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Codon bias confers stability to human mRNAs
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Abstract

Codon bias has been implicated as one of the major factors
contributing to mRNA stability in several model organisms.
However, the molecular mechanisms of codon bias on mRNA
stability remain unclear in humans. Here, we show that human
cells possess a mechanism to modulate RNA stability through a
unique codon bias. Bioinformatics analysis showed that codons
could be clustered into two distinct groups—codons with G or C at
the third base position (GC3) and codons with either A or T at the
third base position (AT3): the former stabilizing while the latter
destabilizing mRNA. Quantification of codon bias showed that
increased GC3-content entails proportionately higher GC-content.
Through bioinformatics, ribosome profiling, and in vitro analysis,
we show that decoupling the effects of codon bias reveals two
modes of mRNA regulation, one GC3- and one GC-content depen-
dent. Employing an immunoprecipitation-based strategy, we iden-
tify ILF2 and ILF3 as RNA-binding proteins that differentially
regulate global mRNA abundances based on codon bias. Our
results demonstrate that codon bias is a two-pronged system that
governs mRNA abundance.
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Introduction

Messenger RNA (mRNA) regulation represents an essential part of

regulating a myriad of physiological processes in cells, being

indicated in the maintenance of cellular homeostasis to immune

responses [1–3]. In addition to transcription regulation, post-tran-

scriptional regulation of mRNA stability is vital to the fine-tuning of

mRNA abundance. To date, several mRNA-intrinsic properties,

often in 50 or 30 untranslated regions (UTRs), have been shown to

affect mRNA stability [4,5]. Due to the recent advances in technol-

ogy, the contribution of mRNA stability to gene expression has been

suggested [6]. However, the regulation of mRNA stability, which is

possibly governed by mRNA-intrinsic features, has not been fully

elucidated.

One of the most crucial mRNA-intrinsic features is codon bias.

To scrutinize this bias in usage of redundant codons, several metrics

to measure how efficiently codons are decoded by ribosomes (codon

optimality) have been proposed. In a classical metric called the

codon Adaptation Index (cAI), gene optimality is calculated by

comparison between codon usage bias of a target gene and reference

genes, which are highly expressed [7,8]. Another index termed the

tRNA Adaption Index (tAI) gauges how efficiently tRNA is utilized

by the translating ribosome [9,10]. More recently, the normalized

translation efficiency (nTE), which takes into consideration not only

the availability of tRNA but also demand, was also proposed [11].

In addition to these, there are estimators of codon ribosome transla-

tion speed [12] as well as calculators of species-specific tAI [13].

Recently, Presnyak and colleagues showed that mRNA half-lives

are correlated with optimal codon content based on a metric, the

codon stabilization coefficient (CSC), which was calculated from the

correlations between the codon frequencies in mRNAs and stabili-

ties of mRNAs. Additionally, they showed that the substitutions of

codons with their synonymous optimal and non-optimal counter-

parts resulted in significant increases and decreases in mRNA stabil-

ity in yeast [14]. This effect was brought by an RNA-binding protein

(RBP) Dhh1p (mammalian ortholog DDX6), which senses ribosome

elongation speed [14–16]. In yeast, these differences in ribosome

elongation speed in turn are influenced by tRNA availability and

demand [11,17,18]. Taken together, codons can be designated into

optimal and non-optimal categories: the former hypothesized to be
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decoded efficiently and accurately [19,20], while the latter slow

ribosome elongation, resulting in decreased mRNA stability [14–16].

It is also important to make the distinction that common and rare

codons do not necessarily imply optimal and non-optimal codons.

At present, codon optimality-mediated decay has been

extensively studied and established particularly in Saccharomyces

cerevisiae as well as other model organisms such as Schizosaccha-

romyces pombe, Drosophila melanogaster, Danio rerio, Escherichia

coli, Trypanosoma brucei, and Neurospora crassa [21–27]. At

present, the molecular mechanisms of this system of codon optimal-

ity in humans are under intense scrutiny [28, preprint: 29].

In this study, we show that codon bias-mediated decay exists in

humans. Principal component analysis (PCA) showed that codons

could be clustered into two distinct groups: codons with A or T at

the third base position (AT3) and codons with either G or C at the

third base position (GC3). This clustering was associated with

mRNA half-lives enabling us to determine GC3 and AT3 codons as

stabilizing and non-stabilizing codons, respectively. In this regard,

the increased usage of GC3 codons entails an inevitable increase

GC-content. We then developed an algorithm to quantify the codon

bias of GC3 codons. With ribosome profiling, we show that codon

bias-derived occupancy scores agreed with ribosome occupancy.

Additionally, bioinformatics analysis revealed that frameshifts abro-

gate this GC3-AT3 delineation. We then verified our results in vitro

using optimized and deoptimized reporter constructs. Here, we

propose that GC3 codons and AT3 codons are optimized and deopti-

mized codons, respectively. Importantly, frameshifted optimized

transcripts retain a certain level of stability, suggesting that overall

the overall GC-content of transcripts is an additional determinant of

stability. Finally, employing a ribonucleoprotein immunoprecipita-

tion strategy, we identified RNA-binding proteins, which were

bound to transcripts with low or high GC3-content. We propose that

interleukin enhancer-binding factor 2 (ILF2) mediates mRNA stabil-

ity of transcripts via codon bias.

Results

Codons in Homo sapiens can be categorized into GC3 and
AT3 codons

To examine whether a system of codon bias exists in humans, we

first compared codon frequencies in Homo sapiens and other model

organisms. Hierarchical clustering analysis of codon frequency data

obtained from Ensembl database [30] showed a difference between

lower eukaryotes such as Saccharomyces cerevisiae and Caenorhab-

ditis elegans, and higher eukaryotes such as Homo sapiens and Mus

musculus (Fig 1A). To investigate codon bias in humans, we down-

loaded human coding sequence (CDS) data from the Ensembl

BioMart database and calculated the codon counts for each coding

sequence. For each CDS, we calculated the codon frequencies by

expressing the codon counts as a fraction of the total number of

codons in the CDS. We then performed a principal component anal-

ysis (PCA) on the CDS codon frequencies. The first principal

component (PC1) of the PCA, which accounted for 22.85% of the

total variance, divided codons into two clusters: codons with either

G or C at the third base position (GC3) and codons with either A or

T at the third base position (AT3) (Fig 1B). Interestingly, the

division within the second principal component (PC2) appeared to

be split along the number of G/C or A/T bases in codons. We

repeated our analysis on the CDS sequences from S. cerevisiae and

found no such clustering (Fig EV1A). However, we discovered that

the factor loading scores of the codons along the first principal

component of our analysis in yeast corresponded to the CSC metric

[14], albeit differences in the order (Fig EV1B). The above-

mentioned results therefore raised the possibility that the PCA

method might have identified optimal and non-optimal codons;

GC3 and AT3 codons in humans may have a valid effect on mRNA

stability. To investigate the agreement between the PCA method

and CSC in humans, we calculated the CSC scores in humans using

published datasets of global mRNA decay rates in physiologically

growing HEK293 cells (GSE69153) [Data ref: 31,32] and compared

them to the PC1 factor loading scores of the codons (Fig EV1C). We

observed a correlation of R2 = 0.58 between the two outputs, indi-

cating a moderately strong agreement despite the methodologies

being different.

We then tested the link between mRNA stability and GC3-AT3

codons using the above-mentioned mRNA stability data (GSE69153)

[Data ref: 31,32]. Briefly, we divided the transcripts equally into

quartiles based on their half-lives and averaged the codon frequen-

cies within the quartiles. Strikingly, genes with short half-lives were

associated with AT3 codons, while genes with longer half-lives were

associated with GC3 codons (Fig 1C), suggesting a connection

between third base of codons and the stability of mRNAs.

Broadly, the codon bias in mRNA can predict the stability of the

mRNA. Classification by GC3-content might potentially implicate

GC-content as a factor, which might affect the stability of mRNA. By

summing the GC3 frequencies and GC bases of CDS sequences, we

could determine the GC3- and GC-content of a gene (Dataset EV1).

We then visualized the genome-wide GC3 and GC landscape by plot-

ting the corresponding values via a histogram (Fig 1D). GC3-content

was represented as a bimodal distribution with a range of values

from the minimum of 24.1% to the maximum of 100%, while GC-

content appeared similarly as a bimodal distribution with a range of

values from a minimum of 27.6% to the maximum of 79.7%. A

Pearson correlation analysis (R2 = 0.869) between gene GC-content

and GC3-content (Fig EV1D) reflected an enrichment of GC-content

with increased GC3-content. Indeed, higher GC3-content was gener-

ally associated with better stability (Fig 1E top and Fig EV1E). To

further verify the impact of GC3-content on mRNA stability, we plot

the GC3-content data in Fig 1E (top) in the form of cumulative

distribution functions and found these distributions to be signifi-

cantly different from the genome average (Fig EV1F). As with our

analysis with GC3-content, we grouped the half-life data by GC-

content (Fig 1E, bottom) and observed a similar increase in half-

lives even with the GC-content grouping. Interestingly, we also

noted a decrease in half-life beyond a GC-content of 60%; this

decrease also coincides with the decrease in half-lives in the GC3-

content grouping (Fig EV1D). While we are currently unable to

explain the associated decrease in both plots at extreme GC3- and

GC-content, it would be interesting to investigate this particular

drop-off in stability in the future.

Additionally, we noted that the codon bias per se was different

between yeast and humans (Figs 1B and EV1A) [14]. We also

observed this difference in Xenopus, zebrafish, and Drosophila,

when compared to humans [24,33]. We repeated our analysis, this

2 of 19 EMBO reports 20: e48220 | 2019 ª 2019 The Authors

EMBO reports Fabian Hia et al



A

B

C
D

E

Half-Life

PC1 (22.85%)

PC
2 

(5
.5

4%
)

-1.0 -0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

AAA

AAT
ACA

ACT

AGAAGT

ATA
ATT

CAA

CAT

CCA
CCT

CGA
CGT

CTA
CTT

GAA

GAT

GCA

GCTGGA GGT

GTA
GTT

TAT

TCATCT

TGTTTA

TTT
AAC

AAG

ACC
ACG

AGC
AGG

ATC

ATG

CAC

CAG CCCCCG

CGC
CGG

CTC

CTG
GAC

GAG

GCC

GCG
GGC

GGG

GTC
GTG

TAC

TCC

TCG

TGC

TGG

TTC

TTG

GC3AT3

GC3 Content (%)

H
al

f-L
ife

 (M
in

ut
es

)

20
 ≤ 

GC3 <
 30

30
 ≤ 

GC3 <
 40

40
 ≤ 

GC3 <
 50

50
 ≤ 

GC3 <
 60

60
 ≤ 

GC3 <
 70

70
 ≤ 

GC3 <
 80

80
 ≤ 

GC3 <
 10

0
0

100
200
240

260

280

300

320

340

113 1536
1705

1496
1662 1971

1415

GC Content (%)

H
al

f-L
ife

 (M
in

ut
es

)

20
 ≤ 

GC < 
40

40
 ≤ 

GC < 
45

45
 ≤ 

GC < 
50

50
 ≤ 

GC < 
55

55
 ≤ 

GC < 
60

60
 ≤ 

GC < 
 65

65
 ≤ 

GC < 
80

0
100
200
240

260

280

300

320

340

485
1743

1632
1474

1661 1668
1003

-

-

-

-

Figure 1.

ª 2019 The Authors EMBO reports 20: e48220 | 2019 3 of 19

Fabian Hia et al EMBO reports



time grouping the half-life dataset by their respective cAI

(Fig EV1G). With the cAI dataset, we were able to observe increased

half-life with an associated increased in cAI albeit only from the

range of 0.75–0.95. In contrast, the PCA-derived GC3-content

method was better able to recapitulate this increase in half-life

compared to the cAI metric. Taken together, our analysis allowed us

to designate GC3 and AT3 codons as stabilizing and destabilizing

codons, respectively. Additionally, high GC3-content in transcripts

inevitably results in high GC-content, which is a feature of stable

mRNAs.

We then asked about the biological relevance associated with

codon bias. Taking the 5% of lowest and highest ranked genes into

account, we observed that genes with high GC3-content were

enriched in developmental processes, while genes with low GC3-

content were enriched in cellular division processes (Fig EV1H and

I), suggesting the importance of codon bias-mediated mRNA decay

across dynamic cellular processes in humans.

GC3-AT3 codon bias can explain ribosome occupancy to a
certain extent

Given that GC3-AT3 codons were associated with high and low

stability, respectively, we wondered whether these two groups were

synonymous with optimal and non-optimal codons. It has been

proposed that slower ribosome elongation rate modulated by low

codon optimality affects the stability of mRNAs in yeast [14]. This

led us to examine whether decelerated ribosomes could be observed

especially in regions where optimality was low. From the PCA, PC1

factor loadings of the codons were indicative of how much a

particular codon contributed to the AT3-GC3 grouping, i.e.,

instability–stability (Fig EV2A). Therefore, as a measure of estimat-

ing ribosome occupancy, the factor loading scores of the codons

from the first principal component were utilized to derive codon

bias-derived occupancy scores (refer to Materials and Methods for

details on the calculation of scores). Because we speculated that a

single codon would be insufficient in eliciting any noticeable effects

on the speed of the ribosome, we divided each CDS into 25 bins

from start codon to stop codon and summed up the codon bias-

derived occupancy scores. We then compared these scores with

corresponding ribosome occupancies derived from ribosome profil-

ing [34]. Ribosome occupancy obtained from HEK293 cells growing

under physiological conditions generally coincided with codon bias-

derived occupancy (Fig 2A). These measurements were highly

reproducible between replicates of ribosome profiling experiments

across the transcriptome (R2 = 0.750, 16,423 transcripts)

(Fig EV2B). We observed a significantly better prediction of ribo-

some occupancy by codon bias-derived occupancy scores than that

derived from scrambled codon bias-derived occupancy scores

(Fig 2B). Unfortunately, at the individual codon level, we only

observed a weak but positive correlation (R2 = 0.13) between ribo-

some occupancy and codon bias-derived scores (Fig EV2C). We

believe that this difference in both calculations can be attributed to

the binning of the ribosome occupancy data, which ensures that any

reasonable slowing of ribosomes in regions of low optimality could

be accurately manifested. Indeed, representative transcripts showed

a good correlation between our binned codon bias-derived occu-

pancy scores and ribosome occupancy as exemplified by EIF2B2,

DYNC1LI2, and IDH3G transcripts (Fig EV2D).

Although translation elongation and initiation are distinct steps,

previous literature has suggested that optimal codons are also

enriched in mRNAs with high translation [35]. Ribosome footprint

reads normalized by mRNA abundances from RNA-seq enable the

calculation of translation efficiency, which in turn is also generally

regarded as the translation initiation rate [36]. Therefore, to estab-

lish the link between translation status and codon bias, we calcu-

lated the translation efficiency (TE)—ribosome footprints

normalized by mRNA abundance. Indeed, our results showed that

mRNAs with high GC3-content generally possessed high TE

(Fig 2C). This phenomena also coincide with known research in

zebrafish and yeast in that optimal genes generally have high TE

[33,37]. To exclude the effect of mRNA abundances on TE, we

grouped mRNA of similar abundances into separate groups and

repeated our analysis (Fig EV2E). Within these groups, we still

observed a general increase in TE within each of the groups, albeit a

decrease in TE at a GC-content of 70–80% across all ranges of

mRNA abundances (similar to Fig 2C).

To verify whether GC3 and AT3 codons were indeed associated

with stability and instability respectively, we performed PCA on +1

and �1 frameshifted CDS sequences genome-wide and show that

the GC3-AT3 demarcation was abolished (Fig 2D and E). Interest-

ingly, we found that GC-rich (two or three G/C bases) and AT-rich

(two or three A/T bases) codons contributed strongly to PC1 of the

frameshifted data, showing that GC/AT-content is a natural conse-

quence GC3-AT3 usage (Figs 1D and EV1D).

Thus far, we show that GC3 and AT3 codons are associated with

mRNA stability, ribosome translation speed, and efficiency, thereby

suggesting that the former and latter can be designated into optimal

and non-optimal codons, respectively.

Codon bias affects mRNA stability

We then experimentally validated our bioinformatics observations

of GC3 and AT3 codons in human cells. We developed a scheme

based on the PC1 factor loadings in which we previously utilized in

◀ Figure 1. Bioinformatics analysis reveals that biased codons can be categorized into GC3 and AT3 codons, respectively.

A Hierarchical clustering analysis of model organisms and their average CDS codon frequencies.
B Principal component analysis of the CDS codon frequencies of 9,666 protein-coding genes. PC1 and PC2 indicate the first and second principal components.
C Heatmap of half-lives of mRNA and their CDS codon frequencies. The transcripts were ranked according to their half-lives and divided equally into quartiles. The

respective codon frequencies of each group were then averaged.
D Histogram illustrating the distribution of genes and their respective GC3- and GC-content.
E Comparison of average transcript mRNA half-lives across their respective GC3- and GC-content ranges. Number of transcripts within each gene optimality range is

indicated above their respective points.

Data information: In (E), error bars represent the 95% confidence intervals.
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C Comparison of average transcript translation efficiencies (TEs) across their respective GC3-content ranges. Number of transcripts within each gene optimality range
is indicated above their respective points.

D, E Principal component analysis of CDS codon frequencies of protein-coding genes derived from a +1 frameshift (D) and a �1 frameshift (E). Shaded ellipses indicate
codons which are GC-rich (orange) and AT-rich (blue).

Data information: In (A, C), error bars represent the 95% confidence intervals.
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our ribosome profiling analysis (Fig EV2A). Based on this scheme,

codons could be optimized and deoptimized with regard to GC3-

content within their codon boxes, i.e., synonymous substitutions

(Fig EV3A). Single box codons such as TGG (Trp) and ATG (Met)

would remain unchanged. We synthesized two independent genes

(REL and IL6) with differential GC3-content (Fig EV3B, Dataset

EV2) and examined the stability of these reporter RNAs in HEK293

cells utilizing the Tet-off system (Fig 3A). As expected, the opti-

mized transcripts of REL and IL6 were more stable than their wild-

type counterparts. Additionally, the decay rate of the deoptimized

IL6 reporter was faster, confirming that low GC3-content transcripts

were unstable.

In addition to the RNA stability, higher GC3-content was also

associated with higher translation efficiency (Fig 2C), thereby

increasing protein production. Indeed, the protein abundance of

the optimized REL reporter was higher than REL-WT even after

normalization of protein abundance by steady-state mRNA levels

(Figs 3B and EV3C). Using enzyme-linked immunosorbent assay

(ELISA), we observed that expression of IL6-OPT resulted in a 1.5-

fold and twofold significantly higher level of IL6 compared to its

WT and IL6-DE, respectively (Fig 3C). In a similar fashion,

normalization of IL6 protein abundance by mRNA levels revealed

that translation efficiency of the optimized IL6 reporter was higher

than its WT and deoptimized reporter counterparts (Fig EV3D).

We tested our REL reporters in HeLa cells and show that the high

protein abundance of REL-OPT could also be observed (Fig EV3E).

Similarly, actinomycin-based stability measurements of the REL

reporters in HeLa cells revealed a similar increase in mRNA stabil-

ity in the REL-OPT transcript (Fig EV3F). Moreover, polysome frac-

tionation and subsequent qPCR analysis revealed that within the

polysome fractions, REL-OPT transcript amounts were proportion-

ately higher than REL-WT transcripts, suggesting that REL-OPT

was translated more efficiently than REL-WT (Fig 3D). Thus far,

our results validate the bioinformatics analyses and show that

GC3 and AT3 codons can be designated as optimal and non-

optimal codons.

GC-content as an additional determinant of stability

We then hypothesized that if the effect on mRNA stability was

entirely the result of translational elongation, blocking translational

elongation would restore stability to transcripts possessing low opti-

mality to levels similar to that of their high optimality counterparts.

We therefore treated cells expressing the REL reporters with a trans-

lation inhibitor, cycloheximide (CHX), and assayed the mRNA decay

rates via the Tet-off system (Fig 4A). Treatment with CHX improved

the stability of both REL-OPT and REL-WT transcripts compared to

the control group. Interestingly, the stability of CHX-treated REL-WT

transcripts was still significantly lower than that of CHX-treated

REL-OPT transcripts. We repeated our experiments using the IL6

reporters and found that in a similar fashion, CHX-treated IL6-DE

transcripts were stabilized, albeit, not to the same extent as CHX-

treated IL6-OPT (Fig 4B). Following this, we repeated our experi-

ments using a different translation inhibitor, anisomycin (ANI), and

obtained similar results (Fig 4C and D), suggesting that a transla-

tion-independent mRNA degradation pathway could also be present.

It should be noted that an important caveat to the use of global

translation inhibitors, CHX in particular, is that they have been

reported to potentially distort mRNA level measurements as well as

translation efficiency [38–40].

We then synthesized a +1 frameshifted version of the REL-OPT

transcript, removing any potential stop codons, which would have

resulted in premature termination of transcription, and measured its

stability via the Tet-off system (Fig 4E). This frameshifted version,

while retaining a high GC-content (similar to REL-OPT), possessed a

lower GC3-content than its in-frame counterpart (Fig EV3B).

Surprisingly, the frameshifted version was still more stable than the

WT form, yet less stable compared to its in-frame optimized coun-

terpart, suggesting that high GC/low AU-content was able to retain

a significant amount of transcript stability. To verify our findings,

we similarly synthesized a +1 frameshifted version of the IL6-OPT

transcript, which had a high GC-content (similar to IL6-OPT) but a

GC3-content of 39.15%, the GC3-content falling between its WT and

DE counterparts (Fig EV3B). This frameshifted version of IL6 was

relatively more stable compared to the DE transcript (Fig 4F). Taken

together, our results reinforce the notion that in addition to GC3-

content, GC-content could be an additional determinant of stability.

Taken together, our results show that codon bias encompasses two

modes of mRNA regulation, GC3- and GC-content dependent.

RNA-binding proteins differentially bind to transcripts of varying
degrees of codon bias

Having shown that high optimality content inevitably accords high

GC-content that in turn promotes mRNA stability, we wondered

whether there were RNA-binding proteins (RBPs), which scrutinize,

discriminate, or even affect an mRNA’s fate. To identify RBPs that

were either bound to transcripts bearing high or low optimality,

we performed a ribonucleoprotein immunoprecipitation-based

approach termed ISRIM (In vitro Specificity-based RNA Regulatory

protein Identification Method) [41]. Lysates of HEK293 cells were

mixed with FLAG peptide-conjugated REL and IL6 transcripts of

high and low optimality, and their interacting proteins were deter-

mined using mass spectrometry. We then calculated the fold

changes based on the abundance of RBPs bound to REL-WT with

respect to REL-OPT (Fig 5A).

As IL6 transcripts possessed three levels of GC3-content (OPT,

WT, and DE), we defined high GC3-content binding RBPs based on

the RBP enrichment of IL6-DE to IL6-WT (Fig 5B) as well as IL6-WT

compared to IL6-OPT (Fig 5C). Similarly, we defined low GC3-

content binding RBPs based on the RBP enrichment of IL6-DE

compared to IL6-WT (Fig 5B) as well as IL6-WT to IL6-OPT (Fig 5C).

By selecting common RBPs belonging to each group, we defined a

set of RBPs, which bound differentially to high GC3 and low GC3

IL6 transcripts, respectively (Fig EV4A). We then selected RBP

candidates, which were specifically enriched with either low or high

GC3 transcripts common to both REL and IL6 ISRIM experiments

(Fig EV4B, Dataset EV3). In all, we show that RBPs can differentiate

between transcripts of high GC3- and low GC3-content.

ILF2 regulates the stability of low GC3/high AT3 transcripts

We investigated the role of RBPs in modulating the stability of tran-

scripts with different codon bias. Of interest were ILF2 and ILF3,

RPBs identified from the list of RBPs interacting exclusively with

low optimality transcripts. ILF2 and ILF3, also known as NF45 and
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Figure 3. GC3-content of transcripts determines their fate.

A HEK293 Tet-off experiments showing the degradation of REL-OPT and REL-WT transcripts (left) and IL6-OPT, IL6-WT, and IL6-DE transcripts (right), post-doxycycline
addition.

B Representative immunoblot of FLAG-tagged REL-OPT and REL-WT in HEK293T cells transfected with either empty plasmids, or plasmids bearing REL-OPT or REL-WT.
The immunoblot is representative of three independent experiments. ACTB is shown as the loading controls.

C ELISA of secreted IL6 concentrations of IL6-OPT, IL6-WT, and IL6-DE from HEK293T cells transfected with plasmids bearing IL6-OPT, IL6-WT, and IL6-DE.
D Fold changes of REL-OPT and REL-WT transcript levels (top) relative to their abundances from fraction 1 as detected by qPCR across polysome fractions (below). Data

represent the mean � SD for three biological replicates.

Data information: In (A, D), data are representative of three independent experiments each with three replicates. The data represent the mean � SD for three replicates.
A two-way ANOVA with the Holm–Sidak multiple comparisons was performed. P-values are denoted as follows: P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***). The half-
lives of the respective transcripts are indicated in brackets. In (C), the data are representative of three independent experiments each with three replicates. The data
represent the mean � SD for three replicates. A one-way ANOVA with Tukey’s multiple comparisons was performed between samples where P < 0.01 (**) and P < 0.001
(***).
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NF90/NF110, respectively, are well known to function dominantly

as heterodimers, which bind double-stranded RNA. ILF3 has been

extensively studied, having shown to bind to AU-rich sequences in

30 UTR of target RNA to repress its translation [42]. We hypothesize

that the binding of ILF2 and ILF3 as a heterodimer to their targets

occurs as low optimality transcripts are inadvertently AU-rich. Here,

we focused on the effects of these RBPs on low optimality tran-

scripts. Firstly, using published RIP-seq data of ILF2 in two multiple

myeloma cell lines, H929 and JJN3, we observed that ILF2 interacts

with low optimality transcripts (Fig EV5A) [Data ref: 43,44]. Addi-

tionally, we analyzed RNA-seq data obtained from the ENCODE

project of K562 cells treated by CRISPR interference targeting ILF2

[Data ref: 45]. Strikingly, we observed that transcripts that

possessed low optimality scores were upregulated, whereas tran-

scripts that possessed high optimality scores were downregulated

(Figs 6A and EV5B). The abundance changes in representative

mRNAs by ILF2 knockdown were antiparallel to their GC3-content

(Fig EV5C).

However, differences in mRNA levels do not necessarily imply

a difference in mRNA stability. To confirm whether mRNA stabil-

ity was indeed affected, we examined the stability of FLAG-tagged

versions of REL-OPT and REL-WT in the Tet-off system after ILF2

and ILF3 knockdown via siRNA (Fig 6B and C). Interestingly, we

observed that the optimized reporter was more unstable under

the knockdown of both ILF2 and ILF3, whereas the WT reporter

was more stable with the knockdown of ILF2 and a combination

of both ILF2 and ILF3 knockdown. In agreement with this, we

found a significant increase in protein levels of REL-WT when

cells were treated with ILF2- and ILF3-targeting siRNA (Figs 6D

and EV5D). However, despite seeing a decrease in stability of the

GC3-optimized reporter under both ILF2 and ILF3 knockdown, we

were unable to observe this change at the protein level. Focusing

our attention on ILF2, we expressed FLAG-tagged versions of REL-

OPT and REL-WT, along with the two isoforms of ILF2, and

detected the reporter protein levels via Western blot. A significant

decrease in band intensity was observed for the REL-WT bands

when both isoforms of ILF2 were expressed, whereas the amount

of REL-OPT was not changed (Figs 6E and EV5E). Taken together,

our results suggest that ILF2 and ILF3 affect mRNA transcripts

with low GC3-content (and inadvertently low GC-content) to

induce their decay.

Next, we sought to identify possible motifs, which are enriched

in ILF2/3 targets. Based on the RIP-seq data in JJN3 and H929

[Data ref: 43,44], we identified common transcripts, which were

more than fivefold differentially upregulated, and subjected their

cDNA sequences to de novo motif identification via the MEME

(Multiple EM for Motif Elicitation) software [46]. Our analysis

identified AU-rich motifs of about 6–7 nt long (Fig EV5F) as well

as their distributions mainly in the CDS and 30UTR along target

transcripts. It should be noted that that these motifs are enriched

in mRNA targets and may not necessarily imply bona fide binding

motifs of ILF2/3. Therefore, we performed an additional motif

search on a recently identified and experimentally validated ILF3

motif from RNA Bind-n-seq experiments by Dotu and colleagues

[47] and found a similar distribution of motifs in the CDS and

30UTR of targets (Fig EV5F).

Discussion

This study provides a framework describing codon bias-mediated

RNA decay in humans. We first show that GC3 codons are associ-

ated with stability and AT3 codons with instability. We quantified

codon bias by calculating the GC3-content within the CDS of genes

and showed that GC3-content is strongly correlated with RNA stabil-

ity and amount of protein expressed. In general, the use of optimal

GC3 codons correlated with higher GC-content at a genome-wide

level. We then show a modest agreement between codon bias-

derived scores and ribosome occupancy as determined by ribosome

profiling. Using GC3-optimized and GC3-deoptimized reporters, we

validate our bioinformatics observations in vitro. Screening of RNA-

binding proteins and further in vitro analysis suggests a role of ILF2,

possibly in complex with ILF3, in the codon-mediated regulation of

mRNA. Taken together, we conclude that gene expression can be

shaped by codon bias and inevitably by GC/AU-content through the

modulation of mRNA stability in human cells.

Investigating the system of codon bias in humans

Since translation elongation is affected by tRNA availability, the

tRNA Adaptation Index (tAI), which is based on genomic tRNA copy

number, has been used as a surrogate for codon optimality.

However, in contrast to yeast, tRNA copy number in the genome is

not always correlated with tRNA abundance in higher eukaryotes

[48]. Hence, this metric is less suitable for quantifying codon opti-

mality in humans. Independent of tRNA-based metrics, we

addressed these challenges by utilizing an unsupervised learning

algorithm, PCA, to identify features in that were mRNA-intrinsic. In

the PCA of both yeast and humans, we demonstrated that the first

principal component mirrored optimal/non-optimal assignments.

We also show that the codon bias is different between these two

organisms (Figs 1B and EV1A). In humans, the classification of

codons into AT3 and GC3 groups was striking, but the percentage

by which it accounts for its variation, however, was modest.

▸Figure 4. GC-content as an additional determinant of stability.

A, B HEK293 Tet-off experiments showing the degradation of REL-OPT and REL-WT transcripts (A) and IL6-OPT, IL6-WT, and IL6-DE transcripts (B), under vehicle (DMSO)
and cycloheximide (CHX) treatment, post-doxycycline addition.

C, D HEK293 Tet-off experiments showing the degradation of REL-OPT and REL-WT transcripts (C) and IL6-OPT, IL6-WT, and IL6-DE transcripts (D), under vehicle (PBS) and
anisomycin (ANI) treatment, post-doxycycline addition.

E, F HEK293 Tet-off experiments showing the degradation of REL-OPT, REL-OPT (+1 Frameshift), and REL-WT transcripts (E) and IL6-OPT, IL6-WT, IL6-DE, and IL6-OPT (+1
Frameshift) transcripts (F), post-doxycycline addition.

Data information: In (A–F), data are representative of three independent experiments each with three replicates. The data represent the mean � SD for three replicates.
A two-way ANOVA with the Holm-Sidak multiple comparisons was performed. P-values are denoted as follows: P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***).
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From the PCA, the first and second principal components only

explain a quarter of total variance in codon frequencies (Fig 1B),

implying that other factors that explain bias of codon frequency

possibly remain in human cells. The limitation of this method is

reflected in the use of codon frequencies as our input data for the

PCA. This approach might have neglected other factors of stability

or instability, which might be codon-independent or which might be

inherent at the nucleotide level. Assuming that evolution drives the

selection of codons, synonymous codon usage in different organ-

isms must be fine-tuned over time to achieve precise expression

levels of mRNA and eventually proteins in essential physiological

process. Indeed, similar to our findings, a study by Bazzini et al

[33] showed that a system of codon optimality is conserved among

vertebrates, Xenopus and Zebrafish. In addition, they demonstrated

that in Zebrafish embryos, low codon optimality was associated

with shorter poly(A) tail length in addition to lower levels of transla-

tion. Our data together with recently published work by Wu and

colleagues [28] indicate that a system of codon optimality exists in

humans.

Our investigations show that high GC3/AT3-content or GC/AT-

content in mRNA is selected for to modulate transcript stability in

essential physiological processes, but is subject to constraints by

amino sequence. Indeed, we show that transcripts with high and

low GC3-content were linked to particular physiological and cellular

processes (Fig EV1H and I). In a particular study, Gingold and

colleagues argue that tRNA abundances vary in proliferating and dif-

ferentiating cell types [49]. Interestingly, they showed that codons

preferred by cell cycling genes were AT3 codons, while pattern spec-

ification preferred codons tended to be GC3 codons—in agreement

with our GO analyses. In Drosophila, the correlation between codon

optimality and mRNA stability has been demonstrated to be attenu-

ated in neural development, possibly allowing the effect of trans-

acting factors to dominate development [24].

Our results show that the codon bias we have identified affects

ribosome occupancy to a significant but limited extent (Fig 2B). At

the level of individual codon occupancies, we only observed a weak

but positive correlation (R2 = 0.13) between ribosome occupancy

and codon optimality-derived scores (Fig EV2C). These results,

however, are not surprising given that studies based on ribosome

profiling data found no correlations between ribosome occupancy

and rare codons [50,51]. In view of this, we binned the CDS into 25

evenly spaced groups to ensure that any reasonable slowing of ribo-

somes in regions of low optimality could be accurately represented

by the GC3-AT3 bias. However, we acknowledge that our metric is

only able to demonstrate a prediction to a limited extent. There are

many factors that can affect ribosome profiling results such as
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Figure 5. RNA-binding proteins bind differentially to transcripts with
different levels of GC3-content.

A–C Volcano plots showing the enrichment of RBPs, which bind to REL-WT
relative to REL-OPT transcripts (A), IL6-DE relative to IL6-WT transcripts
(B), and IL6-WT relative to IL6-OPT transcripts (C).

Data information: In (A–C), vertical dotted lines indicate a 1.5-fold enrichment,
while horizontal dashed lines indicate the P-value cut-off of 0.05. Points
shaded in blue indicate RBPs, which have a differential fold change of more
than 1.5 and P < 0.05.
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growth conditions, coverage, cloning and sequencing biases, meth-

ods of bioinformatics analysis, and experimental noise [18,52,53].

Taking into account our in vitro experiment results together with

the ribosomal profiling results, we suggest that GC3 and AT3 codons

are synonymous with optimal and non-optimal codons. Addition-

ally, our study along with others’ suggests that slower elongation of

ribosome is a key feature of mRNA stability. However, it should be

noted that in our analysis methodology, the assumption that stabil-

ity is solely a function of ribosome speed might only hold true to a

limited extent. There is evidence to show that mRNA-intrinsic

features that have the propensity to regulate ribosome velocity are

essential in maintaining the function and correct expression of

proteins, the failure of which may result in degradation of the

mRNA and protein: Although codon optimality is a dominant factor

in general, other factors may also be involved in decelerated ribo-

somes, such as secondary structures [54,55]. These obstacles for

ribosome elongation are reversible and dynamically regulated by

RNA helicases [56,57]. Importantly, these structures may serve to

reduce ribosome speed when the nascent peptide requires additional

time to fold to its correct conformation [58]. Furthermore, it has

been shown in Neurospora that codon usage can regulate co-transla-

tional protein folding and, subsequently, its function [59].

As such, while we have shown that the optimizations of tran-

scripts lead to increases in protein production, further studies are

required to investigate protein folding dynamics and determine

whether the produced protein still retains its functionality. Further-

more, in a study of two model organisms, E. coli and S. cerevisiae

by Tuller et al [60], the rate of translation elongation was shown to

be determined by the folding energy, codon bias, and amino acid

charge at the beginning of the CDS. It is likely that these factors may

also affect the local speed of the ribosome further down the CDS

and, by extension, the stability of the mRNA. Further studies will be

required to elucidate the role of RNA secondary structures and heli-

cases and their relevance to codon bias, protein folding, and mRNA

stability decay.

In attempts to quantify the effect of ribosomal density on mRNA

stability, several studies have demonstrated that in general,

increased ribosomal density results in increased mRNA stability of a

transcript [61,62]. This phenomenon has been attributed to competi-

tion between the initiation complex and decay factors as well as

ribosomes sterically excluding decay factors from accessing the

mRNA [63,64]. To this effect, reduction in translation initiation has

been shown to decrease ribosomal density and, subsequently,

mRNA stability [65]. On the other hand, inhibiting translation elon-

gation causes an increase in ribosome density and, consequently,

mRNA stability [66]. Here, we show that optimized transcripts are

highly polysome-bound as opposed to their WT counterparts

suggesting increased rates of translation initiation (Fig 3D). This is

corroborated by our ribosome profiling findings that high GC3-

containing transcripts have higher TE (Fig 2C), possibly protecting

transcripts from decay factors.

In this regard, transcripts with high optimality have higher trans-

lation initiation rates, causing them to be highly polysome-bound.

Additionally, optimized codons allow for efficient decoding and,

thus, smoother ribosome traffic. On the other hand, transcripts with

low optimality tend to be less polysome-bound with frequent ribo-

some deceleration and/or stalling. Our ribosome profiling analyses

in Fig 2B, however, is tailored to comparing the relative ribosome

densities (in bins) within an individual transcript, against the codon

bias optimality scores. While we show relative accumulation of

ribosomes in low optimality regions locally within a transcript, this

particular analysis can neither be extended to comparing total ribo-

some densities across the transcriptome nor compared to the poly-

some profiling results.

Interestingly, in a separate study in Neurospora, gene expression

modulated by codon usage was shown to be due to the effects of

transcription rather than translation [67]. In a follow-up study, the

group also demonstrated C/G bias is able to promote gene expres-

sion by suppressing premature transcription termination [68]. In

addition, several other studies have demonstrated that in mamma-

lian cells, GC-rich genes are transcribed with increased efficiency,

resulting in higher levels of transcripts independent of mRNA degra-

dation [69,70]. Next, a study by Fu et al, which investigated the

effects of codon usage bias on two proto-oncogenes with similar

amino acid identity, but differing levels of optimality, KRAS and

HRAS, showed that codon usage can affect both transcription effi-

ciency and translation efficiency, suggesting that the effect of codon

bias is multilevel [71]. In this and another study, changing the rare

codons of KRAS to common ones increased its enrichment in the

polysome fractions [72]. Likewise, REL-OPT transcripts were

enriched in the polysome fractions compared to REL-WT transcripts.

Nevertheless, our investigations also show that steady-state tran-

script copy number of the optimized reporter transcripts was signifi-

cantly higher than that of the WT (and DE versions) (Fig EV3C and

D). In addition to this, however, we also show increased translation

efficiency in mRNA that contains a higher proportion of optimized

codons. In our study and several other vertebrates, however, trans-

lation is the predominant effector of gene expression [33].

At the time of writing this manuscript, a study was published by

Wu and colleagues, which demonstrated that translation is indeed a

▸Figure 6. ILF2 regulates the stability of low GC3/high AT3 transcripts.

A Cumulative distribution plots showing the difference in distribution of transcript optimality between upregulated and downregulated transcripts in K562 cells
subject to ILF2 CRISPR interference targeting ILF2. Transcript quantities are indicated in the figure legend.

B, C HEK293 Tet-off experiments showing the degradation of REL-OPT (B) and REL-WT (C) transcripts with ILF2 and ILF3 siRNA and control (CTR) siRNA treatment, post-
doxycycline addition.

D Representative immunoblot of FLAG-tagged REL-OPT and REL-WT expressed in HEK293T cells under ILF2 and ILF3 siRNA treatment. The immunoblot is
representative of three independent experiments. ACTB is shown as loading controls.

E Representative immunoblot of FLAG-tagged REL-OPT and REL-WT in HEK293T cells co-expressed with two different isoforms of ILF2. The immunoblot is
representative of three independent experiments. ACTB is shown as loading controls.

Data information: In (A), Wilcoxon signed rank tests were performed on the upregulated and downregulated groups against the control group. P-values are denoted
(right). In (B, C), data are representative of three independent experiments in which the data represent the mean � SD for three biological replicates. A two-way ANOVA
with the Holm–Sidak multiple comparisons was performed. P-values are denoted as follows: P < 0.05 (*) and P < 0.01 (**).
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determinant of mRNA stability in human cells [28]. While paper by

Wu et al had assigned optimal and non-optimal designations to

codons via the calculation of the CSC derived from ORFeome and

SLAM-seq experiments, we noted that some of the findings paral-

leled ours. Indeed, the codon designations of optimal and non-

optimal codons also showed modest delineation of codons into GC3

and AT3 codons, respectively. In another article published in the

bioRxiv preprint server, Forrest and colleagues utilized a combina-

tion of endogenous and human ORFeome collection mRNAs in

human cells to derive the CSC for human cells [preprint: 29]. Similar

to the study by Wu and colleagues, the codon designations of opti-

mal and non-optimal codons also showed a modest division of

codons into GC3 and AT3 codons, respectively. Similarly, we also

show that the use of optimal and non-optimal codons can affect

both mRNA stability and translation initiation to a large extent

(Figs 1–3), albeit transcription to a limited extent. However, we

have yet to identify an RBP that is involved in direct co-translational

decay of mRNAs in humans as with that in yeast. Moreover, DDX6,

the mammalian ortholog of DHH1, was recently demonstrated in

humans to be involved in miRNA-driven translational repression,

not mRNA destabilization as previously shown in yeast [73]. DDX6

aside, it would certainly be exciting for future experiments to

uncover the nature of this elusive RBP.

c-Rel, a protein encoded by the REL gene and a canonical nuclear

factor jB (NF-jB) subunit, is expressed abundantly in differentiated

lymphoid cells and has been shown to be vital in thymic regulatory

T-cell development in addition to controlling cancer via activated

regulatory T cells [74,75]. Given the inherent low optimality and

associated instability of REL in its WT form (Fig 3A), we wonder

whether besides transcriptional control of REL, could there be other

post-transcriptional regulation systems at play. Further studies

would be necessary to investigate whether codon optimality or

codon optimality-associated RBPs modulate REL gene expression.

In our investigation, mRNA stability can be affected by GC3- and

GC-content. It is important to note that the latter of which is also

implicated in several processes such as miRNA binding, mRNA fold-

ing, and splicing, which in turn can affect mRNA stability. It is thus

plausible that GC-content can also affect gene expression indepen-

dent of RBP association. A study of transcriptome miRNA-binding

sites has shown that effective miRNA-binding sites tend to dwell in

G-poor and U-rich environments [76]. In addition, while our analy-

ses are CDS-based, it has been shown that GC-content of both

introns and exons is important in splicing via RNA structures [77–

79]. Taken together, we propose that codon bias is able to exert its

effects at multiple levels, consequently effecting gene and protein

expression.

The stability of mRNA can be modulated by RBPs, which bind
AU-rich sequences

Whereas AU-rich elements (AREs) in the 30UTR have been tradition-

ally targeted by RBPs, we found that coding regions are also targeted

by ARE-recognizing RBPs. The identification of the heterodimeric

complex consisting of ILF2 and ILF3 among others shows that a

wide array of RBPs recognizes low optimality (AU-rich) sequences

(Fig 5). However, the binding of ILF2/3 to target RNA presents as a

challenge when trying to identify its target motif. Studies have

shown that the RNA-binding portion of the ILF2/3 complex, ILF3, in

particular is a promiscuous RBP, binding to RNA with no obvious

sequence specificity [80]. It is interesting to note that several bind-

ing motifs, all of which are AU-rich have been proposed for ILF3.

Analysis of ILF3 RNA Bind-n-seq measurements identified a 9 nt

AU-rich motif that is bound to by ILF3 [47]. Kuwano and colleagues

show that NF90, the shorter isoform of ILF3, specifically targets a 30

nt AU-rich sequence in mRNA 30UTRs and represses their transla-

tion, not stability [42]. This state of promiscuousness was

compounded by a recent study by Wu and colleagues, in which in

almost all genes where ILF3 occupancy was detected on the genome

by ChIP-seq, ILF3 occupancy was on the corresponding transcript.

Indeed, ILF3 is a multifunctional protein, affecting several biological

processes. In addition to ours, other studies have shown that ILF3

can contribute to splicing [81], stabilization, nuclear export [82],

and, as mentioned, translation [42].

ILF2 on the other hand has been less scrutinized compared to its

partner. From our experiments, we find that the longer isoform of

ILF2 is predominantly and highly expressed, while the shorter

isoform is low in expression. Additionally, we observed that overex-

pression of the longer isoform appeared to upregulate the expression

of the shorter isoform albeit to a small extent. From the literature, it

is known that ILF2 stabilizes ILF3 in the heterodimeric form [83].

We postulate that it is possible that the ILF2/3 heterodimer

represses translation of mRNA with AU-rich sequences at a steady

state in both CDS and 30UTR. Knockdown of ILF2/3 relieves the

repression on translation initiation allowing an increase in bound

(translating) ribosomes, which sterically exclude decay factors from

accessing the mRNA, thereby increasing stability. Indeed, the

knockdown of ILF2, which is critical in maintaining the stability of

the heterodimeric complex, results in a stabilization of mRNA possi-

bly due to increased ribosome traffic. At the protein level, while the

knockdown of ILF2 results in an increased protein expression of

target mRNA, the combined effect of both ILF3 and ILF2 knockdown

results in a higher increase in target mRNA expression as compared

to the ILF2-only knockdown. Unfortunately, in the case of the ILF2/

3 siRNA experiments (Fig 6D), we were unable to achieve a

complete knockdown of ILF2 due to the very high and constitutive

production of ILF2. However, we still noted a small reduction in

ILF3 protein levels, hinting that ILF2 stabilizes ILF3 in the hetero-

dimer form. In addition, taking into consideration reports that ILF2

and ILF3 can function independently of each other [84–86], it is also

possible that ILF2 and ILF3 regulate the fate of mRNA differently,

ILF2 being able to dimerize with other binding partners such as ZFR

and SPNR. It is unknown, however, how optimized transcripts are

affected. Whereas our screens revealed that ILF2/3 bind exclusively

to low optimality targets, we noted from our analysis of ILF2 knock-

down data from the ENCODE database [Data ref: 45] as well as tests

from our reporter constructs that high optimality transcripts are

being regulated. Given this, we postulate that ILF2/3 might not

interact directly with high optimality targets. Instead, ILF2/3 may be

indirectly (de)antagonizing certain transcripts, which may code for

other regulators of high optimality genes. Further investigations

will be required to assess how high optimality transcripts are

antagonized.

Our screens also detected HNRNPD/AUF1, which destabilizes

transcripts via recognition of AU-rich motifs [87], binding to low

optimality mRNAs (Dataset EV3). These observations emphasize

the importance of AU-content, which is strongly connected with low
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optimality, in RNA destabilization. However, it is possible that these

factors induced the degradation of AU-rich transcripts different from

the model proposed by Presnyak and Radhakrishnan [14,15] as our

RBP identification method was not fully reflective of the active

translational status required for co-translational degradation of

mRNA transcripts. Further studies would be necessary to discern

whether these or other factors act as sensors of codon optimality

during translation.

In conclusion, in human cells, the redundancy of the genetic

code allows the choice between alternative codons for the same

amino acid, which may exert dramatic effects on the process of

translation and mRNA stability. In our experiments, we show that

two modes of mRNA regulation exist—GC3- and GC-content depen-

dent. This system potentially confers freedom for calibrating protein

and mRNA abundances without altering protein sequence. Begin-

ning from our exploratory analysis, we have developed an approach

to quantify codon bias and demonstrate that beneath the redun-

dancy of codons, exists a system, which modulates mRNA and,

consequently, protein abundance.

Materials and Methods

Cell cultures, growth, and transfection conditions

HEK293T cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) (Nacalai Tesque), supplemented with 10% (v/v)

fetal bovine serum. HEK293 Tet-off cells were maintained in Mini-

mum Essential Medium Eagle—Alpha Modification (a-MEM)

(Nacalai Tesque), supplemented with 10% (v/v) Tet-off system-

approved fetal bovine serum (Takara Bio) and 100 lg/ml of G418

(Nacalai Tesque). For REL and IL6 overexpression experiments,

plasmids were transfected using PEI MAX (Polysciences, Inc). For

co-transfection of ILF2 siRNA with REL plasmids, Lipofectamine

2000 was used as per the manufacturer’s protocol. ILF2 siRNA that

targeted ILF2 at exons 8 and 9 was Silencer Select siRNA, S7399

(Ambion, Life Technologies). Actinomycin D-based stability assays

in HeLa cells were performed by adding actinomycin D to the trans-

fected cells to a final concentration of 2 lg/ml.

Plasmid construction

Codon-optimized REL (REL-OPT) and IL6 (IL6-OPT) and codon-

deoptimized IL6 (IL6-DE) sequences were synthesized as gBlocks

Gene Fragments (Integrated DNA Technologies) (Dataset EV2). The

REL-OPT (+1 frameshift) sequence was constructed by adding a +1

frameshift just after the start codon. Resulting stop codons were

removed to ensure no premature termination. These sequences and

corresponding WT sequences were polymerase chain reaction (PCR)

amplified (with the inclusion of a FLAG tag for REL sequences) and

inserted into the pcDNA3.1(+) vector (Invitrogen) and pTRE-TIGHT

vector (Takara Bio). The sequences were confirmed via restriction

enzyme digest and sequencing.

Tet-off assay

HEK293 Tet-off cells (Clontech) were transfected with pTRE-TIGHT

plasmids bearing the (de)optimized and WT sequences and

incubated overnight at 37°C. Transcriptional shut-off for the indi-

cated plasmids was achieved by the addition of doxycycline (LKT

Laboratories Inc.) to a final concentration of 1 lg/ml. Cyclohex-

imide-based stability assays in HEK293 Tet-off cells were performed

by adding actinomycin D to the transfected cells to a final concentra-

tion of 50 lg/ml. Anisomycin-based stability assays in HEK293 Tet-

off cells were performed by adding anisomycin to the transfected

cells to a final concentration of 20 lg/ml. Samples were harvested at

the indicated time points after the addition of doxycycline (and cyclo-

heximide/anisomycin).

RNA extraction, reverse transcription–PCR, and quantitative
real-time PCR

Total RNA was isolated from cells using TRIzol reagent (Invitrogen)

as per the manufacturer’s instructions. Reverse transcription was

performed using the ReverTra Ace qPCR RT Master Mix with gDNA

Removal Kit (Toyobo) as per the manufacturer’s instructions. cDNA

was amplified with PowerUp SYBR Green Master Mix (Applied

Biosystems), and quantitative real-time PCR (qPCR) was performed

on the StepOne Real-Time PCR System (Applied Biosystems). To

quantify transcript abundance of the REL reporters, pTRE-TIGHT

plasmids bearing the (de)optimized and WT reporter sequences

were used as standards. Human GAPDH abundance was used for

normalization. The list of qPCR primers can be found in Dataset

EV2.

Sucrose gradient centrifugation (polysome profiling)

HEK293T were transfected with equal concentrations of REL-OPT

and REL-WT plasmids. Cells were lysed the next day in polysome

buffer [20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES-KOH) (pH 7.5), 100 mM KCl, 5 mM MgCl2, 0.25% (v/v)

Nonidet P-40, 10 lg/ml cycloheximide, 100 units/ml RNase inhi-

bitor, and protease inhibitor cocktail (Roche)]. Lysates were loaded

on top of a linear 15–60% sucrose gradient [15–60% sucrose,

20 mM HEPES-KOH [pH 7.5], 100 mM KCl, 5 mM MgCl2, 10 lg/
ml cycloheximide, 100 units/ml RNase inhibitor, and protease

inhibitor cocktail (Roche)]. After ultracentrifugation at 256,800 g

for 2.5 h at 4°C in a HITACHI P40ST rotor, fractions were collected

from the top of the gradient and subjected to UV-densitometric

analysis. The absorbance profiles of the gradients were determined

at 254 nm. For disassociation of ribosome and polysome, EDTA

was added to Mg2+-free polysome buffer and 15–60% sucrose

gradient at concentrations of 50 and 20 mM, respectively. For RNA

analysis, RNA from each fraction was extracted via the High Pure

RNA Isolation Kit (Roche) and subject to reverse transcription and

qPCR.

Immunoblot analysis

Samples were lysed in RIPA buffer (20 mM Tris–HCl [pH 8],

150 mM NaCl, 10 mM EDTA, 1% Nonidet-P40, 0.1% SDS, 1%

sodium deoxycholate, and cOmplete Mini EDTA-free Protease Inhi-

bitor Cocktail [Roche]). Protein concentration was determined by

the BCA Protein Assay (Thermo Fisher). Whole-cell lysates were

resolved by SDS–PAGE and transferred onto PVDF membranes

(Bio-Rad). The following antibodies were used for immunoblot
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analysis: mouse monoclonal anti-FLAG (F3165, Sigma), mouse

monoclonal anti-ILF2 (sc-365283, Santa Cruz Biotechnology),

mouse anti-b-actin (sc-47778, Santa Cruz), and mouse IgG HRP-

linked F(ab’)2 fragment (NA9310, GE Healthcare). Luminescence

was detected with a luminescent image analyzer (Amersham

Imager 600; GE Healthcare).

ELISA

HEK293T cells were transfected with pcDNA3.1(+) plasmids bearing

the (de)optimized and WT sequences and incubated overnight at

37°C. Cell supernatant was aspirated, and the cell monolayer was

washed with 1× PBS (pre-warmed at 37°C). Pre-warmed DMEM was

added to the monolayer, and the cells were incubated for 2 h at

37°C. Thereafter, the cell supernatant was harvested and centrifuged

at 300 ×g to pellet residual cells. The resulting supernatant was

decanted, and the concentration of secreted IL6 was measured by

the Human IL6 ELISA Kit (Invitrogen) according to the manufac-

turer’s instructions.

ISRIM (In vitro specificity-based RNA regulatory protein
identification method)

Preparation of bait RNAs
T7-tagged cDNA template was PCR-amplified and subjected to

in vitro transcription using a MEGAscript T7 Kit (Applied Biosys-

tems). Amplified cRNA was purified with an RNeasy Mini Kit (Qia-

gen) and then subjected to FLAG conjugation as described (10) with

some modifications. Briefly, 60 ll of freshly prepared 0.1 M NaIO4

was added to 60 ll of 250 pmol cRNA, and the mixture was incu-

bated at 0°C for 10 min. The 30 dialdehyde RNA was precipitated

with 1 ml of 2% LiClO4 in acetone followed by washing with 1 ml

acetone. The pellet was dissolved in 10 ll of 0.1 M sodium acetate,

pH 5.2, and then mixed with 12 ll of 30 mM hydrazide–FLAG

peptide. The reaction solution was mixed at room temperature for

30 min. The resulting imine moiety of the cRNA was reduced by

adding 12 ll of 1 M NaCNBH3 and then incubated at room tempera-

ture for 30 min. The RNA was purified with an RNeasy Mini Kit

(Qiagen).

Purification and analysis of RNA-binding proteins
Purification and analysis of RNA-binding protein (RBP) were carried

out as described [41] with some modifications. Briefly, HEK293T

cells were lysed with lysis buffer [10 mM HEPES (pH 7.5), 150 mM

NaCl, 50 mM NaF, 1 mM Na3VO4, 5 lg/ml leupeptin, 5 lg ml apro-

tinin, 3 lg/ml pepstatin A, 1 mM phenylmethylsulfonyl fluoride

(PMSF), and 1 mg/ml digitonin] and cleared by centrifugation. The

cleared lysate was incubated with indicated amounts of FLAG-

tagged bait RNA, antisense oligos, and FLAG-M2-conjugated agarose

for 1 h. The agarose resin was then washed three times with wash

buffer [10 mM HEPES (pH 7.5), 150 mM NaCl, and 0.1% Triton X-

100], and co-immunoprecipitated RNA and proteins were eluted

with FLAG elution buffer [0.5 mg/ml FLAG peptide, 10 mM HEPES

(pH 7.5), 150 mM NaCl, and 0.05% Triton X-100]. The bait RNA-

associated proteins were digested with lysyl endopeptidase and

trypsin. Digested peptide mixture was applied to a Mightysil-PR-18

(Kanto Chemical) frit-less column (45 3 0.150 mm ID) and sepa-

rated using a 0–40% gradient of acetonitrile containing 0.1% formic

acid for 80 min at a flow rate of 100 nl/min. Eluted peptides were

sprayed directly into a mass spectrometer (Triple TOF 5600+; AB

Sciex). MS and MS/MS spectra were obtained using the informa-

tion-dependent mode. Up to 25 precursor ions above an intensity

threshold of 50 counts/s were selected for MS/MS analyses from

each survey scan. All MS/MS spectra were searched against protein

sequences of RefSeq (NCBI) human protein database using the

Protein Pilot software package (AB Sciex), and its decoy sequences

then selected the peptides (FDR < 1%). Ion intensity of peptide

peaks was obtained using Progenesis QI for proteomics software

(version 3 Nonlinear Dynamics, UK) according to the manufac-

turer’s instructions.

Ribosome profiling and RNA-seq

Ribosome profiling was performed according to the method previ-

ously described with following modifications [34]. RNA concentra-

tion of naı̈ve HEK293T lysate was measured by Qubit RNA BR

Assay Kit (Thermo Fisher Scientific). The lysate containing 10 lg
RNA was treated with 20 U of RNase I (Lucigen) for 45 min at

25°C. After ribosomes were recovered by ultracentrifugation, RNA

fragments corresponding to 26–34 nt were excised from footprint

fragment purification gel. Library length distribution was checked

using a microchip electrophoresis system (MultiNA, MCE-202,

Shimadzu).

For RNA-seq, total RNA was extracted from the lysate using

TRIzol LS reagent (Thermo Fisher Scientific) and Direct-zol RNA

Kit (Zymo Research). Ribosomal RNA was depleted using the

Ribo-Zero Gold rRNA Removal Kit (Human/Mouse/Rat) (Illumina),

and the RNA-seq library was prepared using TruSeq Stranded

mRNA Library Prep Kit (Illumina) according to the manufacturer’s

instructions.

The libraries were sequenced on a HiSeq 4000 (Illumina) with

a single-end 50 bp sequencing run. Reads were aligned to human

hg38 genome as described [34,88]. The offsets of A site from the

50 end of ribosome footprints were determined empirically as 15

for 25–30 nt, 16 for 31–32 nt, and 17 for 33 nt. For RNA-seq,

offsets were set to 15 for all mRNA fragments. For calculation of

the ribosome occupancies, mRNAs with lower than one footprint

per codon were excluded. For calculation of the translation

efficiencies (TEs), we counted the number of reads within each

CDS, and ribosome profiling counts were normalized by RNA-seq

counts using the DESeq package [89]. Reads corresponding to the

first and last five codons of each CDS were omitted from the anal-

ysis of TEs. The Custom R Scripts will be available upon

requests.

Bioinformatics and computational analyses

Principal component analysis
To calculate the codon frequencies of individual genes from H.

sapiens, we first downloaded coding sequences (CDS) data (hu-

man genes, GRCh38p12) from the Ensembl BioMart Database. For

each CDS, we tabulated the occurrences of each codon –

excluding the stop codons. We then expressed the codon counts

as a percentage of the total number of codons in its CDS to

obtain the codon frequencies for each CDS. The codon frequen-

cies for all 9,666 CDS were used as the input for the PCA using
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the Python 3.4 environment via the factoextra program [90].

Finally, the data were trimmed to remove truncated sequences as

well as sequences with non-canonical start codons to a final of

9,898 genes.

Hierarchical clustering analysis
mRNA transcripts ranked in order of their half-lives divided equally

into four groups, and their average half-lives within each group

were calculated. The corresponding codon frequencies of transcripts

within each group were averaged. Hierarchical clustering was

performed using the average linkage method to cluster the codon

frequencies in R using the ggplot2 program [91].

Quantification of GC3-content
To quantify GC3-content, we summed up the codon frequencies of

GC3 codons and expressed the frequencies on a percentage scale.

Calculation of cAI and CSC
cAI values were calculated using the standalone CAIcal program

[92] in which the human mean codon usage dataset obtained from

the Kazusa Codon Usage Database [93] was used as the reference

set. The CSC was calculated as described by Presnyak and collea-

gues [14] using the HEK293 mRNA stability dataset (GSE69153)

[Data ref: 31,32].

Binning of ribosomal occupancy frequencies and calculation of codon
bias-derived occupancy scores
To quantify codon bias for ribosome profiling, the factor loading

scores of the codons from the first principal component were

normalized linearly on a percentage scale from 0 to 1, where 0

corresponded to the codon with the lowest score (AAT) and 1 to

the codon with the highest score (GCC) (Fig EV2A). Binning of the

ribosome occupancies was performed in the R environment via a

custom script. To calculate the corresponding codon bias-derived

occupancy scores, we substituted the codon sequences of mRNA

transcripts with their respective codon scores and, in a similar

fashion, binned the data into 25 bins. As the scores of codons

should inversely reflect the ribosome occupancy (i.e., higher ribo-

some occupancy associated with lower codon scores), we calcu-

lated the reciprocal of the binned codon scores within each bin for

all 25 bins to derive the codon bias-derived occupancy scores. Both

ribosome occupancy and codon bias-derived occupancy scores were

normalized on a linear scale, and a Pearson correlation was

performed on each transcript. To exclude the possibility that the

correlations were due to chance, we shuffled the bins for the codon

bias-derived occupancy scores within each individual transcripts

and calculated the Pearson correlation between shuffled and riboso-

mal occupancy data.

De novo motif discovery
Common transcripts that were more than fivefold differentially

upregulated between the RIP-seq data [Data ref: 43,44] in JJN3 and

H929 cells were firstly identified. The corresponding cDNA

sequences of the transcripts were downloaded from the UCSC table

browser, with the option of masking repeats in the sequences [94].

The sequences were subject to de novo motif discovery via the

MEME (Multiple EM for Motif Elicitation) software under the MEME

tool suite of programs [46].

Data availability

Ribosome profiling and RNA-seq results of HEK293 cells have been

deposited at GEO and can be accessed under dataset GSE126298

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126298).

Expanded View for this article is available online.
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