zhiqiang Liu1,7, Jin Li3,7, Tianxiang Huang1, Ying Wang4, Lianpeng Chang3, 
Wenjie Zheng3, Yujie Ma1, Fenghua Chen1, Xuan Gong1, Qianying Yuan5, Shannon Teaw2, 
Xinqi Fang6, Tao Song1, Lei Huo1, Xi Li1, Xuefeng Xia3, Zhixiong Liu1 & Jun Wu1*

Tremendous efforts have been made to explore biomarkers for classification and grading on gliomas. 
The goal of this study was to identify more molecular features that are associated with clinical outcomes 
by comparing the genomic profiles of primary and recurrent gliomas and determine potential recurrence 
leading factors that are significantly enriched in relapse tumors. Hybrid capture based next generation 
sequencing (NGS) analysis was performed on 64 primary and 17 recurrent glioma biopsies. Copy number 
variation (CNV) was more frequent in recurrent tumors and CDKN2A/B loss was significantly enriched. 
In addition, overall mutations in cell cycle pathway are more common in relapse tumors. The patterns 
of gene sets, including IDH1/TERT and IDH1/TP53 exhibited significant difference between the groups. 
Survival analysis uncovered the worse disease-free survival (DFS) and overall survival (OS) associated 
with altered copy number and excessive activation of CELL CYCLE pathway. High Tumor Mutation 
Burden (TMB) was also a biomarker with great potential for poor prognosis. The assessment of genomic 
characteristics in primary versus recurrent gliomas aids the discovery of potential predictive biomarkers. 
The prognostic value of TMB in gliomas was raised for the first time.

Gliomas are the most frequent tumors in brain and central nervous system (CNS)1. According to the World 
Health Organization (WHO) classification, the main gliomas are subdivided by the glial cells that they originated 
from, including astrocytes, ependymal cells and oligodendrocytes2.

Since the start of The Cancer Genome Atlas (TCGA) project, there has been an increase in molecular anal-
ysis performed to explore the mutational landscape of different glioma subtypes3–5. The integration of genomic 
parameters leads to more accurate classification and grading diagnosis. Such molecular information has revealed 
evidence for prognosis prediction and treatment response6–9. For example, the existence of isocitrate dehydro-
genase 1 or 2 (IDH1/2) mutation and 1p/19q deletion suggests low-grade oligodendroglioma (WHO II), while 
additional aberrations, including 9p and 10q loss, CDKN2A/B or RB1 deficiency and p14ARF methylation, indi-
cates a progression to anaplastic oligodendroglioma (WHO III)10. Additionally, IDH1/2 mutation is associated 
with prolonged PFS and OS and higher response rate to temozolomide (TMZ)8, and 1p/19q codeletion is a bio-
marker to predict better response to combined radiotherapy and chemotherapy11. Because of this, the majority of 
the molecular studies thus far are focused on exploring the genomic landscape, patient stratification or response 
prediction in certain glioma subtype. Recently, several studies have focused on tumor evolution by comparing the 
genomic landscape of paired primary and recurrent samples12–15. However, the population size of these studies 
was small and the knowledge of driver events for glioma recurrence are still limited.

We noticed that the use of immune checkpoint inhibition has contributed to significant clinical benefits in 
the treatment of several cancers, including melanoma16,17, non-small cell lung cancer (NSCLC)18, but not in gli-
oma19. The first large randomized clinical trial of PD-1 in the setting of GBM, CheckMate 143, showed a failure 
of nivolumab to prolong overall survival of patients. TMB has been shown as a biomarker of response to immu-
notherapy in recent studies20, and beyond that, is associated with better prognosis in resected NSCLC patients21. 
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The distribution of TMB has been described in previous studies, and reported to be increased after treatment of 
TMZ22. However, the relationship between TMB and clinical outcomes in glioma is still unclear.

In this study, we retrospectively analyzed the genomic alteration of 81 resected glioma samples from distinct 
pathological subtypes. All specimens were sequenced by using a targeted panel of 1021 cancer related genes. By 
comparing molecular features of primary and recurrent gliomas, some characteristics were notably enriched in 
recurrent group but relatively rare in primary tumors, including the occurrence of CNV, co-occurance of IDH1 
and TERT, inactivated cell cycle signaling pathway and low TMB, which may provide clinical insights on tumor 
relapse and poor prognosis.

Results
Characteristics of patient cohort.  A total of 81 glioma specimens from 80 patients were collected in this 
study, including 64 primary and 17 recurrent surgical resected tumors, two of which were matched. The clinical 
characteristics of samples were summarized in Table 1. It is worth noting that despite different clinical features, 
the patient distribution was similar between primary and recurrent gliomas, thus allowing us to better evaluate 
and compare the genomic features between the groups.

Somatic variants.  The genomic analysis was performed using hybrid capture based targeted sequencing. 
Overall, about 870 of mean tumor target coverage was achieved, with 99.7% of bases over 50-fold coverage.

A total of 840 nonsynonymous somatic mutations from 301 genes were identified. As previously reported, 
the most mutated genes in glioma were TERT, IDH1, TP53, PTEN, NOTCH1 and EGFR (Fig. 1). In particular, 
all IDH1 mutations were found to substitute Arginine residue at codon 132, of which 93% were R132H (27/29). 
In contrast, R132G and R132C substitutions were rare and identified only once. Missense and indel variants 
in PTEN, NOTCH1 and EGFR were found to be scattered throughout the genes (Supplementary Fig S1B). 
Regarding copy number variants, amplification of EGFR, PDGFRA, CDK4, KIT and loss of CDKN2A/2B were 
the most common copy number aberrations. Additionally, structural variants of genes were also evaluated. 
FGFR3/TACCA3 and EGFR/EGFR rearrangements were detected in 3 and 2 tumors respectively. Interestingly, 
synchronous amplification was observed in 1/3 FGFR3 and 2/2 EGFR tumors, suggesting the strong association 
between CNV and SV variants in gliomas as previous described3.

Furthermore, we analyzed 303 GBM and 509 LGG samples from TCGA database and similar mutation spec-
trum was observed (Supplementary Fig S1A). This demonstrated a suitable panel for genomic studies on gliomas. 
When we compared the most mutated 15 genes in this study with TCGA and MSK database, we did not find tre-
mendous differences, but higher mutational frequency of NOTCH1, PDGFRA and MLL3, and lower mutational 
frequency of ATRX were shown in this study.

Concurrent and exclusive gene sets.  Genomic landscape studies have uncovered some co-occurring 
or mutually exclusive mutations in different cancer types. For instance, EGFR mutated exclusively with other 

Features
All (%) 
n = 81

Primary 
(%) n = 64

Recurrent 
(%) n = 17 p value

Sex

Male 49 (60.49) 40 (62.5) 9 (52.94)
0.66

Female 32 (39.51) 24 (37.5) 8 (47.06)

Age

<=40 25 (30.86) 22 (34.38) 3 (17.65)

0.28>40 54 (66.67) 41 (64.06) 13 (76.47)

Unknown 2 (2.47) 1 (1.56) 1 (5.88)

WHO

I 2 (2.47) 2 (3.13) 0 (0)

0.34

II 28 (34.57) 23 (35.94) 5 (29.41)

I 19 (23.46) 15 (23.44) 4 (23.53)

IV 31 (38.27) 24 (37.50) 7 (41.18)

Unknown 1 (1.23) 0 (0) 1 (5.88)

Glial cell

GBM 26 (32.10) 20 (31.25) 6 (35.29)

0.84

Astrocyte 42 (51.85) 34 (53.13) 8 (47.06)

Oligodendrocyte 10 (12.35) 8 (12.35) 2 (11.769)

Ependymal cell 1 (1.23) 1 (1.23) 0 (0)

Unknown 2 (2.47) 1 (1.23) 1 (5.88)

MGMT methylation

+ 30 (37.04) 23 (28.40) 7 (41.18)

0.69− 31 (38.27) 26 (32.10) 5 (29.41)

NA 20 (24.69) 15 (18.52) 5 (29.41)

Table 1.  Clinical features of patients with primary and recurrent glioma.
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known oncogenic drivers like KRAS, ROS1, MET and ALK aberrations in NSCLC23. Concurrent PDGFRA and 
EGFR alterations, exclusive of EGFR amplification and IDH1 mutation were described in GBM and low-grade 
gliomas respectively24. However, what patterns of gene pairs in recurrent gliomas and whether the patterns would 
influence the patient outcome are still unknown. Here, we investigated the mutual exclusivity and cooccurrence 
of mutations in genes mutated in at least 5 samples (Supplementary Fig. S2). The most notable exclusive gene sets 
were TERT and ATRX, TERT and PDGFRA and TERT and TP53. More concurrent aberration sets were identi-
fied including IDH1 and ATRX. Interestingly, when looking at the somatic interactions in primary and recurrent 
gliomas, there were some co-occurrence and mutual exclusivity of mutations only existing in the recurrent subset, 
including TERT and IDH1 (p = 0.050), IDH1 and TP53 (p = 0.002) (Fig. 2A,B). We further investigated whether 
the patterns of those gene sets were associated with prognosis in primary gliomas. As hypothesized, the exclu-
sivity of TERT and IDH1 contributed to poorer DFS and OS (Fig. 2C) but the differences were not statistically 
significant. The concurrence of IDH1 and TP53 did not exhibit different DFS or OS (Supplementary Fig. S2).

CNV.  Next, we examined the proportion of recurrent somatic aberrations within the groups to differentiate 
mutational patterns between primary and recurrent tumors (Fig. 3A). We found that CDKN2A/2B loss25, which 
has been described as an indicator of poor survival in astrocytoma, was significantly enriched in recurrent cohort. 
Moreover, the incidence of CDK4 (18% vs. 3%), somatic mutations of MLL3 (24% vs. 6%), PDGFRA (18% vs. 5%) 
and IDH1 (53% vs. 31%) were more frequent in recurrent patients, which are likely to be linked to poor survival. 
Additionally, recurrent gliomas, as well as high grade gliomas, featured more frequent copy number variants (65% 
recurrent versus 39% primary tumors, 60% high grade versus 20% in low grade tumors) (Fig. 3B, Supplementary 
Fig. S3), implicating the strong association of CNV with patient’s survival. Indeed, for primary tumors, patients 
carrying CNV exhibited a significantly inferior DFS (HR = 4.59, 95% CI = 1.63–12.93) and OS (HR = 4.89, 95% 
CI = 1.56–15.35) rate (Fig. 3C).

Signaling pathway.  From the analysis above, we observed that several cell cycle related genes, such as 
CDKN2A/2B (14% vs. 3%), CDK4 (10% vs. 0) and RB1(10% vs. 0), were dominant in recurrent gliomas as com-
pared to primary gliomas, so we further clustered the mutated genes according to their functional characteristics. 
Pathway constituents are defined in the Supplemental table S1 based on previous studies26. RTK, PI3K, CELL 
CYCLE, MAPK, JAK/STAT, NOTCH and DDR signaling pathway were investigated. Overall, at least one RTK 
alteration was found in nearly half (45.7%, 37/81) of gliomas and PI3K mutations were detected in 38.3% (31/81) 
of all samples. 26/81 (32.1%) have at least one SNV or CNV in the cell cycle regulation pathway (Fig. 4A). No sig-
nificant concurrent or exclusive pathway sets were observed. When comparing the proportion of altered pathways 
between primary and recurrent gliomas, we found that dysregulated cell cycle (53% vs. 27%) and JAK/STAT path-
way (18% vs. 3%) was significantly more abundant in the recurrent cohort (Fig. 4B). In contrast, MAPK pathway 
showed higher mutation frequency in primary gliomas, though not statistically significant. In order to figure out 
whether recurrent enriched pathway alterations contribute to higher risk of relapse or worse prognosis, survival 
analysis was performed. Consistent with the hypothesis, patients harboring cell cycle dysregulation showed sig-
nificantly shorter DFS compared to the unchanged group. A similar tendency was observed in the OSanalysis, 
though not statistically significant.

TMB.  At present, TMB is recognized not only as one of the primary biomarkers for immunotherapy, but 
is also associated with prognosis in resected NSCLC patients21. In order to explore its role in patients with 
resected glioma, nonsynonymous mutations were calculated. The median TMB among all samples was 4 muta-
tions per megabase (Mb). When tumors from the primary group were categorized at 25% quantiles of TMB, 6, 
patients with higher TMB showed more favorable outcomes (HR = 0.43, 95% CI = 0.12–1.48 for DFS, HR = 0.30, 

Figure 1.  Mutational landscape of primary and recurrent gliomas. Each column represents individual 
patients, and mutated genes are listed on the y-axis. Different colors refer to mutational functions and clinical 
information as indicated.
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95% CI = 0.06–1.36 for OS). A potential reason for insignificant difference may be insufficient follow-up time 
(Fig. 5A). Next, we questioned what causes could contribute to high TMB. Previously, TMZ has been reported to 
result in higher mutation burden22, and this was confirmed in our study since higher TMB was shown in recur-
rent patients, whom had been treated with TMZ, as compared to those with primary gliomas (Supplementary 
Fig S4). Moreover, mutations in mismatch repair (MMR) genes often showed higher TMB (median TMB = 14) 
than MMR negative tumors (Fig. 5B), which is consistent with previous studies. Overall, our findings suggest that 
TMB would serve as a potential marker for primary resected gliomas.

Discussion
To our knowledge, extensive efforts have been made to characterize distinct molecular subgroups in glioma, and 
this has enabled the stratification of patients with better or worse prognosis. In order to determine the driver 
events for glioma recurrence, we performed comprehensive analyses and comparison between primary and 
recurrent gliomas by using the NGS data from primary and recurrent glioma samples. Upon analysis of these 
results, we provided valuable evidence regarding the role of CNV, the pattern of IDH1 with TERT, cell cycle sign-
aling pathway and TMB level as potential prognostic biomarkers.

The mutational prevalence of some genes was different between this study and TCGA/MSK cohort. The rea-
son might be the different human lineages within, or the divergent clinical features of the three cohorts. Further 
analysis based on larger Chinese cohort would help to explore the genomic landscape comparison.

CDKN2A/B loss was found to be significantly enriched in recurrent gliomas. We were unable to perform sur-
vival analysis since only two primary gliomas harbored this alteration. However, previous studies have illustrated 
the relationship between CDKN2A/2B loss and poor outcomes, in terms of overall survival25. This indicates that 
identifying risk stratification factors from recurrent enriched features is reasonable and feasible.

From the oncoprint output, we noticed higher frequency of CNV events in recurrent gliomas than primary 
tumors. Further analysis displayed a strong association between CNV presence and shorter DFS and OS. It is clear 
that DNA copy number alterations, especially amplification on chromosome 7 (including EGFR/MET/CDK6) 
and chromosome 4 (including PDGFRA) and loss on chromosome 9 (including CDKN2A/B), are common in 
gliomas3,5. It has been reported that CNV pattern in IDH mutated gliomas is distinct from IDH wildtype group, 
which exhibited poorer prognosis4,5,27. Even though we did not observe significantly higher frequency of EGFR 
gain and PTEN loss in IDH unchanged samples as previously described28, IDH intact tumors demonstrated nota-
bly higher overall copy number changes compared to IDH1 mutated tumors (p = 0.012, Fisher’s exact test). This 

Figure 2.  Effects of somatic interactions on DFS and OS in primary subset. (A,B) Significant exclusive or co-
occurance gene sets with Fisher’s Exact test are indicated in primary (A) and recurrent (B) tumors. (C) Survival 
analysis of TERT/IDH1 gene pattern in primary glioma patients. P values were calculated using the Log-rank 
Test.
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Figure 3.  Comparison of SNVs or CNVs between primary and recurrent gliomas. (A) The prevalence of 
genes mutated in at least 5 samples across all tumors were calculated in different subsets. Red and yellow dots 
represent p < 0.05 and p < 0.1 respectively (Fisher’s Exact). (B) The incidence of CNV in primary and recurrent 
tumors. (C,D) Impact of CNV status on DFS (C) and OS (D). P values were calculated using the Log-rank Test.

Figure 4.  Analysis of key gene alterations grouped by biological function. (A) The landscape of signaling 
pathway alterations in glioma tumors. (B) Prevalence comparison of altered pathways in primary and recurrent 
subset with Fisher’s Exact test. (C) Survival analysis of primary patients with Cell cycle alterations versus 
patients without. P values were calculated using the Log-rank Test.
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demonstrated the effect of CNV, the degree of which reflects the chromosomal stability, on DFS and OS might 
be associated with the IDH status. Moreover, it is worth noting that different panels with distinct covered regions 
would impact this result.

To integrate the genetic alterations, including SNV, CNV and SV, altered genes were mapped onto major bio-
logical pathways. RTK/RAS/PI3K (88%), P53 (87%) and RB (78%) signaling were three core pathways reported 
by TCGA study in GBM. Recently, Ellis et. al reported the altered pathway frequency in primary and recurrent 
GBM29. Their data showed a discordant comparison, RB cell cycle pathway is more prevalent in primary GBM 
than in recurrent GBM (19% vs. 0%). The difference may be due to insufficient recurrent GBM (n = 8) in their 
study, or different cluster criterion for gene grouping. Likewise, it has been suggested that alterations in this path-
way are more frequent in higher-grade (Grades III and IV) gliomas, but the incidence in different grade tumors 
are similar. Therefore, the shorter DFS and OS by cell cycle pathway activation in this study is due to excessive cell 
proliferation, rather than higher grading.

Another kind of potential predictive biomarker we recognized is somatic interaction of gene pairs. Even 
though the association of gene sets pattern (IDH1/TERT) and prognosis is not statistically significant in this 
study, a similar hypothesis has been described in other studies. Previous studies have mentioned that the patterns 
of IDH1/2 and TERT were involved in glioma classification. Patients with both mutations in TERT promoter 
IDH1/2 were found to have had the best OS6,7.

Although immune checkpoint inhibitor tremendously improved overall survival for patients with diverse 
solid tumor types, there is no promising data from current clinical trials for the treatment of gliomas thus far30. 
Many studies have demonstrated the infiltration of CD8 positive cells in GBM is normally weaker than that in 
tumors like melanoma and lung cancer31. Apart from the impact of immune microenviroment, intrinsically weak 
PD-L1 expression level in GBM may be another reason32. As a genomic biomarker of response to immunother-
apy, TMB was also investigated in this study. It is known that the use of TMZ would induce high level of TMB, 
which could explain the higher TMB we observed in recurrent gliomas. Additionally, patients with MMR gene 
mutations correspond to higher TMB in gliomas. However, the predictive effect on DFS or OS in gliomas have 
yet to be studied. In this study, we found a clear trend toward better prognosis with increasing TMB in patients. 
Furthermore, a recent study, irrelevant to immunotherapy, has implicated that high TMB leads to better prognosis 
in NSCLC20. The insignificance may be due to insufficient follow-up time.

There are several limitations in this study. It is important to note that the study cohort includes patients with 
varied clinical features, including varying pathology and grading. This gives rise to small sample sizes in each 
subgroup. Furthermore, paired data in this study is limited, and since matched primary and recurrent gliomas are 
often imperfect, more robust conclusions may only be drawn from paired data. In addition, short follow-up time 
weakens survival analysis in some aspects and all sequences and data analysis conducted in this study were panel 
based, thus variation may exist by using different panels.

Taken together, identifying genomic characteristics in recurrent gliomas at individual gene, gene sets, varia-
tion type and pathway dimensions aids in discovering potential prognostic biomarkers for glioma patients. In this 
study, we raised the interesting finding that TMB is a potential stratification marker for clinical outcome.

Material and Methods
Subjects and measurements.  81 surgical gliomas from the Department of Neurosurgery, Xiangya 
Hospital, Central South University were collected in this study. The histological subtypes were identified on the 
basis of the morphologic characteristics of the tumor and the results of IHC according to the WHO 2016 classifi-
cation criteria of gliomas. Clinical information was extracted from medical records, including age, sex and diag-
nostic related information. All patients signed an informed consent. This study was approved by Medical Ethics 
Committee of Xiangya Hospital, Central South University (No. 201612800) and all methods were performed in 
accordance with ethical regulations.

Comprehensive genomic profiling.  Genomic DNA (gDNA) from gliomas was isolated by using DNeasy 
Tissue Kit (Qiagen, Hilden, Germany), according to the manufacturer’s protocol. A 1021 gene panel with poten-
tial clinical relevance was used to capture target regions. DNA sequencing was carried out with paired-end reads 
on the Illumina HiSeq sequencing system.

Figure 5.  Impact of tumor mutation burden on prognosis. (A) Effect of TMB on DFS and OS. P values were 
calculated using the Log-rank Test. (B) The comparison of TMB between groups with and without mutated 
MMR genes.
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Somatic calling.  MuTect (version 1.4) and NChot33 were used for single nucleotide variants (SNV) calling. 
Small insertions and deletions (indels) were called by GATK. For somatic copy-number alteration, CONTRA 
(v2.0.8) was performed. An in-house algorithm was used to identify split-read and discordant read-pair to iden-
tify SVs. All candidate variants were manually verified with the integrative genomics viewer browser.

Statistical analysis.  Fisher’s exact test or Chi-square test was used for comparison of categorical varia-
bles. DFS and OS was analyzed by the Kaplan-Meier plots and the difference between groups was evaluated by 
log-rank test. All statistical analyses were performed with SPSS (v. 21.0) or GraphPad Prism (v. 6.0) software. 
Statistical significance was defined as a two-sided P-value < 0.05.

Ethical approval and informed consent.  Informed consent was obtained from all participants or their 
legal guardians. This study was approved by Medical Ethics Committee of Xiangya Hospital, Central South 
University (No. 201612800) and all methods were performed in accordance with ethical regulations.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon 
reasonable request.
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