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Spatial Multiplexing Technique 
for Improving Dynamic Range of 
Speckle Correlation based Optical 
Lever
Vijayakumar Anand1,2*, Shanti Bhattacharya1 & Joseph Rosen3

Speckle correlation based optical levers (SC-OptLev) possess attractive characteristics suitable 
for sensing small changes in the angular orientations of surfaces. In this study, we propose and 
demonstrate a spatial multiplexing technique for improving the dynamic range of SC-OptLev. When 
the surface is in its initial position, a synthetic speckle intensity pattern, larger than the area of the 
image sensor is created by transversely shifting the image sensor and recording different sections of 
a larger speckle pattern. Then, the acquired images are stitched together by a computer program into 
one relatively large synthetic speckle pattern. Following the calibration stage, the synthetic speckle 
intensity pattern is used to sense changes in the surface’s angular orientation. The surface is monitored 
in real-time by recording part of the speckle pattern which lies within the sensor area. Next, the 
recorded speckle pattern is cross-correlated with the synthetic speckle pattern in the computer. The 
resulting shift of the correlation peak indicates the angular orientations of the reflective surface under 
test. This spatial-multiplexing technique enables sensing changes in the angular orientation of the 
surface beyond the limit imposed by the physical size of the image sensor.

In 1826, Poggendorf invented the Optical Lever (OptLev) for improving the sensitivity of theodolites to an accu-
racy of 5 seconds of an arc and later, it was used by Gauss, Weber, Ising, Mol, and Burger for improving the 
accuracy of the measurements in their respective experiments1. Today, OptLev is widely used for sensing angu-
lar variations of a mirror under observation with a high accuracy2–9. In some cases, OptLev is also used for the 
amplification of small displacements10. The enormous mirrors in the Laser Interferometer Gravitational-Wave 
Observatory (LIGO) are susceptible to angular tilts due to radiation pressure. OptLevs are also used in LIGO11 
and KAGRA12 to detect any small changes in the angular orientation of the mirrors in order to correct them in 
real-time. In such sensitive tilt measurements12, homodyne detection is implemented where the signal is extracted 
from a carrier wave by comparison with a reference. In a few studies, a quadrant photodiode was used as a sensor 
and from the differential current measurement, the shift was measured with a high accuracy13,14. One of the main 
drawbacks in using a quadrant photodiode (QPD) is that the dynamic range of sensing is limited by the small 
physical area of the sensor, which is usually only a few tens of micrometers. If the QPD is replaced by an image 
sensor such as a CMOS/CCD chip, then the dynamic range can be extended further. The optical configuration of 
a simplified OptLev is shown in Fig. 1.

Light from a frequency-stabilized coherent source is incident on a plane mirror which is mounted with its 
surface at an angle of α with respect to the optical axis. As a result, the reflected light deviates at an angle of 2α 
with respect to the incident light and is collected by an image sensor. The distance between the mirror and the 
image sensor is L. Since the mirror is attached to a sample whose angular orientation is under observation, any 
change in the angular orientation of the object would change the mirror tilt accordingly. When the sample is 
rotated by an angle β, the mirror is rotated by the same angle and the optical beam is deviated by an angle θ = 2β. 
If the initial and final locations of the beam spot on the image sensor are known, then the spot displacement d is 
related to the angular variation of the sample β by the relation d = L·tan(2β). Assuming that the angle β is small, 
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the above equation reduces to d = 2 Lβ, providing a linear relationship between d and β. Therefore, the angular 
sensitivity of the measurement can be increased easily by increasing L. As a result, the conventional OptLev with 
a mirror and a sensor can be easily adapted to measure small variations with a high accuracy. For an image sen-
sor with a pixel size of Δ and consisting of m × m pixels, the physical size of the image sensor is Δ·m along the 
vertical and horizontal directions. The dynamic range of measurement of β is R = ± 0.5tan−1(Δ·m/2 L), which is 
the maximum displacement detectable by the image sensor of breadth Δ·m. The minimum angle which can be 
sensed by the OptLev when the detected signal is shifted by a full pixel is βmin = (Δ/2L). Since the sensitivity is 
defined as S = 1/βmin, the dynamic range can be expressed as a function of the sensitivity as R ≈ ± m/(2 S). From 
this last equation, it is clear that when R increases, S decreases and vice versa, indicating the trade-off between the 
sensitivity and dynamic range.

In 1976, a tilt measurement technique using speckle correlation was introduced by Gregory15. This idea began 
to gain attention in the next few years16–21. A real-time surface inspection technique based on speckle correlation 
was proposed and demonstrated with an optical matched filter in 1992 by Hinsch et al[.22. Several factors made 
speckle correlation more attractive compared to the interference techniques that had been used for sensing tilt 
and deformation23–26 till then. For example, speckle correlation required fewer optical elements, used an inter-
ferenceless optical configuration and gave rise to the possibility of real-time monitoring22. Alternatively, struc-
tured light techniques with spatial calibration were developed to measure tilts27. Currently, the speckle correlation 
technique is used as a sensing tool for various applications such as measurement of random processes in rough 
surfaces28,29, quantification of the corrosion process30, surface slope, deformation and motion measurements31–35, 
and sub-micrometer displacement measurement36.

Considering the disadvantages of interferometry pertaining to the need for two beam interference and vibra-
tion isolation, speckle correlation based OptLev (SC-OptLev) is chosen in this study. The SC-OptLev is compared 
against the conventional OptLev (C-OptLev)13,14 with the help of Fig. 2. Light from a coherent source illuminates a 
diffuser plate and the light scattered by the diffuser plate is incident on a plane mirror. The mirror is oriented with 
respect to the optical axis and deflects the scattered light such that the speckle pattern is recorded by the image 
sensor. When the mirror is tilted, the incident scattered light acquires a linear phase according to the change in 
the angular orientation of the mirror, propagates in a different direction and reaches the image sensor at a differ-
ent lateral location. The scattered light from the diffuser is incident on the mirror and the complex amplitude after 
the mirror can be expressed as A(x,y)·exp[jΦ(x,y)], where A(x,y)∈ [0,1] and Φ(x,y) ∈ [0,2π]. The light reflected 
from the mirror reaches the image sensor after propagating a distance of L with a complex amplitude given by 
A(x,y)·exp[jΦ(x,y)]ΨQ(1/L), where Q is the quadratic phase function given as Q(a) = exp[iπaλ−1(x2 + y2)] and 
‘⊗’ is a 2D convolution operator. The complex amplitude of light when the mirror undergoes an angular vari-
ation of β along the x direction is given as A(x,y)·exp[j{Φ(x,y) + 2πλ−1sin(2β)x}] and the complex amplitude 
reaching the image sensor in this case is A(x,y)·exp[j{Φ(x,y) + 2π λ−1sin(2β)x}]ΨQ(1/L). The intensity patterns 
recorded by the sensor before and after the angular variation of the mirror are I0 = |A(x,y)·exp[jΦ(x,y)]ΨQ(1/L)|2 
and Iβ = |A(x,y)·exp[j{Φ(x,y) + 2π λ−1sin(2β)x}]ΨQ(1/L)|2 respectively. The shift of the pattern on the image sen-
sor is calculated by comparing the location of the correlation peaks obtained from C1 = I0⊗I0 and C2 = Iβ⊗I0, 
where ‘⊗’ is a 2D correlation operator. If the two intensity patterns I0 and Iβ are zero-padded to double their size, 
the dynamic range of the C-OptLev is doubled37.

Figure 1.  Optical configuration of a conventional OptLev. Light from a coherent source illuminates a mirror 
attached to observe the sample. The light reflected from the mirror is captured by the image sensor. Any 
variation in the angular orientation of the sample is measured from the shift of the optical beam on the image 
sensor. α is the initial angle of incidence of the beam on the mirror, whose tilt (β) is to be measured. θ′ is the 
new angle of incidence after the mirror tilts. The displacement of the beam on the sensor due to the tilt is d. 
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SC-OptLev has various advantages compared to C-OptLev as the correlation process can extract not only tilt 
but also most of the surface deformations28–33. Even when the comparison is focused only on the measurement 
of angular variation of an sample, SC-OptLev exhibits a dynamic range twice as much as that of a C-OptLev37. 
Moreover, since the light from a coherent source such as a He-Ne laser has a beam diameter of few millimeters, 
it is often necessary to use a lens to focus the light to a smaller diameter on the sensor and therefore a C-OptLev 
is susceptible to lens aberrations. On the other hand, SC-OptLev requires simple components such as a diffuser 
plate, or an inexpensive thin scatterer. Under the assumption of space invariance, the cross-correlation used for 
the tilt measurement cancels out any aberrations induced by the optical components, since the same aberrations 
are expected in both recorded speckle intensity patterns. Furthermore, the width of the correlation peak can 
be engineered by signal processing techniques, and by that the measurement performances can be improved38. 
Therefore, it is advantageous to use an SC-OptLev compared to a C-OptLev for various applications. The accuracy 
of the two methods depends upon how narrow a focal spot or a correlation peak can be obtained for C-OptLev 
and SC-OptLev, respectively, and improving the accuracy is out of the scope of the current study.

However, SC-OptLev like C-OptLev suffers from the trade-off between the dynamic range and sensitivity, 
although SC-OptLev has different limitations compared to C-OptLev in these two parameters. Moreover, in some 
optical configurations the width of the reconstructed correlation peak is dependent upon the scattering degree of 
the diffuser plate and the various distances of the optical setup39–41. There are other problems associated with an 
SC-OptLev such as the presence of background noise due to the correlation of speckle intensity patterns42,43. In 
this manuscript, we propose a spatial multiplexing technique to improve the dynamic range beyond the range of 
ref.37, without significantly affecting the sensitivity of the SC-OptLev. The presence of background noise due to 
the cross-correlation of speckle intensity patterns is also minimized herein. Note that it is not possible to monitor 
the angular variation in real-time since in SC-OptLev the observed signal is only a movement of a speckle pattern, 
unlike the movement of a focused spot in the case of C-OptLev. Various solutions are provided in ref.37 to address 
the real-time problem and to develop a SC-OptLev that is as simple as C-OptLev, but with a double the dynamic 
range.

Methodology
The optical configuration of the spatial multiplexing SC-OptLev (SM-SC-OptLev) is shown in Fig. 3. As men-
tioned above, light from a coherent source is incident on a diffuser plate, scattered and deflected by a surface 
whose angular tilt is to be monitored. The light deflected from the surface is recorded by an image sensor located 
at a distance of L from the tested surface. The features of the speckle pattern on the sensor are dependent upon 
the scattering degree of the diffuser plate, its size and the distance L37. If D is the size of the image sensor along 
the x and y directions, the maximum angular variation of the surface that can be detected using C-OptLev is 
β1-max = ± 0.5tan−1(D/2 L). However, under the assumption that the scattered light of the diffuser plate covers 
at least the entire image sensor, or more, in the initial state of no surface tilt, the maximum detectable angular 
variation in the case of SC-OptLev is β2-max = ±0.5tan−1(D/L)37. Even when the speckle pattern is much larger 

Figure 2.  Optical configuration of an SC-OptLev. Light from a coherent source is scattered by a diffuser plate 
and the scattered light illuminates a mirror attached to the sample under observation. The light reflected from 
the mirror is captured by the image sensor. Any variation in the angular orientation of the sample is measured 
from the cross-correlation between the initial and final speckle intensity patterns.
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than the sensor area, the maximum detection angle is still limited by the sensor area. In this section, a spatial 
multiplexing technique SM-SC-OptLev is proposed to overcome this limit.

The proposed technique involves generation of a synthetic speckle intensity pattern, created by shifting the 
image sensor to different lateral locations and recording the speckle pattern at each location. Following the 
recording, the synthetic pattern is synthesized by a computational stitching procedure. If (x0, y0) is the center of 
the image sensor and I0(x0, y0) is the speckle intensity pattern when the mirror is in its initial position, the part 
of the speckle intensity pattern recorded by the image sensor is given as I0(x0,y0)Rect[(x0,y0)/D]. The synthetic 
speckle intensity pattern Is0, with a size of p times (odd) that of the image sensor, is expressed as
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When the mirror is tilted by an angle of β, the speckle intensity pattern shifts across the image sensor by a 
distance d = L·tan(2β) and the shifted intensity pattern Iβ is recorded by the image sensor. Iβ is cross-correlated 
with the larger synthetic intensity pattern stitched computationally according to Eq. (1) from the p recorded 
speckle patterns. The maximum tilt angle of the mirror along the x and y directions is± 0.5 tan−1(pD/2L), where 
p = 1,3,5… The synthetic speckle intensity pattern stored in the computer is used as the reference pattern for the 
on-going tilt measurements. The speckle intensity pattern Iβ(x0, y0,t)Rect[(x0, y0)/D] recorded in real-time by 
the image sensor is zero-padded to match the size of the synthetic speckle pattern and is denoted by Iβ’(x0,y0,t). 
The location of the correlation spot is calculated by a 2D cross-correlation between Is0 and Iβ’. However, previous 
studies have shown that a correlation with the matched filter is not the ideal filter to obtain sharpest correlation 
peak due to the generated background noise. Alternatively, a phase-only filter is often implemented to obtain the 
sharp correlation peak IR with less background noise as given in Eq. (2)37,43–45,

= −β β
−

′ ′
  I exp i arg I I exp i arg I{ [ ( )] [ ( )]} , (2)R s

1
0

Figure 3.  Optical configuration of SM-SC-OptLev.
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where =I I( )s s0 0  and =β β′ ′
I I( ) , where   and −1 are the Fourier transform and inverse Fourier transform 

operators, respectively. Recently, a non-linear adaptive correlation was implemented to reconstruct images with 
a background noise lesser than that of the phase-only filter46,47. The reconstructed image IR with a non-linear 
cross-correlation is given by

= −β β
−

′ ′
   { }I I exp i arg I I exp i arg I[ ( )] [ ( )] ,

(3)R s
o

s
b1

0 0

where the values of o and b are tuned to minimize the background noise. In [46,47], entropy was used to find the 
values of (o,b) that would reconstruct an object with the minimum background noise.

Experiments
The spatial multiplexing technique is experimentally demonstrated using a set-up similar to Fig. 3. A He-Ne laser 
with a wavelength λ = 632.8 nm is used to illuminate a diffuser (HO-DF-25-X, Holmarc, X = 22 µm), where X is 
the grade of the diffuser. The light scattered by the diffuser is incident on a plane mirror which is oriented at an 
angle of 45° with respect to the optical axis and deflects the incident light by an angle of 90° with respect to the 
optical axis. The light deflected from the mirror was captured by an image sensor (Thorlabs Camera DCC1240M, 
1024 × 768 pixels, pixel size: 4.65 µm) located at a distance of 7 cm from the mirror. The distance between the 
diffuser and mirror was 3 cm.

The size of the image sensor is 4.76 × 3.57 mm. For demonstration purposes and to avoid mechanical 
movements, only the central part of the camera, roughly 1/25th of the total area i.e., 0.95 × 0.71 mm, is used for 
recording the speckle intensity pattern. By doing so, the dynamic range is reduced to 1/5th of the initial value 
of the full image sensor. In the above optical configuration, for a C-OptLev, the dynamic range is decreased 
from βx-max =  ± 0.97° and βy-max =  ± 0.73° to βx-max =  ± 0.19° and βy-max =  ± 0.15°. On the other hand, for an 
SC-OptLev, the dynamic range is decreased from βx-max =  ± 1.95° and βy-max =  ± 1.46° to βx-max =  ± 0.38° and 
βy-max =  ± 0.3°. In this experiment, SM-SC-OptLev is implemented to sense variation in angular orientation of 
about five times higher than the limit imposed by the physical size of the image sensor. In the first step, a syn-
thetic speckle intensity pattern is recorded when the mirror is at an angle of 45° with respect to the optical axis by 
shifting the sensing area of 0.95 × 0.71 mm to different lateral locations on the camera plane, such that the entire 
4.76 × 3.57 mm area of the speckle intensity pattern is recorded. One of the features of using SC-OptLev is that 
it is not possible to know when the angular orientation reaches the limit since on the sensor, one can see only 
a motion of a speckle intensity pattern. On the other hand, in C-OptLev, the angular orientation of the mirror 
reaches its limit when the spot disappears from the sensor. To overcome this problem associated with SC-OptLev, 
an open source based image acquisition procedure is proposed to convert the motion of the speckle pattern into 
the motion of a correlation peak in real-time37. Real-time monitoring of the correlation peak is also important in 
SM-SC-OptLev, in order to shift the location of the camera accurately while recording the synthetic speckle inten-
sity pattern. A peak detection mechanism and real-time display of the angular orientation have been reported37.

The mirror was tilted manually to different orientations and the speckle intensity pattern with the size of 
0.95 × 0.71 mm was recorded and zero-padded in the computer to the size of 4.76 × 3.57 mm. As verified from 
previous studies37, a non-linear correlation is a more effective method compared to correlation with existing 
matched and phase-only filters. First, a non-linear correlation was executed between the synthetic speckle inten-
sity pattern and the pattern recorded when the angular orientation of the mirror was varied along the x and y 
directions by βx = 0.25° and βy = 0.27°. 121 different cross-correlations were computed for various values of o and 
b between −1 and 1 in steps of 0.2. The correlation results for the different values of o and b are shown in Fig. 4. 
The optimal values with minimum entropy were found to be o = 0.6 and b = 0.2, where the entropy is defined as 

φ φ= −∑∑S o b m n log m n( , ) ( , ) [ ( , )], where φ = ∑ ∑m n C m n C m n( , ) ( , ) / ( , )M N , C(m,n) is the correlation 
distribution, and (m,n) are the indexes of the correlation matrix46. The variation in the angular orientation of the 
mirror was determined from the distances of the correlation peak occurred between the autocorrelation peak 
(x0 = 512, y0 = 384) of C1 and the cross-correlation peak (xβ = 645, yβ = 244) of C2.

The speckle intensity patterns recorded for different angular orientations of the mirror and the 
cross-correlation results using non-linear correlation are shown in Fig. 5. It is seen from cases 5–7 that with the 
SM-SC-OptLev, it is possible to detect an angular variation beyond the limit imposed by the physical dimension 
of the image sensor. The pixel location of the autocorrelation peak of the synthetic speckle intensity pattern is 
(512,384). The pixel locations of the cross-correlation peaks for the different angular variations of Fig. 5 are given 
in Table 1. In the cases 1–4, the angular orientation of the mirror is within the limit of the image sensor while 
in the cases 5–7, the angular orientation of the mirror is greater than at least twice the size of the image sensor. 
In cases 2 and 3, the angular orientation of the mirror was varied only along the x and y directions respectively, 
while in case 4, the angular orientation of the mirror was varied along both x and y directions. In cases 5 and 6, the 
angular orientation of the mirror was again varied only along x and only y directions, respectively, but this time 
beyond the physical limits of the image sensor. Finally, in case 7, the angular orientation of the mirror was var-
ied along both x and y directions beyond the physical limits of the image sensor. The correlation results of cases 
5–7 for SM-SC-OptLev are indicative of the possibilities of sensing the angular orientation beyond the limits of 
C-OptLev as well as SC-OptLev.

From the experimental results of Fig. 5, it is seen that when the variation in the angular orientation is larger, 
there is an increase in the width of the correlation peak and decrease in the SNR. The experiment was repeated 
for different angular orientations of the mirror and the corresponding correlation peaks are plotted in Fig. 6. The 
SNR is defined as 1/(Average background noise) and is plotted for the different angular orientation of the mir-
ror. The SNR shown in Fig. 7 is normalized using the highest SNR obtained for the zero variation of the angular 
orientation (autocorrelation). From Figs 6 and 7, it is indeed evident that with the increment of the tilt angle, the 
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width of the correlation peak increases and the SNR decreases. However, the expected reduction in the sensitivity 
due to wider correlation peaks is by far lower than the sensitivity reduction obtained from the inverse relation of 
S ∝ R−1 mentioned in the introduction.

Figure 4.  Correlation results of a non-linear correlator for different values of o and b. The results of inverse filter, 
matched filter, phase-only filter, and optimal filter are shown in yellow, blue, red and green boxes, respectively.

Figure 5.  Images of speckle intensity patterns (before zero-padding) and cross-correlation functions obtained 
by non-linear correlation for different cases of the angular orientation of the mirror. The yellow boxes indicate 
the boundary of the image sensor.
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Conclusion
There are two important parameters namely dynamic range and sensitivity in the monitoring the angular orien-
tation of the sample under observation. We have proposed and demonstrated a spatial multiplexing technique for 
improving one of the performances of SC-OptLev – the dynamic range. In the spatial multiplexing technique, a 
synthetic speckle intensity pattern much larger than the size of the image sensor is generated and used as a refer-
ence pattern. It must be emphasized that this synthetic speckle intensity pattern is recorded only once and can be 
used to sense the variations of the angular orientation of the sample any number of times over any period of time. 
In this study, an optical configuration is constructed to exhibit a dynamic range enhancement of 4.6 times that of 

Case
Pixel 
Location (x)

Pixel 
Location (y)

Pixel 
Shift (x)

Pixel 
Shift (y)

Shift – x 
(µm)

Shift – y 
(µm) βx (Deg) βy (Deg)

1 512 384 0 0 0 0 0 0

2 608 384 96 0 446.4 0 0.183 0

3 512 289 0 95 0 441.8 0 0.18

4 580 321 68 63 316.2 293 0.13 0.12

5 894 385 382 1 1776.3 4.65 0.727 2 × 10−3

6 509 99 3 285 14 1325.3 6 × 10−3 0.542

7 721 187 209 197 972 916 0.4 0.375

8 981 381 469 3 2180.8 14 0.892 5.7 × 10−3

Table 1.  Results of the 2D angular orientations. Initial pixel location of autocorrelation (512, 384), L = 7 cm and 
camera pixel size = 4.65 µm.

Figure 6.  Plots of the correlation peaks for a variation of the angular orientation along the x direction. The 
peaks are shifted by 0 µm (Blue), 446.4 µm (Red), 897.5 µm (Green) and 1348.5 µm (Black).

Figure 7.  Plot of the SNR with respect to the shift in the location of the correlation peak for 0 µm, 446.4 µm, 
897.5 µm and 1348.5 µm.
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a C-OptLev. In theory, there is no limit on the number of times the dynamic range can be increased. However, as 
much as the dynamic range is increased, it is expected that the sensitivity and the SNR will be reduced. With an 
increase in the tilt angle, at some point, the correlation peak’s intensity becomes lower than the background noise. 
This transition point was taken as the dynamic range of the filters. Different filtering techniques have been studied 
in the past and it was concluded that non-linear correlation is the best candidate for reducing the noise37. In the 
SM-SC-OptLev, a non-linear filter is used to achieve maximum suppression of the background noise.

The advantage of SM-SC-OptLev is that the different areas of a larger speckle pattern are recorded only once 
followed by a computational stitching procedure. For real-time monitoring of the variations in the angular orien-
tation, only one camera shot is required. We believe that the above advantage arises from the fact that a synthetic 
intensity pattern is used. The only disadvantage of SM-SC-OptLev is the one-time longer recording and process-
ing time when the synthetic speckle intensity pattern is generated. Assistive optical and computational technolo-
gies using low-cost web camera and open source software have been developed for implementing an SC-OptLev 
for real-time monitoring of the variations in the angular orientation of the mirror.

In conclusion, the principle of spatial multiplexing has been implemented to improve the dynamic range 
without significantly reducing the sensitivity of an SC-OptLev. In other words, the existing trade-off between the 
dynamic range and sensitivity is relaxed such that the dynamic range has much larger ceiling and much smaller 
floor with a minor effect on the sensitivity. It must be stressed that the above technologies are not limited to sense 
only angles but can be used as powerful tools to sense deformations of various surfaces.
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