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Most pleurodont lizard families (anoles, iguanas and their relatives), with
the exception of the basilisks and casquehead lizards (family Corytophani-
dae), share homologous XX/XY sex chromosomes, syntenic with chicken
chromosome 15. Here, we used a suite of methods (i.e. RADseq, RNAseq
and qPCR) to identify corytophanid sex chromosomes for the first time. We
reveal that all examined corytophanid species have partially degenerated
XX/XY sex chromosomes, syntenic with chicken chromosome 17. Transcrip-
tomic analyses showed that the expression of X-linked genes in the
corytophanid, Basiliscus vittatus, is not balanced between the sexes, which is
rather exceptional under male heterogamety, and unlike the dosage-balanced
sex chromosomes in other well-studied XX/XY systems, including the green
anole, Anolis carolinensis. Corytophanid sex chromosomes may represent a
rare example of a turnover away from stable, differentiated sex chromosomes.
However, because of poor phylogenetic resolution among pleurodont
families, we cannot reject the alternative hypothesis that corytophanid sex
chromosomes evolved independently from an unknown ancestral system.
1. Introduction
Transitions between sex-determining systems have occurred repeatedly during
the course of animal evolution [1,2]. Some of these transitions involve new sex
chromosomes evolving from autosomes after acquisition of a sex-determining
gene and the subsequent halting of recombination between the X and Y (or Z
and W) [3–6]. Newly evolved sex chromosomes typically share a large amount
of sequence similarity. However, over time, reduced recombination between
the X and Y (or Z and W) results in degeneration of the Y (or W), largely
owing to the accumulation of deleterious mutations and genetic hitchhiking,
which may lead to differentiated—often heteromorphic—sex chromosomes.
Degenerated Y (orW) chromosomes are typically gene-poor, resulting in a differ-
ence in copy number of the X- (or Z)-linked genes betweenmales and females. In
some but not all species, this may lead to the subsequent evolution of dosage bal-
ance to correct the changes to male–female gene expression [5,7]. These
chromosomal specializations and long-term stability of differentiated sex
chromosomes in many lineages have led to a hypothesis that heteromorphic
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sex chromosomes may serve as an evolutionary trap, prevent-
ing transition to new sex-determining system(s) [1,2,8–10].
While trap-like, differentiated sex chromosomes are thought
to be common, identifying escapees can be important to
understanding sex chromosome evolution [11].

The lizard clade Pleurodonta (iguanas, anoles and their
relatives) has all the hallmarks of an evolutionary trap.
Eleven of the twelve recognized families share the same,
ancient XX/XY sex chromosome system with gene content
homologous to chicken chromosome 15 (GGA15; [12,13]).
Their X and Y chromosomes are highly divergent and at
least one species, Anolis carolinensis, has complete dosage bal-
ance by upregulating expression of male X-linked genes
[14,15]. The pleurodont family Corytophanidae (basilisks
and casque-headed lizards), however, is an exception. Pre-
vious karyotypic work found no evidence of heteromorphic
sex chromosomes (albeit using a limited number of taxa;
[16–17]). More recent efforts failed to find homologous sex
chromosomes between corytophanids and other pleurodonts;
rather genes specific to X chromosomes in other iguana
families are pseudoautosomal or autosomal in corytophanids
[12,18]. Thus, the sex-determining system of corytophanids
remains unknown.

Here, we used restriction site-associated DNA sequencing
(RADseq) to identify the XX/XY sex chromosomes in the
brown basilisk (Basiliscus vittatus) and PCR and quantitative
real-time PCR (qPCR) to confirm that other corytophanid
species share this same XX/XY system. We also conducted
mRNA sequencing (RNAseq) to identify sex-specific genes
in the brown basilisk and explore the presence of dosage bal-
ance in transcripts from X-specific genes. Lastly, we tested the
hypothesis that corytophanid sex chromosomes represent a
rare escape from an evolutionary trap. At present, the phylo-
genetic relationships among pleurodont families are poorly
resolved (using both molecular and morphological data)
although the Corytophanidae are typically resolved as
nested within other pleurodonts [19–22]. This phylogenetic
uncertainty makes it unclear whether corytophanids have a
derived sex-determining system that evolved via a transition
from an ancestral pleurodont XX/XY syntenic with GGA15,
representing an escape from the evolutionary trap, or whether
corytophanids are the sister lineage to all other pleurodonts,
and each group evolved sex chromosomes independently.
Furthermore, we employed topology tests, using data from
two previous phylogenetic studies, to ascertain whether
corytophanids are sister to the remaining pleurodonts.
2. Material and methods
We identified and PCR-validated sex-specific RADseq markers
from multiple male and female B. vittatus (electronic supplemen-
tary material, table S1) using previously described methods
[23–25]. We assessed synteny between the newly identified sex-
specific B. vitattus RAD markers and chicken (Gallus gallus)
using BLAST [26] and confirmed synteny results using two
methods. First, we validated one of the RAD markers with
BLAST hits to chicken genes using PCR with one or both
primer pairs anchored in the gene’s coding region (electronic
supplementary material, tables S2 and S3). Second, we used
qPCR to measure sex differences in the number of gene copies
for putative X-specific genes. In species with degenerated Y
chromosomes, females (XX) have twice as many X copies as
males (XY), whereas genes in autosomal, pseudoautosomal, or
poorly differentiated sex-specific regions have equal copy
number in both sexes. Sex-specific variation in gene copy
number is detectable by qPCR (for detailed methodology see
[27,28]). We further tested both PCR and qPCR primers in four
additional corytophanid species, representing all corytophanid
genera, and A. carolinensis (electronic supplementary material,
table S1) to investigate whether corytophanids share homologous
sex chromosomes (electronic supplementary material, table S4).

Total RNA was extracted from the eyes of three male and
four female B. vittatus. Paired-end RNAseq (80 bp reads) was
conducted using Illumina NextSeq500 by GeneCore (EMBL, Hei-
delberg, Germany), resulting in 61–95 million reads per
specimen after quality filtering. RNAseq data from the male basi-
lisks were used to identify putative X-linked hemizygous genes
based on polymorphism analysis using previously described
methods [9,29]—loci on the non-recombining portion of the X
should be hemizygous and lack single nucleotide polymorph-
isms (SNPs) in all male individuals. RNAseq data from both
sexes were used to investigate dosage balance (using previously
described methodology [9,29]). Briefly, a male reference tran-
scriptome was assembled using Trinity [30]. We mapped
RNAseq reads from each individual independently to the refer-
ence and calculated FPKM (fragments per kilobase million)
expression values in Geneious R7.1 (https://www.geneious.
com). Next, we assigned as many transcripts as possible to puta-
tive syntenic blocks according to the chromosomal position of
their chicken (Gallus gallus) orthologs (GRCg6a; http://www.
ensembl.org). We removed transcripts less than 300 bp and all
gene duplicates (electronic supplementary material, table S5).
Differences in the expression between sexes and among particular
putative syntenic blocks were tested using analysis of variance
(ANOVA) of log2-transformed ratios of male to female average
gene-specific FPKM values.

Finally, we tested whether we could reject a phylogenetic
hypothesis of Corytophanidae as sister to a clade composed of
the remaining pleurodont families using two datasets: (1) a
multi-locus molecular genetic dataset [21] using the maximum
likelihood (ML)-based AU test with 10 000 RELL bootstraps,
implemented in IQtree [31,32] and (2) a morphological dataset
[19] using the parsimony-based Wilcoxon signed-ranks test in
PAUP* [v. 4.0a165] [33,34].

3. Results and discussion
(a) RADseq and identification of sex chromosome

genomic content in Basiliscus vittatus
We identified 160 confirmed male-specific RAD tags and four
confirmed female-specific RAD tags, considering RAD loci
with either 1 or 2 alleles. Because sex-specific RAD markers
are presumed to be on the Y (or W) chromosome, the excess of
male-specific RAD markers indicates an XX/XY system [23,35]
(figure 1; electronic supplementary material, figure S1). BLAST
of male-specific RAD markers to chicken genes had twelve
matches, eight of which were on chicken chromosome 17
(GGA17; electronic supplementary material, table S2). PCR
validation of a subset of the male-specific RAD markers,
including the GGA17 gene ZBTB34, showed male-specific
amplification in B. vittatus (figure 1; electronic supplementary
material table S3). qPCR of seven GGA17 genes, as well as
three autosomal genes for positive control and qPCR normaliza-
tion (electronic supplementary material, table S4), confirmed
that the sex chromosomes in B. vittatus are syntenicwithGGA17.

(b) Sex chromosome homology in Corytophanidae
Comparative qPCR confirmed that five out of the seven
GGA17 genes are sex linked in other corytophanid species
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hypothesis 1 hypothesis 2

Acrodonta
Phrynosomatidae
Crotaphytidae
lguanidae
Leiocephalidae
Polychrotidae
Tropiduridae
Dactyloidae
Corytophanidae
Hoplocercidae
Liolaemidae
Opluridae
Leiosauridae

Acrodonta

(b)(a)

Pleurodonta

Pleurodonta

Corytophanidae
Leiocephalidae
Tropiduridae
Polychrotidae
Dactyloidae
Hoplocercidae
Liolaemidae
Opluridae
Leiosauridae
Crotaphytidae
lguanidae
Phrynosomatidae

XX/XY GGA15 XX/XY GGA17

Figure 2. Two phylogenetic hypotheses for investigating pleurodont sex chromosome evolution. (a) Hypothesis 1, modified from [19], shows corytophanids nested
among other pleurodonts and implies the XX/XY syntenic with GGA15 evolved in the most recent common ancestor to all pleurodonts (arrow) with a subsequent
transition to GGA17 in corytophanids. (b) Hypothesis 2 shows corytophanids as sister to the remaining pleurodonts with sex chromosomes evolving independently in
each clade. The XX/XY syntenic with GGA15 evolved after the split with Corytophanidae (arrow). (Online version in colour.)
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but appeared autosomal or pseudoautosomal in A. carolinen-
sis (figure 1; electronic supplementary material, table S4).
Notably, these five genes did not give the pattern expected
for X-specific genes in all corytophanid species, but instead
exhibited an autosomal or pseudoautosomal pattern in some
species (figure 1d). Many qPCR values from GGA17 genes
show male:female ratios of 1, but we did not observe a clear
phylogenetic pattern. Therefore, we assume that the coryto-
phanid X is either highly rearranged, and/or exhibits a high
degree of lineage-specific Y chromosome degeneration, with
some species maintaining more extensive pseudoautosomal
regions, or poorly differentiated gametologs in both sex
chromosomes. Despite this variability, all corytophanids
appear to have homologous sex chromosomes (syntenic with
GGA17), which can be dated to 15–50 Mya (i.e. the crown
age of corytophanids, corresponding to the minimum age of
this sex chromosome system) [19,21,22,36,37]. One set of B. vit-
tatus ZBTB34 primers also amplified in a sex-specific manner
in B. plumifrons (electronic supplementary material figure
S2). Sex-specific RADtags are on the Y chromosome and
thus not directly comparable to the X-linked alleles, which
we tested for X-specificity by qPCR. Owing to limitations on
primer design, including sub-optimal thermodynamics,
restrictions on the amplicon size (150–200 bp) and non-specific
amplification (e.g. owing to presence of paralogs), we were
not able to test the X-specificity of additional genes from our
RAD-seq and RNA-seq datasets by qPCR.

(c) SNPs analysis of RNAseq data
Nine out of 40 B. vittatus transcripts with homologs on
GGA17 lacked SNPs and were expressed from hemizygous
X-specific loci. GGA17 is significantly enriched for these hemi-
zygous loci compared with transcripts mapping to other
chicken chromosomes (Fisher’s post hoc test: p < 0.00001).
Thus, the 31 remaining GGA17 transcripts have SNPs and
are likely pseudoautosomal, suggesting the non-recombining
portion of the corytophanid X corresponds to a rather small
fraction of GGA17, consistent with our qPCR result.

We also identified a lack of dosage balance in B. vittatus,
and ANOVA showed log2-transformed ratios of male to
female average FPKM of GGA17 genes differed significantly
from genes located on other chicken chromosomes (F28,2098 =
4.26, p < 0.00001). Dosage balance appears more common
in XX/XY species than ZZ/ZW species in animals [7].
Thus, comparing B. vittatus to other pleurodonts with
dosage balance, e.g. anoles [14,15], may be a fruitful way to
investigate the evolution and maintenance of dosage balance.

(d) Phylogenetic topology tests
Adefining characteristic of clades caught in a sex chromosome
trap is that no taxa within that clade have transitioned to a
different sex chromosome system [10,23,38]. Transitions
among sex chromosomes can be identified by interpreting
sex chromosome evolution in a phylogenetic context. Thus,
uncertainty in the underlying phylogenetic relationships can
extend into uncertainty of the timing and directionality of
sex chromosome evolution. In cases where the underlying
phylogeny is poorly resolved, phylogenetic topology tests
offer one way of investigating alternative hypotheses. This
involves testing whether a topology that constrains the clade
with the ‘new’ sex chromosome system as sister to a clade of
the remaining taxawith the trap-like sex chromosomes is a sig-
nificantly worse fit to the data than the optimal tree (figure 2).
Phylogenetic relationships among pleurodont families are
poorly resolved, characterized by short internal branch
lengths and low nodal support, e.g. bootstrap [19–22]. These
conflicting topologies make it difficult to interpret our results
and lead to two conflicting hypotheses (figure 2). Hypothesis
1 posits an XX/XY syntenic with GGA15 evolving in the most
recent common ancestor to all pleurodonts and subsequent
transition away in corytophanids, thus an escape from the
evolutionary trap. Hypothesis 2, where corytophanids are
the sister clade to the remaining pleurodonts, has XX/XY sys-
tems evolving on homologs of GGA15 and GGA17
independently from an ancestor with some unknown sex-
determining system. We could not reject Corytophanidae as
sister to remaining pleurodonts (hypothesis 2) using either
molecular [21] or morphological data [19] (electronic sup-
plementary material, figures S3–S6): AU test of molecular
genetic data (tree loglikelihood: best tree =−356338.318;
alternative topology =−356366.256; difference in loglikeli-
hood = 27.938; p = 0.879) and Wilcoxon signed-ranks test of
morphological data (tree length: best tree = 2105; alternative
topology = 2108; N = 59; z =−0.367; p = 0.714). Therefore, we
cannot differentiate whether corytophanids represent a rare
case of the turnover of differentiated sex chromosomes, or
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whether non-homologous XX/XY sex chromosomes evolved
independently in corytophanids and other pleurodont
families.

(e) Sex chromosome evolution
There is an ongoing debate whether some chromosomes are
more likely to become sex chromosomes than others
[29,39,40]. For example, the chromosome containing the testis-
determining gene DMRT1 has become a sex chromosome
multiple times in amniotes [41–45]. Chromosomes homologous
to GGA17 are parts of sex chromosomes not only in
corytophanids, but also lacertid lizards, Paroedura geckos, the
agamid Pogona vitticeps and monotremes [29,45,46]. GGA17
contains at least one gene, NR5A1 (also known as steroidogenic
factor 1 or Sf1), which is critical for gonadal development
[47,48]. While our data did not identify a candidate B. vittatus
sex-determining gene, NR5A1 may be a promising nominee.
20190498
4. Conclusion
Our combination of RADseq, RNAseq and qPCR methods
revealed that B. vittatus and all other corytophanid genera
share an XX/XY sex-determination system, syntenic with
GGA17. Corytophanid sex chromosomes are not homologous
to the XX/XY sex chromosomes syntenic with GGA15 shared
by all other pleurodont families. The green anole, with typical
pleurodont XX/XY sex chromosomes, possesses global
dosage compensation [14,15]. Male and female B. vittatus,
on the other hand, differ in the expression of X-specific
genes representing a rare exception of a lack of dosage bal-
ance under male heterogamety. Future investigations
should focus on resolving the pleurodont phylogeny. This
may solve the current uncertainty of whether corytophanids
and other Pleurodonta sex chromosomes evolved indepen-
dently from an unknown ancestral sex-determination
system, or whether corytophanids are nested among other
pleurodonts and escaped from an evolutionary trap.
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