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Abstract

Acute pain has an evolutionary role for the detection of and response to physical harm. In some 

cases, however, acute pain can impair function and lead to other morbidities. Chronic pain, 

meanwhile, can present as a psychopathological condition that significantly interferes with daily 

living. Most basic and translational pain research has focused on the molecular and cellular 

mechanisms in the spinal and peripheral nervous systems. In contrast, the brain plays a key role in 

the affective manifestation and cognitive control of pain. In particular, several cortical regions, 

such as the somatosensory cortex, prefrontal cortex, insular, and anterior cingulate cortex, are 

well-known to be activated by acute pain signals, and neurons in these regions have been 

demonstrated to undergo changes in response to chronic pain. Furthermore, these cortical regions 

can project to a number of forebrain and limbic structures to exert powerful top-down control of 

not only sensory pain transmission but also affective pain expression, and such cortical regulatory 

mechanisms are particularly relevant in chronic pain states. Newer techniques have emerged that 

allow detailed studies of central pain circuits in animal models, as well as how such circuits are 

modified by the presence of chronic pain and other predisposing psychosomatic factors. These 

mechanistic approaches can complement imaging in human studies. At the therapeutic level, a 

number of pharmacological and non-pharmacological interventions have recently been shown to 

engage these top-down control systems to provide analgesia. In this review, we will discuss how 

pain signals reach important cortical regions, and how these regions in turn project to sub-cortical 

areas of the brain to exert profound modulation of the pain experience. In addition, we will discuss 

the clinical relevance of such top-down pain regulation mechanisms.

Keywords

pain; cortex; top-down regulation; limbic system; subcortical structure

*Correspondence: jing.wang2@nyumc.org. 

Competing interests
The authors declare that they have no competing interests.

HHS Public Access
Author manuscript
Psychosom Med. Author manuscript; available in PMC 2020 November 01.

Published in final edited form as:
Psychosom Med. 2019 ; 81(9): 851–858. doi:10.1097/PSY.0000000000000744.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

1. How pain signals reach important cortical regions

Pain plays a critical role in the interactions between psychological factors (e.g., depression 

and anxiety) and medical illness. This review provides background information about the 

neuroanatomical processes involved in both the bottom-up and the top-down processing of 

pain. The following topics will be addressed: (1) How pain signals reach important cortical 

regions; (2) The modulating role cortical projections to subcortical structures relevant to 

pain; (3) Implications for a neuromodulatory approach for pain treatment. The nociceptive 

system originates in the periphery. The primary afferent nociceptive neurons detect 

nociceptive signals, and then transmit these signals to the neurons of the dorsal horn of the 

spinal cord. These spinal neurons then project to the brain. Such “bottom-up” pathways are 

numerous and axons of the spinal neurons terminate widely in the brainstem, midbrain, and 

diencephalic regions such as the rostral ventromedial medulla (RVM), the parabrachial area 

(PB), the periaqueductal gray (PAG), the amygdala (AMY), the hypothalamus, and the 

thalamus. From here, neurons project to various cortical regions that are thought to mediate 

different aspects of pain 1. The cortical areas most commonly acti-vated by a painful 

experience include the somatosensory cortices S1 and S2, the insula (IC), and the prefrontal 

cortex (PFC). These regions are part of a network of interconnected and interacting cortical 

structures that are triggered by a nociceptive input and in turn process and regulate the 

behavioral response to that input.

The sensory cortices S1 and S2 receive nociceptive signals from sensory nucleus of the 

thalamus, the ventro postero lateral (VPL) 2-4 and posterior triangular (PoT) thalamic 5. 

Studies in both humans and animal models reveal that the nociceptive inputs into the S1 and 

S2 underlie, at least partially, the perception of sensory features of pain, including the 

location, timing and sensory qualities 3,6-10. In a different pathway, the ventromedial 

posterior nucleus of the thalamus (VMPo) projects to the IC 5. The strategic position of the 

IC enables interactions with several other cortical regions which makes it a well-investigated 

brain region for pain processing 11-13. In addition, cortical pain processing involves the 

prefrontal cortex. In mammalian systems, the PFC can be divided in several main parts 

according to Brodmann (1909): the lateral prefrontal cortex (lPFC), the orbitofrontal cortex 

(OFC), and the medial prefrontal region including the anterior cingulate cortex (ACC) and 

the medial prefrontal cortex (mPFC).

The OFC is involved in many cognitive and sensory processes including response inhibition, 

value, prediction errors, rewarding and aversive aspect of sensory experiences including 

taste, odor, pleasant and painful touch 14. Functional MRI (fMRI) studies indicate that 

painful touch produces greater activation of the orbitofrontal cortex than affectively neutral 

stimuli 15. However, the exact role of OFC in pain states remains unclear. The role of the 

ACC, on the other hand, has been well established. Early cases of cingulectomy in humans 

already indicate its role in the aversive component of pain 16,17. Electrophysiological 

recordings in animals 18-20 and human neuroimaging experiments further validated the 

importance of the ACC 21-24. Both type of studies showed that the fundamental role of ACC 

lies in processing the emotional and aversive aspect of painful stimuli 25 as well as for 
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discriminating pain intensities 26-28. Finally, animal studies have provided additional 

evidence for the involvement of mPFC in acute nociception. In rodents, neurons in ventral 

mPFC can respond to acute noxious stimuli 29,30. Moreover, activation of the PFC output 

projection has been shown to inhibit pain 31-33.

The initial description of these aforementioned brain regions as part of a “pain matrix” has 

become more controversial recently, as studies in human brain imaging and animal models 

of pain have questioned the specificity of each of the regions in this network for pain 

processing 34,35. For example, a recent report on human imaging highlights the complexity 

involved in defining the specificity of cortical nociceptive processing. In this study, in 

patients who suffer from a channelopathy that make them incapable of detecting nociceptive 

stimuli at the periphery, the application of a noxious mechanical stimulus continues to show 

activation of their ACC36. A simple explanation of these results is that the ACC does not 

necessarily process nociceptive information. However, an alternative explanation is that the 

activation of this pain matrix, or a nociceptive cortical and subcortical network, may 

represent multimodal or multi-sensory processing, including pain processing. In this model, 

Waxman and colleagues suggest that the magnitude of neural activation can be explained by 

the salience of the stimulus independent of input or sensory modality. Their model explains 

why imaging may show activation of the ACC in the absence of detectable nociceptive 

inputs at the periphery 37. At the same time, studies have shown that the S1, S2 and insula 

cortices can be activated by nociceptive and tactile stimulation 22, and it is also possible that 

the activation of these neighboring cortical regions provide cortico-cortical activation of 

neurons in the ACC 38. Nevertheless, the idea that select groups of neurons in select brain 

areas are specifically activated by a noxious signal and whose activation is sufficient and 

necessary to trigger a painful experience or behavior, has to be carefully interpreted. 

Likewise, the specificity of responses of this so-called pain matrix to nociceptive inputs has 

to be analyzed in greater detail in the chronic pain state as well.

In the chronic pain state, the S1, S239-43, as well as the insula44,45 have been described to 

undergo changes in human imaging studies and studies of animal models. Animal studies 

further indicate that in the ACC, pyramidal neurons change their firing frequency 46,47, as 

intrinsic excitability in L5 pyramidal neurons is altered, and a loss of local bidirectional 

connections between pyramidal cells and fast-spiking inhibitory interneurons results in 

disinhibition48. Moreover, long-term presynaptic as well as postsynaptic changes occur in 

the ACC 49-51, which increase the probability of neurotransmitter release as well as the 

excitatory receptor response 52. All of these modifications result in an increased output from 

the ACC in the chronic pain state. Finally, long-term changes of temporal precision of 

information coding in this region53 also contribute to increased pain unpleasantness28,54,55 

and depression and/or anxiety56. These affective changes are thought to be mediated by the 

cingulate projection to limbic areas, including the amygdala. Meanwhile, in the mPFC, 

studies in human imaging as well as mechanistic inquiries in animal models suggest that 

structural57-59 or synaptic loss can contribute to pain symptoms60,61. Such synaptic changes 

have been shown to be also involved in neuropathic pain in rodent models, via the 

recruitment of additional cortical areas62.
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Long term synaptic modification seems to be a common feature in these above cortical areas 

in the chronic pain state. With this in mind, one key hypothesis developed by Merskey and 

Bogduk (1994) is that “chronic pain is a persistence of the memory of pain and/or the 
inability to extinguish the memory of pain evoked by an initial inciting injury”. According to 

this paradigm, peripheral injury and the resulting nociceptive inputs can trigger changes in 

the synaptic machinery in the cortex. When injury and pain persist for a long period of time, 

potentiation or stabilization of these synaptic changes occurs, which consequently generate 

abnormal firing of neurons in these pain-related cortical areas, in the presence of less intense 

peripheral sensory stimulation or no stimulation at all. Due to the strong connectivity 

between the cortex and limbic areas, altered activity in these cortical pain processing regions 

could therefore facilitate increased pain transmission to subcortical structures. This 

transition from acute to chronic pain state also represents a progression from a 

predominance of sensory pain circuitry to a predominance of affective pain circuitry in 

chronic pain states63.

2. How does the cortex project to subcortical structures to modulate pain?

Numerous factors, including emotional state, attention, and memory of past painful 

experiences can engage multiple brain regions to profoundly modulate nociceptive inputs 

and give rise to a unique experience of pain. An understanding of these pathways that 

contribute to this top–down pain modulation can be useful for guiding the development of 

effective pain therapeutics.

2.1 Cortical modulation of the descending pain regulatory system—It is well 

established that nociceptive transmission in the dorsal horn of the spinal cord can be 

regulated by the descending pain regulation system involving the periaqueductal gray (PAG) 

and the rostromedial ventral medulla (RVM)64,65. This pathway has been described to be a 

hub for opioid mediated placebo hypoalgesia. The role of PAG was first described in the 

1960s, when Reynolds and colleagues observed significant analgesia following electrical 

stimulations of the PAG in animals66,67, and those results were later confirmed in human 

imaging studies68. Meanwhile, in animal studies, pain reduction generated by PAG 

stimulation can be attributed to the projections of neurons from the PAG to the rostroventral 

medulla (RVM) and the A7 noradrenergic nucleus of the medulla69. Neurons from the RVM 

are serotoninergic or GABA/glycinergic and can either activate or inhibit the spinal 

neurons70. Thus, a balance between these two descending (faciliatory and inhibitory) 

projections is critical for pain modulation. In the case of chronic pain, for example, this 

balance is shifted towards more pain facilitation than inhibition71-73. Therefore, this PAG-

RVM pathway is a key analgesic target for opioids, cannabinoids and serotonin/

norepinephrine reuptake blockers. This pathway is also an important target for cortical 

modulation.

The ACC has been shown to project both directly and indirectly, via subcortical regions such 

as the amygdala and the hippocampus, to the PAG74. Activation of the ACC via electrical or 

glutamatergic stimulation increases paw withdraw in animal studies, suggesting descending 

facilitation via RVM 75,76. On the other hand, ACC activation has also been described to 

diminish neuronal responses to mechanical stimuli in a subset of spinal dorsal horn 
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neurons76, probably due to the direct projections from ACC to the dorsal horn of the spinal 

cord77. These apparent opposite results suggest a high level of complexity in this descending 

modulatory circuit that warrants further investigations. Newer molecular tools will allow us 

to decipher the impact of the ACC on spinal pain circuits in greater details78. Moreover, 

other cortical regions can engage the descending pain regulating system. Robust mPFC-PAG 

projections have been confirmed in rodent pain models79. Furthermore, human imaging 

studies indicate that chronic pain disrupts this pathways in patients80. Finally, the insular 

cortex also modulates spinal pain transmission, as the injection of μ-opioid receptor agonists 

such as morphine produced an analgesic effect by decreasing the firing of spinal nociceptive 

neurons81. Increased GABAergic transmission and resulting inhibition of insular outputs 

provides descending inhibition of spinal nociceptive neurons82, likely through an insular-

PAG-RVM projection83.

2.2 Examples of corticolimbic regulation of pain—While the PAG-RVM pathway 

is the most studied conduit for descending pain modulation, there are other subcortical 

targets for the cortex to exert top-down control of pain, such as the limbic system, including 

the amygdala and nucleus accumbens (NAc). Interestingly, various regions of the insular 

cortex, PFC and ACC have been shown to project to these limbic regions. Unfortunately, the 

mechanisms of corticolimbic regulation of pain are less well-characterized.

2.2.1 Prefrontal cortex – amygdala projection in acute and chronic pain 
regulation: The amygdala plays a central role in the affective aspect of pain. Indeed, this 

group of sub-cortical nuclei is well known in the control of fear and related emotions84. 

Overall, the amygdala is considered to provide an emotional value – either positive or 

negative – to sensory information, particularly involved in aversive or fear – memory. The 

central nucleus of the amygdala (CeA) receives nociceptive inputs from the dorsal horn via 

the parabrachial area (PB)85-87. The lateral-basolateral amygdala (LA-BLA) receives 

sensory and affect-related information from the thalamus and the cortex 88. CeA processes 

can be influenced by direct glutamatergic projections from the BLA and by indirect 

disynaptic routes involving inhibitory GABAergic neurons in the intercalated cells 

(ITCs)89,90. CeA is the output nucleus of the amygdala that modulates pain behavior through 

projections to descending pain control centers as the PAG88,91.

The bidirectional projections between the amygdala and the prefrontal are well-studied in 

animal pain models. Under chronic pain conditions, synapses between the BLA and the CeA 

are potentiated, resulting in increased excitability of CeA neurons92,93. In these rodent 

studies, pain-induced plasticity in the BLA deactivates the mPFC through glutamate-driven 

synaptic inhibition, resulting in decision-making deficits as well as depression- and anxiety-

like behaviors94,95. This feedforward inhibition of mPFC is dependent on mGluR1/5 type of 

glutamate receptors96 and the endocannabinoid system; a combined activation of 

cannabinoid receptor type 1 (CB1) and mGluR5 receptors will restore the mPFC activity and 

decrease the spinal withdrawal reflexes as well as cognitive deficits in animal pain 

models97-99. In turn, the mPFC also projects directly to the ITC to inhibit the CeA, and this 

top-down projection provides a critical cortical control of amygdala. In this model, restoring 

the mutual inhibition of the PFC and amygdala may play an important role in regulating pain 
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phenotypes (Figure 1). Recent human imaging studies have confirmed some of these 

findings, specifically the activation of the mPFC during pain state100.

2.2.2 Prefrontal cortex - nucleus accumbens projection in acute and chronic pain 
regulation: The Nucleus Accumbens (NAc) has been mostly studied in the context of 

rewards, but it is also known to play key roles in aversion-type behaviors101,102. Neurons of 

the NAc are strongly modulated by dopamine, which are released from a neighboring region, 

the ventral tegmental area (VTA). Relief of aversive states, including pain, has been thought 

as a rewarding stimulus that activates the NAc. Accordingly, pain relief has been shown to 

give rise to negative reinforcement via increased dopamine inputs to the NAc103. Recent 

studies in animal pain models also demonstrate that aversion and reward prediction signals 

may in fact be differentially encoded by specific patterns of dopamine responses in different 

subregions of the NAc, the central core and the surrounding shell. In anesthetized rats, for 

example, painful tail pinch triggers transient dopamine release in the core region of the NAc, 

whereas in the shell subregion dopamine is released after the termination of the same 

stimulus104. This time course of activity in the NAc shell is consistent with the concept of 

pain offset as a reward. In humans, fMRI studies have demonstrated a negative BOLD signal 

valence in the NAc at the onset of a thermal nociceptive stimulation and a positive signal 

valence at the stimulus offset (relief)105. These studies suggest a role of the NAc as a 

common neurobiological center for processing pain and pleasure106.

In addition to its regulation of the aversive component of pain, the NAc has also been shown 

to regulate the sensory pain pathway107-110. Indeed, the NAc receives nociceptive 

information via direct projections from spinal dorsal horn neurons111. Consequently, studies 

in animal models have demonstrated that inactivation of the NAc shell with lidocaine 

increases spinal withdrawal to pain, whereas dopaminergic agonist in the NAc has the 

opposite effects112.

Cortical and subcortical regions including the PFC and ACC113-115 and amygdala91 are 

known to project to the NAc. Activation of the PFC-NAc circuit in animal models have been 

shown to provide important regulation for the sensory and aversive components of acute116 

and chronic pain117. In humans, in the case of chronic pain, the PFC connectivity to NAc is 

increased118-120 as a potential compensatory response. It is also worth-noting that this 

increased functional connectivity takes place at the same time as a global decrease in PFC 

outputs. Chronic pain has been shown to deactivate the PFC95, possibly due to reduced 

glutamatergic inputs and decreased dendritic formation of the layer 5 output cells59,94, as 

well as to a diminished level of activity of the cholinergic interneurons61. Selectively 

increasing the excitatory output to the NAc can compensate for these chronic pain-induced 

changes, and subsequently reduce pain and associated anxiety/depressive behaviors 

associated with chronic pain. Thus, chronic pain may elicit a circuit-specific change in the 

PFC, resulting in increased projection to some areas and decreased projections to others.

2.2.3 Insula – limbic structures: Whereas prefrontal projections to the limbic system are 

well established, fewer studies have examined the connection between the insula and the 

amygdala or NAc121,122. It is interesting to note, however, that activities in both the NAc and 

the insula precede, but have opposing effects on risky choices123, and that direct structural 
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connections between these two areas have been reported in humans during gambling 

tasks124. Moreover, insula glutamatergic inputs to the NAc are necessary for aversion-

resistant alcohol consumption in rodent pain models125. Similar to the mPFC, the insula and 

amygdala are broadly interconnected either via direct or indirect projections126,127. The 

insula-amygdala pain pathway is involved in fear conditioning128. Thus, it is likely that the 

connection between the insular and the limbic system plays important roles in anxiety-type 

of behaviors as well as risk assessment to regulate pain.

3. Implications for a neuromodulatory approach for pain treatment

Chronic pain affects up to one third of Americans, and certain acute pain syndromes such as 

postoperative pain also carry significant morbidities. Current pharmacological treatments 

remain limited by side effects and suboptimal efficacy, in part due to the complexity of the 

neural network involved in pain processing. An improved understanding of the cortical 

modulation of pain can have important impact on two nonpharmacological approaches: 

cognitive-behavioral therapy (CBT) and neuromodulation.

In terms of psychological evaluation and treatment of chronic pain, CBT has received the 

most atten-tion. CBT is multifaceted and addresses mood (typically anxiety and depression), 

function (including disability) and social engagement, as well as indirectly targeting 

analgesia. A growing body of research is showing the benefits of behavioral therapy for pain 

management129,130 and the effect of CBT on neurophysiological changes in the brain131. 

After an 11-week CBT program, for example, gray matter volume was increased in PFC, 

ACC, and sensorimotor cortices in patients with a variety of chronic pain conditions, and 

these changes were associated with a decrease in pain catastrophizing132. In patients with 

fibromyalgia, CBT led to increased PFC activation and PFC-thalamus functional 

connectivity, as well as reported improvement in function. These findings lend support to the 

notion that psychological treatments can impact cortical modulation of pain to exert greater 

control of cognitive and emotional variables related to pain133.

In addition to CBT, more invasive neuromodulation techniques such as deep brain 

stimulation (DBS), transcranial direct current stimulation (tDCS), and transcranial magnetic 

stimulation (TMS) can also target pain-modulating centers in the brain. Currently, 

neuromodulation treatment for pain has been limited to spinal cord stimulation (SCS) and 

peripheral nerve stimulations134. An increasing number of studies, however, have begun to 

investigate the possibility to target various nuclei in the sensory thalamus, periaqueductal 

grey, NAc, motor cortex, ACC and PFC, for pain control135,136. Bilateral stimulation of 

ACC using a DBS protocol achieved temporary pain relief in a small study of patients, as 

these patients still felt pain, but “it didn’t bother” them as much137. In a more recent study, 

chronic DBS of the ACC using implanted electrodes produced analgesic effect in 30% of the 

patients138. The side effects have in general been mild in most studies 139. Similar 

neuromodulatory studies using TMS to stimulate the mPFC are ongoing as well, and some 

studies show a decrease in pain rating in individuals experiencing thermal pain140,141. 

Finally, studies using stimulation of the motor cortex (MCS) to decrease thalamic 

overactivity and modulate the descending pain pathway have demonstrated mixed 

efficacy142,143 in humans, despite promising results in animals144,145. Meanwhile, 
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stimulation of parietal cortex seems more specific for mechanical/tactile related pain146,147. 

In the cases of motor cortex and parietal cortex stimulation, although the underlying 

mechanisms are not well-understood, the approach nevertheless holds significant therapeutic 

promise.

Important factors to consider for cortical and subcortical stimulation include the duration of 

stimulation, frequency of stimulation, and the possibility of low frequency stimulation to 

activate neurons versus high frequency stimulation to inhibit neuronal activities. A desired 

outcome would be for the neuromodulation device to perform stimulation or inhibition of 

the neuronal networks during the occurrence of pain episodes or in a more focal way to 

avoid stimulation of ‘en passant’ fibers.

In conclusion, we know that nociceptive inputs reach multiple brain areas to give rise to the 

experience of pain, including sensory and emotional aspects. These circuits are under strong 

top down controls to regulate sensation and affect in acute and chronic states. Recent studies 

underscore the role of cortical and sub-cortical brain areas in the associations of 

psychological factors and early traumatic experiences with acute and chronic pain 

processing 148-151 which has potentially important clinical implications152-154. Future 

studies of the cortical and subcortical circuitry are needed to enhance our understanding of 

pain processing and regulation to guide the development of better analgesic therapies.
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Figure 1. 
The amygdala sends glutamatergic projections (green) from the basolateral nucleus (BLA) 

to mPFC (blue dashed box) pyramidal cells, and to mPFC GABAergic interneurons 

inhibiting mPFC pyramidal cells (feedforward inhibition). mPFC pyramidal cells send 

glutamatergic projections to GABAergic interneurons in the amygdala (intercalated cells, 

ITC) to control amygdala output from the central nucleus (CeA).
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