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The presentation and development of
psychiatric illnesses is affected by interin-
dividual variability in brain morphology
and genetics (Tost et al., 2012; Smoller,
2016). Epigenetic factors and early life ex-
periences can also alter brain develop-
ment and influence psychiatric illness
susceptibility (LaSalle, 2011; Kundakovic
and Champagne, 2015; Mitchell et al.,
2016). For example, interactions between
genetic and environmental factors may al-
ter gene expression, resulting in neuro-
plastic and functional modifications that
lead to anxiety and depression (Nieto et
al., 2016; Uchida et al., 2018).

The hippocampus and amygdala, which
are involved in emotion and memory
processing, play important roles in the
manifestation of depression and anxiety
disorders. Many properties of these two
brain regions likely contribute to psychi-
atric illnesses, including abnormal vol-
ume and density (Gatt et al., 2009; Walton
et al., 2017), connectivity and signaling
(Wheeler et al., 2018), cell function (Sild
et al., 2017), genetics (Gatt et al., 2009; Lau

et al., 2010; Wheeler et al., 2018), and/or
epigenetic modifications (Simmons et al.,
2012; McCoy et al., 2017).

One stable marker of epigenetic mod-
ifications is DNA methylation, a process
which occurs when a methyl group is added
to DNA at the C5 position in the DNA cyto-
sine ring, most commonly at CpG dinucle-
otides. This process is catalyzed by DNA
methyltransferases (DNMTs) and can result
in modified gene expression, typically as a
gene being “turned off” or repressed.

McCoy et al. (2019) hypothesized that
DNA methylation patterns in the hip-
pocampus and amygdala can drive beha-
vioral phenotypes through modifiable
mechanisms. To test this, they examined
methylation patterns in low-responder
(LR) rats, which were bred from LR lines
shown to exhibit low responses to novel
stimuli and increased behaviors associ-
ated with anxiety and depression (e.g.,
anxiety-like behavior, lower sex drive,
passive coping, and being less social), and
high-responder (HR) rats, from HR lines,
which do not express such behaviors. Spe-
cifically, they examined levels of major
protein regulators of methylation, such as
DNMT1, DNMT3a, and DNMT3b, as well
as global methylation levels in the
amygdala and hippocampus of HR and
LR rats within the first 21 postnatal days
(P21). Although they observed no differ-
ence between the two populations within

the hippocampus, significant differences
were found in the amygdala; the LR rats
generally showed greater levels of methyl-
ation, especially at early time points (1
week) after birth. Importantly, McCoy et al.
(2019) also showed that modifying methyl-
ation during the late embryonic stages or
early postnatal period can result in de-
creased anxiety and depressive-like de-
meanor on behavioral tests focused on
emotional regulation in adulthood, such as
the open-field test, the elevated plus maze, a
social interaction test, a sucrose preference
test, and the forced swim test.

Because the largest difference in meth-
ylation occurred early in development,
McCoy et al. (2019) mapped and com-
pared the methylome of HR and LR rat
amygdalae 1 week after birth to identify
specific DNA regions-of-interest that were
differentially methylated between the two
populations. There were 1881 differentially
methylated regions, with �80% of them hy-
permethylated in the LR rats. These results
differ from those in adult HR and LR rats,
where HR rats tend to have increased
methylation in the amygdala, albeit in dif-
ferent DNA regions and affecting differ-
ent pathways (McCoy et al., 2017).
Interestingly, rats that exhibited interme-
diate response (IR) between LR and HR
rats in this study had a methylation profile
more similar to HR than LR rats, suggest-
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ing that the amygdala methylation pattern
in LR rats is abnormal.

Next, McCoy et al. (2019) asked
whether reducing methylation in LR rats
would influence behavior. To decrease
methylation in developing rats during the
late embryonic phase when limbic system
development and refinement predomi-
nates (Moore et al., 2006; Soma et al.,
2009), they fed LR dams a diet lacking in
methyl donors starting at gestational day
17 and lasting until P21. Although no
global changes in methylation were iden-
tified in offspring from LR dams that were
restricted in methyl-donor intake, they
still showed improved behavioral results,
including increased exploratory behavior,
less anxiety, more social exploration, and
less depression-like behavior in adult-
hood (P70�); overall, their behaviors
were similar to those exhibited by IR rats.
As expected, there was no change in off-
spring functioning when HR dams were
fed the same diet. Future work could ex-
plore the inverse relationship by feeding
HR dams excess methyl donors to evalu-
ate whether inducing hypermethylation
during the perinatal period is also suffi-
cient to change their offspring behavior.

To determine whether changes in
methylation exerted direct or indirect ef-
fects on behavior, McCoy et al. (2019) di-
rectly suppressed amygdala methylation
in IR rats by infusing a specific siRNA to
target DNMT3B into the amygdala of P10
IR pups. This treatment led to a transient
17% reduction of DNMT3B levels 4 d after
siRNA infusion, but did not alter expres-
sion in adulthood. Nonetheless, transient
suppression of DNMT3B in developing
amygdala of IR rats resulted in less anx-
ious behavior in males, but not in females,
suggesting that temporary changes in
methylation patterns during development
can have long-term effects. These experi-
ments also highlight potential differences
in male and female neurodevelopmental
pathways and epigenetic susceptibility.

An important question to consider is
how changes in DNA methylation within
the amygdala during key developmental
periods can affect function later in life.
The most commonly hypermethylated
pathways in LR rats were those involved in
long-term depression, glutamatergic trans-
mission, and signaling cascades involving
Ras-related protein 1 (Rap1), oxytocin,
and phosphoinositide 3-kinase-protein
kinase B (PI3K-Akt), which have various
roles in brain function including cell-cycle
regulation, proliferation, survival, and
migration. Interestingly, previous work
found that decreased activity of these

pathways in the amygdala, as well as
downregulation of brain-derived neu-
rotrophic factor signaling, was associated
with depression and anxiety in mammals,
including humans (Pape and Pare, 2010;
Duman and Voleti, 2012). It is possible
that early changes in these pathways can
influence cell connectivity and function
during sensitive periods of brain develop-
ment (Moryś et al., 1998; Bouwmeester et
al., 2002; Stead et al., 2006). For example,
impaired synaptic plasticity and the in-
ability to prune connections between neu-
rons or achieve long-term depression can
lead to hyperactivity in the basolateral
amygdala (BLA) and/or hyperconnectiv-
ity and increased functional coupling
between amygdala regions (BLA, centro-
medial amygdala) and various other brain
regions (hippocampus, anterior cingulate
cortex, and medial prefrontal cortex); in
turn, this can lead to an inability to prop-
erly regulate emotions and increased
susceptibility for developing anxiety or
depressive disorders (Qin et al., 2014; Eh-
rlich and Josselyn, 2016; Johnson et al.,
2018). Some regulatory changes that
could be responsible for these alterations
in neurodevelopment include dysregu-
lated PI3K-Akt-mTOR pathway signaling
(Huang et al., 2016), diminished Rap1 ex-
pression and pathway downregulation
(Pan et al., 2008; Ye and Carew, 2010), or
decreased signaling within the oxytocin
pathway (Fan et al., 2015; Sobota et al.,
2015; Koch et al., 2016). Ultimately, the
precise mechanism by which the methyl-
ation and interaction of these pathways
produces long-term effects should be an
important avenue to pursue in the future
studies.

Regardless of the mechanistic details,
the findings that early methylation changes
can have measurable effects on behavior
later in life has important implications for
clinical translation. McCoy et al. (2019)
suggest that potential future strategies for
stress-related psychiatric illnesses may in-
clude early intervention in at risk popula-
tions, such as children that display
atypical behaviors (Frenkel et al., 2015).
However, important considerations in-
clude defining who is at risk, whether
methylation changes can help change
brain function, and how to target the ther-
apy, as drastic global dietary changes in-
volving methyl donor restriction would
likely have adverse side effects.

Ultimately, McCoy et al. (2019) show
that DNA methylation within the amyg-
dala during early developmental periods
plays a fundamental role in the develop-
ment of psychiatric illnesses later in life.

Further experiments will be necessary to
gain a better understanding of the impli-
cations of epigenetic manipulation on
development and function before transla-
tion is possible, but the knowledge ac-
quired from this study has potential to
help in the creation of future mitigation
strategies to manage, predict, and prevent
anxiety and depression.
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