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Abstract
A two-stage cultivation method involving the initial growth in optimized conditions for biomass production followed by those 
for lipid production in oleaginous brackish diatom Navicula phyllepta MACC8 resulted in a proportional increase of lipid 
concentration along with biomass production. The diatom was further subjected to stress conditions by altering the nutrient 
components such as nitrate, phosphate, silicate, and temperature. Silicon deprivation resulted in the highest lipid percentage 
of 28.78% of weight at the end of the 18th day of the second stage. A significant increase in lipid content was observed on 
the complete removal of the nutrients silicon and urea one at a time, while the biomass showed a considerable reduction. 
The application of multiple nutrient stress conditions had a profound influence on the increased rate of lipid production. 
A combination of phosphate deprivation, silicate limitation and temperature reduction resulted in a significant increase in 
lipid percentage of 32.13% at the cost of reduced biomass (1.1 g  L−1), whereas phosphate deprivation, urea limitation, and 
temperature reduction resulted in lipid percentage of 27.58% with a biomass of 1.44 g  L−1 at the end of the second stage. 
Further, the results were supported by Nile red staining, FTIR, fatty acid profile and oxidative stress marker analyses. The 
changes in biochemical composition and oxidative stress parameters within the various stress conditions demonstrated the 
profound influence of the selected stress factors on the biodiesel productivity of the diatom, besides its stress tolerance. A 
two-phase culturing system, with multifactor stress application, especially nitrogen limitation along with phosphate starva-
tion and temperature stress, would be the suitable method for gaining maximum biomass productivity and lipid content in 
diatom Navicula phyllepta MACC8 towards biofuel production.

Keywords Navicula phyllepta · Biofuel · Two-stage cultivation · Nutrient stress · Biomass production · Lipid percentage

Introduction

Microalgal storage lipids have gathered increasing atten-
tion as storage organelles for biofuel molecules, though the 
understanding of the real dynamics behind their biosynthesis 
is lacking (Merchant et al. 2012). It is a very well-investi-
gated fact that the formation of lipid droplets in microalgae 
is triggered by cellular stresses such as nutrient depriva-
tion, high light exposure and temperature fluctuation (Pal 
et al. 2011; Taleb et al. 2018). Among those stresses, nutri-
ent deprivation is easily accomplished through a change in 
growth medium composition and is widely used to induce 

lipid accumulation inside the microalgal cells experimen-
tally and can be reversed easily by replenishing the nutri-
ents in the growth medium (Chen et al. 2017). However, 
the main challenge for this strategy is to improve lipid 
yield while maintaining biomass productivity (Tan and Lee 
2016). To overcome this challenge, the two-stage cultiva-
tion was adopted to improve the lipid yield without affect-
ing the biomass in which the microalgae are initially grown 
under nutrient-sufficient conditions to obtain maximum cell 
density and thereafter the cultivation conditions are altered 
(mostly limited) to trigger the accumulation of lipid droplets 
inside the cell (Farooq et al. 2013; Doan and Obbard 2014; 
Ratnapuram et al. 2018).

Despite several economic benefits, the main limitation 
of the two-stage cultivation is that most of the results are 
strain specific, and hence its efficiency may vary. In contrast 
to a large number of studies on nutrient limitation in phyto-
plankton growth (Liang et al. 2013; Benvenuti et al. 2015), 
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there are fewer reports on the effects of nutrient limitation 
on marine diatoms (Gobler et al. 2006; Lin et al. 2018). 
The present study aimed to identify the main stress factors 
enhancing the lipid production in the biofuel potent brackish 
diatom Navicula phyllepta in a two-stage cultivation system 
and also to understand the subsequent biochemical changes 
during various stress conditions.

Materials and methods

Diatom culture

Navicula phyllepta MACC8 (KC178569), a pennate dia-
tom, was isolated from brackish waters of Cochin estu-
ary (9°55′35″N, 96°17′53″E), India and maintained at 
the Culture Collection of National Centre for Aquatic 

Animal Health, Kochi, Kerala. The strain was cultured 
in a modified seawater medium (Sabu et al. 2017a) under 
27 μmol m−2  s−1 at 26–28 °C with 16:8 light and dark 
photoperiods. Navicula phyllepta MACC8 had proved to 
be a potent candidate for biodiesel production upon multi-
criterion screening and the culture conditions were statisti-
cally optimized for high productivity through our earlier 
studies (Sabu et al. 2017a, b)

Two‑stage cultivation approach—design 
of experiments

To determine the effect of a two-stage cultivation approach 
towards enhanced lipid production without comprising bio-
mass, three sets of experiments were conducted as given in 
Fig. 1.

Fig. 1  Flow diagram showing the different sets of experiments adopted in the study
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Set I: Growth under conditions optimized 
for high biomass production followed by growth 
in conditions optimized for enhanced lipid 
production

Batch culture of 150 mL of modified seawater medium 
with composition and growth conditions optimized 
for high biomass production was used in the first stage 
of culturing. The medium contained 4.89 mM sodium 
metasilicate, 0.90 mM urea, 0.1 mM sodium dihydrogen 
phosphate, 0.05 mM ferric chloride and 0.2 mM diso-
dium EDTA. The diatom cells at the exponential phase 
of growth with a cell density of 1.5 × 106 cells  mL−1 were 
inoculated (10% of total volume) into the medium and 
cultured at 30.8 °C temperature, 30 g kg−1 salinity and 
agitation at 125 rpm. After culturing for 12 days, the bio-
mass was harvested by centrifugation at 1400×g, washed 
with sterilized sea water and transferred to another batch 
culture with composition and conditions optimized for 
high lipid production (second stage). The medium con-
sisted of 4.69 mM sodium metasilicate, 0.76 mM urea, 
0.13 mM sodium dihydrogen phosphate, 0.05 mM ferric 
chloride and 0.2 mM disodium EDTA and incubated at 
25 °C temperature, with 30 g kg−1 salinity and agitation 
at 125 rpm. The control cultures were maintained in the 
first stage itself at 30 °C throughout the experiment period. 
Total dry weight and lipid contents were estimated by the 
gravimetric method on every 3rd, 6th, 9th, 12th, 15th and 
18th day of cultivation. All the experiments were carried 
out in triplicates.

Set II: Growth under optimized conditions for high 
biomass production followed by growth in selected 
nutrient deprivation

Ten percent culture inoculum with a cell density of 
1.5 × 106 cells  mL−1 was cultured in a batch culture system 
of 150 mL of modified seawater medium with composition 
and conditions optimized for high biomass production as 
the first stage of culturing. After culturing for 12 days, 
the biomass from the cultures was harvested, washed 
and transferred to another batch culture set (stage 2) of 
150 mL of modified seawater medium with one nutrient 
deprived (i.e., silicon or nitrogen or phosphorus) at a time. 
The temperature was reduced to 25 °C, and other factors 
were kept constant. Total dry weight and lipid content 
were estimated by the gravimetric method on every 3rd, 
6th, 9th, 12th, 15th, and 18th day of cultivation. A control 
experiment was set by transferring biomass into a medium 
with composition for high biomass production (nutrient 
replete) at 25 °C. All the experiments were carried out in 
triplicates.

Set III: Growth under optimized conditions 
for high biomass production followed by growth 
in combined nutrient deprivation and limitation

Ten percent culture inoculum with a cell density of 1.5 × 106 
cells  mL−1 was cultured in a batch culture system of 150 mL 
of modified seawater medium with composition and con-
ditions optimized for high biomass production as the first 
stage of culturing. After culturing for 12 days, the biomass 
from cultures was harvested and transferred to another batch 
culture (second stage) subjected to three sets of stress condi-
tions as given below.

Stress 1 Phosphorus-deprived medium at 25 °C
Stress 2 Phosphorus-deprived, silicon-limited (20% of the 

original concentration, i.e., 0.978 mM) medium at 25 °C
Stress 3 Phosphorus-deprived, nitrogen-limited (20% of 

the original concentration, i.e., 0.18 mM) medium at 25 °C
A control experiment was set using a medium with all the 

nutrients available in their original concentration optimized 
for high biomass production (nutrient replete) at a tempera-
ture of 25 °C. All other factors were kept constant. Total dry 
weight and lipid content were estimated by the gravimetric 
method on every 3rd, 6th, 9th, 12th, 15th and 18th day of 
cultivation. All the experiments were carried out in tripli-
cates. The biomass from stress 3 experiments was analyzed 
in detail, as this design was expected to induce maximum 
lipid production.

Nile red staining

An aliquot of culture from each batch of Set III experi-
ments was centrifuged at 3105×g for 5 min and the pellet 
was re-suspended in the same volume of phosphate-buffered 
saline (pH 7.4). The cells were washed, stained with Nile 
red according to the method of Greenspan et al. (1985), and 
observed under an inverted phase contrast fluorescent micro-
scope (Leica DMIL connected with DFC 420C camera), and 
images were processed using Leica application suite (LAS) 
software.

Fatty acid profiling

Twenty milligrams of dry lyophilized microalgal biomass 
from each test flask of Set III after 12 days were taken in 
a 20 mL vial. The samples were incubated at 90 °C for 
120 min with methanol–HCl–chloroform (10:1:1). One mL 
of milli-Q water was added, and the fatty acid methyl esters 
were extracted by adding 2.0 mL hexane–chloroform (4:1), 
vortexing and recovering the top layer. The process was 
repeated twice (Lewis et al. 2000). The collected FAMEs 
were analyzed in the GC–MS system (Perkin Elmer Clarus 
680GC) equipped with a mass detector (Clarus 600T mass 
spectrometer and were compared with Supelco FAME mix 
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as standard (Sigma-Aldrich, India) along with Turbo mass 
software for data acquisition and analysis.

Whole‑cell analysis by FTIR

Approximately, 1 mg of freeze-dried microalgal biomass 
from the second stage (12th day) of Set III was used to 
estimate the biochemical composition of the test samples 
using FTIR spectrometer (Thermo Nicolet, Avatar 370). 
Thirty-two scans of absorbance spectra were collected with 
a spectral resolution of 4 cm−1 between 4000 and 400 cm−1 
for each sample. Scans were co-added and averaged. Band 
assignments to molecular groups of algae were based on 
those previously published (Murdock and Wetzel 2009). The 
peak areas of bands were determined for each sample and 
the relative absorption area ratio of carbohydrate to amide 
I, lipid to amide I, and amide I to amide A was calculated.

Oxidative stress indices

Lipid peroxidation

Fresh wet algal sample (0.1 g) from Set III experiment was 
homogenized in 1 mL of 10% (W/V) trichloroacetic acid 
(TCA) and the homogenate was centrifuged at 7000×g for 
10 min. One milliliter of the supernatant was mixed with 
2 mL of 0.5% TBA solution (in 10% TCA). Then, the mix-
ture was heated at 95 °C for 45 min and then cooled under 
room temperature. The supernatant was read at 532 nm after 
the removal of any interfering substances by centrifuging at 
4000×g for 10 min. The change in absorbance was recorded 
every 30 s up to 3 min in thermostated UV–Vis spectro-
photometer (UV-1601, Shimadzu, Japan), with 10% TCA 
solution as blank. The amount of thiobarbituric acid reac-
tive substances (TBARS) formed was calculated using an 
extinction coefficient of 1.56 × 105  M−1  cm−1 (Heath and 
Packer 1968):

Superoxide dismutase (SOD)

Fresh microalgal homogenate (0.1 g) from the Set III experi-
ment was prepared in 1 mL of 50 Mm Tris EDTA (pH 8.5). 
Blank was adjusted to zero with Tris EDTA. A volume of 33 
µL of each sample was mixed with 933 µL of buffer solution 
and placed in the spectrophotometer. A volume of 33 µL of 
0.2 mM pyrogallol prepared in 0.01 N HCl was added, mixed, 

(1)
Concentration of MDA

(

nmol g−1
)

=
A532

1.56 × 105
×
reaction volume (mL)

fresh weight (g)

and absorbance measured at 420 nm for 3 min. The control 
tube was prepared by replacing the sample with distilled water. 
The change in absorbance was recorded at every 30 s up to 
3 min (Marklund and Marklund 1974):

where VT is the total reaction volume; VS is the volume of 
enzyme used; and n is the dilution factor.

Catalase

Wet microalgal biomass (0.1 g) from Set III experiment was 
homogenized in 1 mL phosphate buffer (0.5 M, pH 7.5), centri-
fuged at 12,400×g at 4 °C for 30 min and the supernatant was 
taken for measuring catalase (CAT) activity. A reaction mixture 
containing 1.6 mL phosphate buffer (pH 7.3), 100 μL EDTA 
(3 mM), 200 μL  H2O2 (0.3%) and 100 μL supernatant was taken 
in a cuvette. Catalase activity in the supernatant was determined 
by monitoring the disappearance of  H2O2, by measuring a 
decrease in absorbance at 240 nm against a blank of the same 
reaction mixture without 0.3%  H2O2 up to 3 min (Aebi 1974):

Peroxidase (POD)

Fresh wet biomass (0.1  g) from Set III experiment was 
homogenized in 1 mL 0.1 M phosphate buffer (pH 6.5), and 
0.1 mL of the enzyme extract was added to 3 mL pyrogallol 
solution and mixed well. The absorbance was adjusted to 
zero at 430 nm. To the test cuvette, 0.5 mL of 1%  H2O2 (in 
0.1 M phosphate buffer at pH 6.5) was added and mixed. The 
increase in absorbance was recorded at every 30 s up to 3 min 
in a spectrophotometer. One unit of peroxidase is defined as 
the change in absorbance/min at 430 nm (Reddy et al. 1995):

(2)Rate =
OD final − OD initial

3

(3)% of inhibition =
ΔODcontrol − ΔODtest

ΔODcontrol

× 100

(4)
SOD activity

(

U g−1
)

=
% of inhibition

50
×
VT (mL)

VS (mL)

×
n

fresh weight (g)
,

(5)
Catalase activity

(

U g−1
)

=
2.303

3
×

log ODzero

log OD3 min

×
1

fresh weight (g)

(6)Rate =
OD final − OD initial

3
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where VT is the total reaction volume; VS is the volume of 
enzyme used; n is the dilution factor; and 12 is the extinction 
coefficient of 1 mg mL−1 of purpurogallin at 420 nm.

Statistical analyses

Statistical analyses were carried using one-way and two-
way analyses of variance (ANOVA). The differences in 
the values were considered significant at p < 0.05 and post 

(7)

Peroxidase activity
(

U g−1
)

=
ΔODtest − ΔODblank

12

×
VT (ml)

VS (ml)
×

n

fresh weight (g)
,

hoc comparisons were calculated using Fisher’s least sig-
nificant difference (LSD) test.

Results and discussions

Two‑stage cultivation approach

The Set I experiment (Fig. 2) showed the advantage of two-
stage cultivation method over the single stage method using 
the optimized media and culture conditions. In the two-
stage cultivation (test) experiment, there was a proportional 
increase in biomass as well as lipid concentrations in the 
optimized medium for higher lipid production till the 18th 
day from the start of the second stage. However, in the sin-
gle stage cultivation (control) maintained in the optimized 

Fig. 2  Set I experiment—biomass, lipid concentration, lipid percentage of Navicula phyllepta cultured in stage 1 for 12 days, and subsequently 
in stage 2 for 18 days (a, b) and the control set maintained at stage 1 itself for 18 days (c, d). The values represent mean ± SD (n = 3)
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media for high biomass production, there was a decline in 
the total biomass and subsequent lipid concentration after 
the 18th day from the start of the first stage due to exhaustion 
of growth nutrients. In the test samples, the total biomass 
reached 1.9 g  L−1, lipid concentration reached 0.4 g  L−1, 
and the lipid percentage was 24% by the second stage of 
culturing. While in control, it was 20% of total lipid with a 
concentration of 0.27 g  L−1 and maximum biomass of 1.24 g 
 L−1 by the end of the first stage of culturing. Both biomass 
and total lipid concentration had a significant difference 
(p < 0.05) between the test and control. However, a signifi-
cant change in terms of lipid percentage was not observed.

The Set II experiment (Fig. 3) was carried out to under-
stand the effect of nutrient deprivation on biomass and lipid 
production in the second stage of the two-stage cultivation 
approach. The results showed that phosphorus deprivation 
resulted in a reduction in the growth and lipid production, 
but not a significant effect compared with the control culture 
with no modification in the initial concentrations. The bio-
mass concentration was the lowest in silicon-deprived media 
giving 0.84 g  L−1 by the end of the experiment, which proves 
the role of silicate in biomass production. The urea-deprived 
cultures initially showed a steady growth reaching 1.54 g 
 L−1, but crashed after the 9th day. The silicon deprivation 
resulted in the highest lipid percentage of 28.78% of weight 
at the end of the 18th day. The phosphorus-deprived medium 
produced only 25% of lipid during the 18th day, which was 
attained by urea-deprived cultures during earlier stages. 
On comparing with nutrient replete cultures (control), the 
silicon removal showed a significant (p < 0.05) reduction in 
the biomass, lipid concentration and increase in lipid per-
centage. Urea deprivation also caused a significant change 
(p < 0.05) in biomass and lipid percentage, while the effect 
of phosphorus removal was insignificant throughout the 
days. It can also be inferred from the analysis that more than 
one stress factor contributes to the increased production of 
lipid as well as biomass in a two-stage cultivation strategy.

In the Set III experiment (Fig. 4), the multiple nutrient 
stress factors were studied for increasing the production of 
biomass along with lipid quantity. The experimental results 
showed that multiple nutrient stress conditions had a pro-
found influence on the increased rate of lipid production. The 
cultures subjected to phosphate deprivation, urea limitation 
and temperature reduction could give a higher concentration 
of lipid of 0.39 g L−1 proportional to its biomass of 1.44 g 
 L−1. The conditions of phosphate deprivation, silicate limita-
tion, and temperature reduction gave a total lipid percentage 
of 32.13% at the end of stage 2 of culturing at the cost of 
reduced biomass (1.1 g  L−1). The lipid percentages reached 
27.58% and 23.54% under stress 3 and stress 1, respectively. 
Post hoc analysis showed that there was no significant differ-
ence in biomass in stress experiments 1 and 3 compared to 
control, whereas lipid concentration significantly increased 

(p < 0.05) in stress 3 in the final day of experiment and the 
rest were non-significant. Stress 2 demonstrated a signifi-
cant (p < 0.05) reduction in biomass and increase in lipid 
percentage throughout the study compared to control. It is 
proved that oleaginous microalgae, primarily diatoms, pro-
duce small amounts of neutral lipids, mainly TAG, under 
favourable growth conditions, and they start to accumulate 
lipid droplets upon stresses, especially nutrient starvation 
(Yin-Hu et al. 2012; Valenzuela et al. 2012). Several studies 
have reported the application of two-stage cultivation strate-
gies employing two different growth conditions to explore 
the potential of microalgae as a feedstock to produce biofu-
els and other high-value products (Pancha et al. 2014; Rios 
et al. 2015). Alvarez-Diaz et al. (2014) obtained an increase 
of 36.5–45.5% in lipid accumulation using the two-stage 
cultivation of Ankistrodesmus falcatus, whereas Jiang et al. 
(2012) showed increased lipid content to 20–26% in marine 
microalgae Dunaliella tertiolecta and Thalassiosira pseu-
donana. The present results also supported the earlier stud-
ies that compared to single stage cultivation, the two-stage 
cultivation is indeed a potential approach to enhance lipid 
production without much compromise on biomass.

According to some earlier reports, nitrogen deprivation in 
the two-phase cultivation was the most preferred methodol-
ogy to obtain high biomass with high lipid content (Klok 
et al. 2013, 2014). Previous studies have frequently deployed 
nitrogen or phosphorus starvation as the major stress factor 
for increasing lipid yield, but there is paucity in the stud-
ies concerning synergistic utilization to achieve high lipid 
productivity (Belotti et al. 2013; Singh et al. 2015). During 
nutrient starvation, microalgae release nitrogen as well as 
utilize the same for their metabolic processes, while defi-
ciency of phosphorus is compensated by utilization of the 
polyphosphate granules (Praveenkumar et al. 2011). Syner-
gistically optimized nitrogen and phosphorus concentrations 
for the attainment of maximum lipid productivity in microal-
gae showed that compared to phosphate limitation, nitrogen 
starvation was mainly responsible for lipid accumulation 
along with a shift in polar to non-polar lipids resulting in an 
overall change in algal physiology (Fakhry and El Maghraby 
2015; Arora et al. 2016; Kamalnathan et al. 2016). Research 
studies reported that the production of storage lipid (triacyl-
glycerol or TAG) was stimulated when Si availability was 
limited for cell division (Adams and Bugbee 2014) though 
very little information is known about the physiological 
mechanism. Silicon-depleted cells directed newly assimi-
lated carbon more towards lipid production and less towards 
carbohydrate production or else slowly converted non-lipid 
cell components to lipids (Gupta et al. 2011, Jiang et al. 
2015). Thajuddin et al. (2015) reported on diatoms showing 
the increased lipid content under nitrogen and silica starva-
tion whereas Lin et al. (2018) stated that silicon starvation 
had a very modest effect on the total lipid content of the 
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Fig. 3  Set II experiment—bio-
mass (a), lipid concentration 
(b), lipid percentage (c) of 
Navicula phyllepta cultured for 
12 days in stage 2 with selected 
nutrient deprivation. The values 
represent mean ± SD (n = 3). 
The values represent mean ± SD 
(n = 3). *Significance (p < 0.05) 
compared to control. #Not 
determined
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Fig. 4  Set III experiment—bio-
mass (a), lipid concentration 
(b), lipid percentage (c) of 
Navicula phyllepta cultured for 
12 days in stage 2 with selected 
nutrient deprivation and 
limitation. The values represent 
mean ± SD (n = 3). *Signifi-
cance (p < 0.05) compared to 
control
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marine diatoms Thalassiosira weissflogii and Chaetoceros 
muelleri. Variations of temperature (a decrease from 30 to 
25 °C) and decrease in the concentration of nitrate in the 
medium resulted in a significant change in cell composition 
during batch cultures, favoring the accumulation of lipid 
bodies in microalgae (Bohnenberger and Crossetti 2014).

In this study, the two-stage cultivation method with nutri-
ent starvation as the stress factor proved to be effective in 
providing an improved quantity of lipid without compromis-
ing biomass of the biofuel feedstock. Instead of complete 
removal of essential micronutrients such as nitrogen and 
silicon, a supply of the limited amount of the growth nutri-
ents will favor a stable production of the microalgal biomass 
throughout the cultivation period. Though silicon deficiency 
along with phosphate deprivation and temperature variation 
resulted in the highest lipid percentage in the diatom cells, 
nitrogen limitation along with phosphate deprivation was 
found to be the most favourable post-harvest treatment to 
attain high biomass and high lipid content per cell with a 
minor loss in biomass.

Nile red staining

In this present study, bright yellow fluorescence from intra-
cellular lipid droplets and red fluorescence from chlorophyll 
were observed under fluorescence microscopy after Nile red 
staining (Fig. 5). After 9 days of stress period, the numbers 
of yellow spots or lipid bodies within the cells increased 
notably in stress 2 and stress 3 test samples, but their sizes 
were similar. The size of the oil bodies increased reaching up 
to 3–4 µm in size by 18th day in silicate- (stress 2) and urea-
limited (stress 3) samples, which visually proved the fact that 
lipid accumulation increased with the application of multi-
ple stresses on diatoms cells compared to nutrient replete 
condition. The findings were supported by the studies of 
Yang et al. (2013) and Dhup et al. (2017) who demonstrated 
the increase in oil bodies in Nile red-stained P. tricornutum 
under nitrogen starvation and in Monoraphidium sp. under 
phosphorus limitation, respectively.

Fatty acid composition analyses

Fatty acids of marine diatoms such as C14:0, C16:0, C16:1, 
C18:0, C18:1, and C20:5(n-3) are important criteria for 
improved biodiesel quality (Volkman et al. 1989; Sabuet al. 
Sabu et al. 2017b). In the Set III experimental setup, the fatty 
acid composition of the diatom Navicula phyllepta cultured 
in stage 2 varied substantially among the different stresses 
(single or multiple) compared to the control, which was 
subjected to temperature stress only (Table 1). The relative 
percentage of fatty acids C16:0 and C16:1 was found to be 
highest in stress 3 (phosphate deprivation, nitrogen limita-
tion and temperature reduction) (51.77%, 27.08%) followed 

by stress 2 (phosphate deprivation, silicon limitation and 
temperature reduction) (46.78%, 18.39%), whereas the stress 
1 (phosphate deprivation and temperature reduction) gave 
slightly lesser concentrations (32.04%, 11.07%) compared to 
the control (nutrient replete medium with temperature reduc-
tion) (43.5%, 18.13%). The percentage of stearic acid C18:0, 
which contributed to the total saturation of microalgal oil 
was significantly enhanced in the multiple and double stress 
samples. It was quantified as 21.27% in stress 2 and 21.13% 
in stress 3, while it was 15.97% in stress 1 and 2.93% in con-
trol. A comparatively high concentration of EPA C20:5(n-3) 
was reported in stress 1 samples with no detection in stress 
3. The total percentage of saturated (72.9%) and monoun-
saturated fatty acids (27.08%) was found to be the highest 
in stress 3.

The amount of palmitic and palmitoleic acid was found 
to be highest in nitrogen-deficient condition which was in 
agreement with the studies of Thajuddin et al. (2015) and 
Lin et al. (2018), in which nitrogen deficiency profoundly 
affected the fatty acid profile of diatoms causing an increase 
in SFA and MUFA with reduced PUFA content. Adams and 
Bugbee (2014) reported a shift in fatty acid chain length 
from C18 to C16 in reducing the silicon concentration. A 
similar result was demonstrated in the present study with an 
almost equal amount of C18:0 in silicon-limited condition 
(stress 2) and nitrogen-limited condition (stress 3). One of 
the most commonly observed facts is that temperature stress 
can lead to an increase in unsaturation level and change in 
fatty acid composition even under nutrient deplete or replete 
conditions for retaining the membrane fluidity (Guschina 
and Harwood 2009; Roleda et al. 2013). The presence of a 
high proportion of saturated and monounsaturated fatty acids 
in the diatom N. phyllepta MACC8 under multiple stresses 
are considered to be optimal from a fuel quality perspective.

Whole‑cell response to the stresses

From the FTIR analysis (Fig. 6), the infra-red spectra of 
biomass preparations were dominated by the protein amide I 
(mainly C–O stretching) and amide II (mainly N–H bending) 
vibrational bands around 1658 and 1545 cm−1, respectively. 
The band at 3300–3400 cm−1 was attributed to the presence 
of the amide A/B (N–H stretching vibrations of the peptide 
groups) (Fabian and Mäntele 2002). The algal carbohydrate 
content determined by FTIR was due to the C–OH and 
C–O–C stretching vibration peaks at 1000–1200 cm−1. The 
bands at 2850–2970 cm−1 were attributed to asymmetric and 
symmetric C–H vibrations, mainly due to methyl and meth-
ylene groups in fatty acids, which were primarily considered 
for quantification of the total lipid content (Pistorius et al. 
2009). The prominent bands present at ~ 1740–1640 cm−1 
were due to the presence of C=O of esters or fatty acids. The 
bands at 800–1100 cm−1 are attributed to silica frustules of 
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diatom cells, which sometimes overlap with the carbohydrate 
portion (Stehfest et al. 2005). In the present study (Table 2), 
on comparing the relative change in the carbohydrate/amide 

I ratio, the stress 3 showed the highest value (7.46) followed 
by stress 2 (7.1), stress 1(6.7) and control (6.32). The lipid/
amide I also developed a similar consistent pattern with the 

Fig. 5  Nile red-stained images of Navicula phyllepta showing yellow oil bodies under stress and control conditions of Set III during different 
days of cultivation in stage 2. Scale bar = 5 µm
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highest value in the case of stress 3. The ratio of control 
could not be estimated due to a limited band showing the 
presence of lipid. The amide I and amide A ratio showed 
similar values for the control, stress 1 and stress 3 samples 
with a higher value for stress 2 test samples.

Generally, nitrogen, silicon and phosphorus limitation 
stresses induced a decrease in photosynthetic activity, but 
also have an impact on the total biochemical pool. Nitrate 
depletion mainly affected the lipid content of diatoms, 
whereas reduction of both nitrate and phosphate affected the 
protein pool while increasing carbohydrate content which 

indicated the rise in the carbohydrate/amide I area ratio 
(Soler et al. 2010; Yao et al. 2012). Nitrogen deprivation 
led to arrested protein synthesis, allowing fixed carbon more 
likely to be diverted to carbohydrate and neutral lipid/total 
lipid formation (Meng et al. 2014; Agirman and Cetin 2017). 
Stehfest et al. (2005) showed that the carbohydrate/amide 
ratio was higher in nitrogen deplete compared to phosphate 
deplete conditions in P. tricornutum. Higher lipid and carbo-
hydrate contents were obtained at lower temperatures (20 °C 
and 25 °C) compared to high temperature (30 °C) in Chae-
toceros wighamii, while protein concentration remained 
unaffected (De Castro Araujo and Garcia 2005). Altogether, 
the changes observed with FTIR spectroscopy of the test and 
control cultures in the present study were found to be con-
sistent with the effects described previously in the literature.

Table 1  Percentage of (a) individual fatty acids and total fatty acids 
based upon the degree of saturation present in Navicula phyllepta in 
control and stress conditions of Set III on the 12th day of culturing in 
stage 2

– Not detected, SFA saturated fatty acid, MUFA monounsaturated 
fatty acid, PUFA polyunsaturated fatty acid

% of fatty acids Control Stress 1 Stress 2 Stress 3

C14:0 5.4 4.07 – –
C16:0 43.5 35.04 46.78 51.77
C16:1 18.13 11.07 18.39 27.08
C18:0 2.93 15.97 21.27 21.13
C18:1 5.05 – – –
C20:5n3 11.8 19.8 10.54 –
SFA 51.83 55.08 68.05 72.9
MUFA 23.18 11.07 18.39 27.08
PUFA 11.8 19.8 9.54 –

Fig. 6  FTIR spectrum of control and test samples of stress experiments of Set III on the 12th day of culturing in stage 2

Table 2  The carbohydrate/amide I (a), lipid/amide I (b) and amide I 
and amide A (c) absorption area ratio between test and control sam-
ples of stress experiments of Set III on the 12th day of culturing in 
stage 2 is shown

– Not detected

Relative absorption area ratio Control Stress 1 Stress 2 Stress 3

Carbohydrate/amide I 6.32 6.7 7.1 7.46
Amide I/amide A 0.066 0.066 0.076 0.065
Lipid/amide I – 0.106 0.149 0.206
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Oxidative stress indices

From the analysis of antioxidant enzymes during stress, the 
catalase activity was found to be the highest in stress 2 fol-
lowed by stress 3, indicating an increased rate of hydro-
gen peroxide production (Fig. 7a). As the silicon-limited 
cultures gave very little biomass, the catalase activity was 
the highest compared to others, demonstrating the extreme 
stress on the diatom upon immediate transfer from high sili-
cate to low silicate concentration in two-phase cultivation. 
Lipid peroxidation, measured in terms of malondialdehyde 
(MDA) content in the cells, was higher in urea-limited cul-
tures (stress 3) compared to others (Fig. 7b). It signifies the 
high lipid degradation inside the cells due to the limitation 
of extracellular nitrogen uptake. This result was in support 
of the findings of Yilancioglu et al. (2014) and Al-Rashed 
et al. (2016). The values of SOD were in correspondence to 

catalase activity in all the stress conditions (Fig. 8a). This 
data suggest that superoxides may be elevated under silicate-
deficient and nitrogen-deficient conditions, necessitating 
increased SOD activity. The values of POD (Fig. 8b) showed 
the highest value in stress 2 cultures till the 9th day, after 
which it increased in stress 3 set of cultures. A significant 
increase (p < 0.05) in antioxidant levels (catalase, SOD, lipid 
peroxidation and POD) was demonstrated in stress 2 and 
stress 3 whereas stress 1 could not show a substantial effect 
on comparison with the control.

Increased activity of anti-oxidative enzymes such as 
SOD, peroxidases, and catalase is widely reported in 
microalgae under nutrient stress conditions (Gigova and 
Ivanova 2015; Lauritano et  al. 2015; Al-Rashed et  al. 
2016). The role of ROS in lipid accumulation in microal-
gae is not well explored. It is interesting to note that oxida-
tive stress is a mediator for lipid accumulation in various 

Fig. 7  Catalase (a) and lipid 
peroxidation (b) activities in 
Navicula phyllepta in control 
and stress (test) conditions of 
Set III cultures at stage 2. The 
values represent mean ± SD 
(n = 3). *Significance (p < 0.05) 
compared to control
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microalgae making them efficient for biofuel production 
(Osundeko et al. 2013; Yilancioglu et al. 2014). Nitrogen 
stress can result in the co-occurrence of reactive oxygen 
species, increased lipid production and impairment of pro-
teins in diatoms (Liu et al. 2012). The overall anabolic 
reaction flux gets severely constrained due to the degra-
dation of proteins resulting in alterations in photosynthe-
sis rate (Cakmak et al. 2012). In this context, microalgal 
cells may favor the storage of lipids as an energy source 
instead of consumption. A mechanistic understanding 
of the interrelationship between ROS rise and increased 
lipid accumulation in microalgae species requires further 
investigation. The down-regulation of gene expression of 
various proteins forming up the photosystem complexes in 

microalgae could be the possible molecular explanation for 
such occurrences (Zhang et al. 2004). Hence, the higher 
activities of antioxidant enzymes in Navicula phyllepta 
MACC8 show its high tolerance to stressful conditions.

Conclusion

In this study, the two-stage cultivation strategy was found 
to be an effective method compared to a single stage in 
stimulating increased production of lipid in the diatom 
Navicula phyllepta MACC8 without compromising the 
biomass. Two-phase culturing system, with multifactor 
stress application especially nitrogen limitation along 
with phosphate starvation and temperature stress as 

Fig. 8  Superoxide dismutase 
(SOD) (a) and peroxidase 
(POD) (b) activities in Navicula 
phyllepta in control and stress 
(test) conditions of Set III 
cultures at stage 2. The values 
represent mean ± SD (n = 3). 
*Significance (p < 0.05) com-
pared to control



 3 Biotech (2019) 9:437

1 3

437 Page 14 of 15

post-harvest treatment, would be the suitable method for 
gaining maximum biomass productivity and lipid content. 
The highest lipid percentage of 32% of cell dry weight was 
obtained upon silicon limitation, phosphate starvation and 
temperature stress condition at 25 °C. The application of 
multiple stresses resulting in a high amount of saturated 
and monounsaturated fatty acids with less/no polyunsatu-
rated content, especially in nitrogen-limited conditions, 
favored its suitability towards biodiesel production. The 
changes in biochemical composition and oxidative stress 
parameters within the various stress conditions demon-
strated the profound influence of the selected stress factors 
on the biodiesel productivity of the diatom under study. 
Since the energy consumption in process systems is an 
important parameter that affects the total production costs, 
the criteria of choosing low energy-consuming techniques 
such as nutrient starvation would be the most economical 
in the two-stage cultivation approach. Besides, the pre-
sent study included experiments in small volumes, and 
therefore, based on the results of the study, large-scale 
culturing, and biomass production need to be carried out 
in the future.
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