
sensors

Article

A Genetic-Based Extreme Gradient Boosting Model
for Detecting Intrusions in Wireless Sensor Networks

Mnahi Alqahtani, Abdu Gumaei * , Hassan Mathkour and Mohamed Maher Ben Ismail

Department of Computer Science, College of Computer and Information Sciences, King Saud University,
Riyadh 11543, Saudi Arabia; mnahiralqahtani@gmail.com (M.A.); mathkour@ksu.edu.sa (H.M.);
mbenismail@ksu.edu.sa (M.M.B.I.)
* Correspondence: abdugumaei@gmail.com

Received: 2 September 2019; Accepted: 30 September 2019; Published: 10 October 2019
����������
�������

Abstract: An Intrusion detection system is an essential security tool for protecting services and
infrastructures of wireless sensor networks from unseen and unpredictable attacks. Few works of
machine learning have been proposed for intrusion detection in wireless sensor networks and that
have achieved reasonable results. However, these works still need to be more accurate and efficient
against imbalanced data problems in network traffic. In this paper, we proposed a new model to
detect intrusion attacks based on a genetic algorithm and an extreme gradient boosting (XGBoot)
classifier, called GXGBoost model. The latter is a gradient boosting model designed for improving
the performance of traditional models to detect minority classes of attacks in the highly imbalanced
data traffic of wireless sensor networks. A set of experiments were conducted on wireless sensor
network-detection system (WSN-DS) dataset using holdout and 10 fold cross validation techniques.
The results of 10 fold cross validation tests revealed that the proposed approach outperformed the
state-of-the-art approaches and other ensemble learning classifiers with high detection rates of 98.2%,
92.9%, 98.9%, and 99.5% for flooding, scheduling, grayhole, and blackhole attacks, respectively, in
addition to 99.9% for normal traffic.

Keywords: intrusion detection system; wireless sensor networks; genetic algorithm; extreme gradient
boosting classifier; WSN-DS

1. Introduction

A wireless sensor network (WSN) is a kind of networks, which can be part of the Internet of
Things (IoT) and is composed of a number of sensor nodes. These nodes are distributed in a wide
range of different regions to collect required information and convey them to a central node called
a base station (BS) node or a sink node, which is a more powerful, capable node [1,2]. They are
used in many real-time applications such as security and healthcare monitoring, climate change and
environmental monitoring, and military surveillance systems. Several studies have suggested various
possible ways to overcome possible security threats related to WSNs. They include secure routing,
key exchange, authentication, and other security techniques addressing specific kinds of intrusions.
Intrusion detection systems (IDS) are one of the most flexible and useful tools to prevent different
attacks and threats to WSNs.

An IDS is an appropriate tool for detecting intrusion attacks in wired and wireless networks.
When the system detects the intrusion attack, it alerts the controller or supervisor to take proper
decisions [3]. In the last few years, several research works have been published on IDSs for IoT. Some
of them are proposed for mobile ad hoc networks (MANETs) [4–6]. The others are related to wireless
sensor networks (WSNs) [7–9], cloud computing [10], and cyber-physical systems [11].

Sensors 2019, 19, 4383; doi:10.3390/s19204383 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8512-9687
http://dx.doi.org/10.3390/s19204383
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/20/4383?type=check_update&version=2


Sensors 2019, 19, 4383 2 of 20

Mishra et al. [4] mentioned that the IDSs of wired networks are not an easy to apply for wireless
networks because of the difference in their architectures and lack of stable infrastructure. In addition,
the authors stated that the responses for detecting the type of intrusion in wireless networks depends on
the protocols of network, the confidentiality, the applications, and the heterogeneity in wireless ad hoc
networks. These responses may be issued to detect the compromised nodes, reinitializing the network
to terminate these nodes, and then sending requests to all nodes in the network for re-authentication.
Furthermore, the authors introduce a discussion about seven IDSs proposed for MANETs based on a
set of methodologies such as mobile agent-based detection and distributed anomaly-based detection.
In the methodology of mobile agent-based detection, the IDS agent on the mobile node can collect
local data and perform local detection using mobile agent’s technology. While that the methodology of
distributed anomaly-based detection can use the information collected from the neighboring nodes for
performing global detection.

Anantvalee and Jie [5] introduced a study about IDS MANETs considering the infrastructure
of the network. Based on the nature of MANETs, the authors mentioned that most of the surveyed
IDSs could be distributed to have a cooperative structure. As well, this study presents a taxonomy of
nodes’ misbehavior in MANETs during detection task, regarding the punishment and route discovery,
observation and data distribution, and the architecture and type of data collection.

Kumar and Dutta [6] presented a review study of intrusion detection techniques in MANETs.
The authors in this study focused on the detection methods to classify the intrusion detection
techniques based on the mechanisms used in these detection methods. Additionally, the authors stated
the challenges that face the IDS in MANETs such as dynamic environments, time of detection, type
of attacks, routing protocol, mobility effects, robustness, performance, flexibility, speed, scalability,
and reliability.

A taxonomy of IDS for WSNs according to the way that the IDS agent can be used in the network
is presented in [7]. In this taxonomy, the IDS agent can be deployed as purely distributed where the IDS
is used in each sensor node, or as purely centralized where the IDS is installed in the base-station of the
network, and finally as distributed-centralized in which the IDS is deployed in some of monitor nodes.
The authors in this study explained the correlation between the position of IDS agent in the WSN and
energy consumptions, as well as they mentioned that the IDS of distributed-centralized taxonomy is
suitable for WSN with regard to complexity of network’s topology and power consumptions.

Another taxonomy of IDS for WSNs concerning to detection technique that may be anomaly-based
detection, misuse-based detection, and specification-based detection is introduced in [8].

Some issues that are investigated in this study include lack of real IDS implementations in WSNs
as well as evolving the mechanisms of IDS to deal with the revolution of the IoT. Besides, they presented
some research areas of IDS for WSN that need further improvement, such as the tradeoff between
consumption of resources and accuracy, the IDS structural design, and the integration between the
IDS mechanisms.

An extensive literature review of IDS for WSNs is introduced in Reference [9] and another
literature review of IDS for IoT is presented in Reference [12]. In both literature reviews, the authors
conclude that some IDSs can be applicable directly, some other IDSs can be applicable with some major
modifications, and the rest cannot apply to WSNs due to the requirements of design in the WSNs.

Tsiropoulou et al. [13] described the interference mitigation risk aware (IMRA) problem in the
RFID network, which is part of IoT. They formulated the IMRA problem as a non-cooperative game
among all normal and intruders tags the RFID network. After that, they proposed a distributed iterative
and low-complexity algorithm to solve this problem and maximize the RFID tag’s utility function.

Based on the nature of attacks and the behavior of detection system, there are two kinds of IDS.
One of them is known as signature-based IDS. The signature-based IDS can recognize the patterns
of well-known intrusion attacks with excellent accuracy, but it is not able to identify new intrusion
attacks, which their signatures are not defined in the database of attacks. The other kind is known
as anomaly-based IDS that can detect intrusions by identifying the features of intrusion attacks from



Sensors 2019, 19, 4383 3 of 20

networks traffics or their resource utilization. In this kind of IDS, several studies are proposed for IDS
using a number of machine learning and optimization methods. For example, some of these studies
were developed using random forest (RF) [14,15], k-nearest neighbor (KNN) [16], decision tree (DT) [17],
particle swarm optimization (PSO) [18], support vector machine [19], genetic algorithm (GA) [20–22],
and extreme gradient boosting (XGBoost) [23–25]. Other studies have been proposed combing SVM
with GA [26,27], GA with fuzzy logic (FL) [28,29], GA with deep belief network (DBN) [30], GA with
DT [31], and GA with RF [32].

Even though anomaly-based IDS has the capability to recognize both known and unknown attacks,
it has some limitations in terms of false negatives and false positives alarms. Similarly, WSNs is not
excluded from these intrusion attacks and security threats, which lead to decrease its performance
and efficiency. Denial of service (DoS) attacks are the most popular intrusions in WSNs and can be
issued in different ways. Each of them uses a specific way of access into the system. For example, there
are several different attacks targeting the protocols of WSNs and their layers may lead to DoS [33].
To detect the attacks, network traffic has to be thoroughly analyzed for the purpose of definition of the
proper detection technique [34]. This approach uses SVM algorithm to recognize anomalies in the
system and creates a signature that would serve for detecting this threatening action in the future [35].
This cluster-based scheme engages detection and avoidance procedures with high-energy efficiency
and low overhead of communication [36]. For the localization property, IDS can be employed at
various levels of cluster head and sensor nodes. Moon et al. [37] proposed a routing protocol with
intrusion detection and prevention at sensor network nodes.

To enhance the system capabilities, an integrated system for intrusion detection at cluster-based of
wireless sensor networks has proposed by Wang et al. [38]. Barbancho et al. [39] investigated the usage
of artificial intelligence methods in routing schemes of wireless networks to detect intrusion attacks.
El Mourabit et al. [40] proposed a method for intrusion detection in wireless sensor networks based on
mobile agents. They have used three main mobile agents (collector agent, misuse detection agent, and
anomaly detection agent) based on SVM classifier for detection. Shamshirband et al. [41] proposed a
competitive clustering algorithm for intrusion detection in WSNs using a density-based fuzzy method.
Moreover, Shamshirband et al. [42] proposed an artificial immune system to detect intrusion in WSNs
based on cooperative fuzzy theory. In other work, Shamshirband et al. [43] proposed a method to detect
sinkhole kind of intrusions. In this method, a number of dubious nodes is produced by a verification
process of data consistency and the attacker is recognized by information taken from the data flow.

Kumarage et al. [44] proposed a distributed method for anomaly detection in industrial WSNs
using fuzzy data modelling. This distributed method is able to detect the DoS events in which the sink
and base-station nodes are used as decision maker players. Sumitha and Kalpana [45] have used a
MATLAB programming tool for simulating the DoS attack in WSN using low energy aware cluster
hierarchy (LEACH) protocol. In this study, the authors proposed a hybrid method using ant colony
optimization with hidden Markov model (ACO + HMM). This hybrid method provides enhanced
performance than other methods.

Almomani et al. [46] published a new dataset of different DoS attacks in WSNs, namely, WSN-DS.
This dataset consists of four types of DoS attacks (flooding, grayhole, blackhole and scheduling attacks),
as well as the normal traffic class. It is created based on LEACH protocol, which is a hierarchical
routing protocol in WSNs, and using NS-2 network simulator. A Waikato Environment for Knowledge
Analysis (WEKA) data-mining tool was used for implanting neural networks (NNs) to detect the
attacks. The results were reported using 10 folds cross-validation and held-out splitting techniques.
This study achieved a satisfactory result; however, it suffers from the imbalanced problem in which the
detection rate of grayhole attack is very low and reaches up to 75.6%.

Abdullah et al. [47] proposed an approach for detecting intrusions in WSNs’ nodes using a set
of machine learning classifiers. These classifiers are SVM, naive Bayesian (NB), DT and RF. Four
types of DoS attacks (flooding, grayhole, blackhole, and scheduling attacks) were studied in this work.
A WEKA data-mining tool was used for implementing their approach. The results were evaluated



Sensors 2019, 19, 4383 4 of 20

based on a number of different metrics, such as recall (R), precision (P), true positive rate (TP), and
false positive rate (FP). This study demonstrated that the SVM achieves a high detection rate of 96.7%
compared to the other classifiers.

Le et al. [48] proposed to use the random forest (RF) classifier for detecting the type of DoS attacks
in WSNs. The proposed classifier attains best F1-score results are 96%, 99%, 98%, 96% and 100% for
flooding, blackhole, grayhole, scheduling (TDMA), and normal attacks, respectively. However, the
result of this study was for a small number of instances in the testing phase, which approximately
represents 25% (94,042 instances) of the data. Recently, Tan et al. [49] proposed a method for intrusion
detection using random forest classifier and synthetic minority oversampling (SMOTE) technique.
They used the SMOTE technique for oversampling the minority samples. The experimental results of
the study showed that the accuracy of using random forest classifier was 92.39% and the accuracy of
using SMOTE has increased the accuracy to 92.57%.

2. Research Methodology

2.1. Genetic Algorithm (GA)

Genetic algorithm (GA) is defined as a heuristic adaptive search algorithm and inspired from
the evolutionary ideas of genetics. It represents an intelligent exploitation that uses a random search
for solving both unconstrained and constrained optimization problems [50]. The GA repetitively
alters individual solutions of a population and at each step, it selects randomly individuals from the
population that are currently in process to be parents; then, it utilizes them to generate the children for
the next generation of population. Undergoing development of these consecutive generations; the
solution is improved to optimality. Genetic algorithm is used to solve a variety of problems, including
mixed integer programming problems or the problems in which their objective function is stochastic,
non-differentiable, discontinuous, or highly nonlinear. Generally, the GA applies three different rules on
the current population at each step to produce the next generation. These rules are:

• Selection rules, which selects the individuals to be parents for contributing at next generation;
• Crossover rules, which combines two parents to generate the children of next generation;
• Mutation rules, which changes randomly the individual of children.

The GA differs from a classical derivative-based optimization algorithm (DOA) in two key ways:
it creates a population of solutions at each iteration in which the best solution approaches to optimality
and uses a random computation for selecting the next population. While, the classical DOA creates a
single solution at each iteration in which a sequence of solutions approaches to the optimal situation
and uses a deterministic computation for selecting the next solution in the sequence. Algorithm 1
illustrates the pseudocode of GA as sequence of steps.

2.2. Gradient Boosting (GB) Model

Gradient boosting (GB) is an ensemble learning technique, used for classification and regression
problems, proposed by Friedman [51,52]. It can produce an effective model consisting of weak learners,
usually decision trees. The basic idea of GB is to build and generalize the ensemble model in a stage
wise fashion by optimizing an objective arbitrary loss function [53]. The GB technique constructs
its model from the previous loss function of negative gradient in an iteration manner. In the ML,
minimizing the loss function is an important issue and needs to be optimized. In other words, the
loss function represents the difference between the predicted output and the target. A low value
of loss function means a high prediction or classification result. When the loss function decreases
sequentially and iteratively, the model goes consecutively along a specific direction, which is the
Gradient of loss function.



Sensors 2019, 19, 4383 5 of 20

Algorithm 1. The GA pseudocode.

1. Input: GA parameters
2. Begin
3. P←Generate-Initial-Population ();
4. Best-Solution←Evaluate-Fitness(P)
5. while stopping_criterion is not reached do
6. Begin
7. Parents←Selection(P)
8. Children←Crossover (Parents)
9. Children←Mutation (Children)
10. Best-Solution←Evaluate-Fitness (Children)
11. P←P ∪ Children
12. End while
13. End
14. Output: Best-Solution

Assuming that the objective of a supervised classification problem is to find an approximation
function, Ô(x) to fit the O(x). Therefore, the approximation function based on a loss function, L(y, O(x))
is defined as:

Ô(x) = argmin
O(x)

L(y, O(x)) (1)

where O represents the weak learners (Ci(x)) with weights (wi) in a linear combination; and Ô tries to
minimize the loss function of the input vector. Thus, the GB sets a constant function, O0(x) as:

(x) = argmin
w

n∑
i=1

L(yi, w) (2)

The pseudocode of GB is shown in Algorithm 2.

Algorithm 2. The GB pseudocode.

1 Input: D =
{
(x1 , y1), (x2 , y2) , . . . , (xN , yN)}, L(y, O(x))

2 Begin

3 Initialize: O0(x) = argmin
w

∑n
i=1 L

(
yi, w

)
4 for m = 1 : M

5 rim = −
∂L(yi,O(xi))

∂O(xi)

6 Train weak learner Cm(x) on training data.

7 Calculate w : wm = argmin
w

N∑
i=1

L(yi, Om−1(xi) + wCm(xi))

8 Update: Om(x) = Om−1(x) + wmCm(x)
9 End for
10 End
11 Output: Om(x)

In case decision tree is chosen to be an estimator, gradient boosting will be selected as the
appropriate algorithm, which is a better classifier that can be utilized for solving many problems in



Sensors 2019, 19, 4383 6 of 20

different fields. Previously, we noted that there are different boosting algorithms. Gradient boosting is
considered as the most effective one from these algorithms. Although GB mainly depends on convex
loss function, it can use different types of loss functions. Moreover, GB can solve regression and
classification problems as well. Concerning classification problems, a log loss function is used to be an
objective function to deal with these problems. From a fundamental element point of view, GB uses
negative gradient to enhance the results.

Extreme Gradient Boosting (XGBoost) Model

In the last decade, data science has gained more interest for different fields in many applications.
Currently, many big buzzwords such as big data and artificial intelligence has overwhelmed our lives.
Boosting algorithms also have evolved with time. A well-known boosting model, which has achieved
a high score for solving classification and prediction problems in many contests of the KAGGLE
platform, is the extreme gradient boosting (XGBoost) model.

In fact, XGBoost is a type of GB that provides an innovative tree searching technique [54].
The improved technique has shown good performance in distributed computing and avoidance of
overfitting, as well as in solving problems that have data sparsity. More precisely, computation
complexity is reduced significantly with automatic learning in the splitting process. To tackle the
overfitting problem, XGBoost appends regular terms to the objective function in the learning phase.

XGBoost applies second-order Taylor expansion to the loss function to substitute the first derivative
unlike conventional GB, as given in Equation (3) as follow:

L =
∑

i

l(y, O(xi)) +
∑

k

Ω(Gk) (3)

where, l is the loss function of training and L define real loss function for XGBoost algorithm. The rest
of the notations are constant as the same as boosting methods. G is defined as a weak estimator
for decision tree, while F denotes for prediction. Additionally, decision trees complexity, Ω(Gm) is
aggregated with the first term to form the objective function. Regular term definition, Ω(Gm), is
calculated as:

Ω(G) = wT +
1
2
α

T∑
j=1

s2
j ) (4)

where, T is denoting number of decision trees’ leaves. While, w j
2 denotes L2 norm of scores for each

leaf. The γ is a control threshold to split nodes, and λ is a coefficient to reduce overfitting problem [55].
The final equation can be formed as:

Lm =
N∑

i=1

l(yi, Om−1
i + Gm(xi)) + Ω(Gm)

≈

N∑
i=1

[
l(yi, Om−1

i ) + giGm(xi) +
1
2 oiG2

m(xi)
]
+ Ω(Gm)

(5)

Finally, in the previous equation, two variables define the first derivative and second derivative of
the loss function, which are gi = ∂Om−1 l(yi, Om−1

i ) and oi = ∂2
Om−1 l(yi, Om−1

i ), respectively.

2.3. Proposed Genetic-Based Extreme Gradient Boosting (GXGBoot) Model

The basic idea behind the proposed GXGBoot model is to build an optimization task using genetic
algorithm on top of XGBoot classifier to increase the classification accuracy of minority classes without
significantly affecting the overall accuracy of other classes. The genetic algorithm generates random
values for the XGBoot classifier to form a new decision boundary with a highest genetic fitness value.



Sensors 2019, 19, 4383 7 of 20

More specifically, the GXGBoot model is composed of four main steps: generating the population
of parameters’ values, selecting the population of parameters’ values, training the decision function of
XGBoot, and evaluating the fitness function of XGBoot. Figure 1 shows the GXGBoot flow chart, and
Algorithm 1 outlines the pseudocode of the main steps of GXGBoot.

Figure 1. Flowchart of proposed genetic-based extreme gradient boosting (GXGBoot) Model.

Algorithm 3. Pseudocode of GXGBoot’s steps.

1. Initialization:
2. mutation_rate = 0.1 //Mutation rate for GA
3. min_mutation_momentum = 0.0001 //Min mutation momentum
4. max_mutation_momentum = 0.1 //Max mutation momentum
5. min_population = 5 //Min population for GA
6. max_population = 10 //Max population for GA
7. num_Iterations = 10 //Number of iterations to evaluate GA
8. Input:
9. Training Set, Validation Set
10. Begin

11.
num_population = random.randint (min_population, max_population); // Generate initial population for
GXGBoost

12. population_GXGBoost = [[]
13. For i in range (num_population):

14.
GXGBoost_parameters = random.randint (min_num_estimators, max_num_estimators) // GXGBoost
parameters generation

15. GXGBoost_ model = generate_ GXGBoost (GXGBoost_parameters)
16. population_GXGBoost.append (GXGBoost_ model)
17. End for
18. max_accuracy = 0
19. best_model = None
20. population_validation_accuracy= [[]
21. For i in range (num_Iterations):
22. For j in range (num_population):

23.
GXGBoost_model = population_GXGBoost [j] // population selection
// population evaluation



Sensors 2019, 19, 4383 8 of 20

24. validation_accuracy = evaluate_ GXGBoost (GXGBoost_model, Training_Set, Validation_Set)
25. population_validation_accuracy.append (validation_accuracy)
26. If validation_accuracy > max_accuracy:
27. max_accuracy = validation_accuracy
28. best_model = GXGBoost_model
29. End if
30. End for
31. // Create new population with new generations
32. # every generation will use the current best GXGBoost_model to mate
33. For pop_index in range (num_population):
34. model1 = population_GXGBoost [pop_index]
35. model1_validation_accuracy = population_validation_accuracy [pop_index]
36. model2 = best_model
37. model2_validation_accuracy= max_accuracy
38. // Create new generation with crossover

39.
new_model = crossover_GXGBoost (model1, model1_validation_accuracy, model2,
model2_validation_accuracy)

40. mutate_GXGBoost (new_model) // Mutate new generation
41. population_GXGBoost [pop_index] = new_model // Replace current model
42. End for
43. End for
44. Return best_model, max_accuracy
45. End

Time Complexity Analysis of Proposed Model’s Algorithm

Based on the computational complexity theory, time complexity analysis is used to compute
the computational time of the proposed algorithm. Therefore, the worst case of running time can be
defined as a function of its input using big O notation [56]. The big O notation usually defines the
asymptotic behavior or the growth rate of the function’s upper bound as follows:

O(g(n)) =
{
f |∃c〉0, ∃n0 > 0, ∀n ≥ n0 : 0 ≤ f ≤ cg(n)

}
(6)

This means that f ∈ (g(n)) if and only if there exist two positive constants c and n0 for all n ≥ n0
such that the inequality 0 ≤ f ≤ cg(n) is satisfied. In this case, we can say that f is big O of g(n)
or that g(n) is the asymptotic upper bound for f [57]. By analyzing the main steps of Algorithm 3,
the pseudocode contains a f or loop in line 13. This loop depends on the number of populations and
contains a generation operation of gradient boosting model with random values for its parameters.
The generating operation takes a constant time c. Suppose that the number of populations in worst
case is also n. Consequently, this loop runs in O(cn). In addition, the pseudocode contains a f or loop
in line 21. This f or loop depends on the number of iterations and contains two independent f or loops.
Each one depends on the number of populations. Let us assume that the number of iterations is n and
the number of populations is n in the worst case. In line 24, the first f or loop contains a construction
operation of the gradient boosting model. According to Reference [58], the time complexity to construct
the gradient boosting model is O(dn), where d represents the number of features, and n is the number
of data samples. Thus, the first f or loop runs in O(n3). The second f or loop has a set of operations that
have a constant time c and runs in O(cn). Therefore, the Algorithm 3 runs in a cubic polynomial time
for building the GXGBoot model.



Sensors 2019, 19, 4383 9 of 20

3. Experiments and Discussion

3.1. WSN-DS Dataset

In our experiments, a simulated WSN-DS dataset collected by Almomani et al. [46] is used as a
case study to evaluate the proposed model. This dataset was generated to apply machine-learning
methods for detecting and classifying Denial of Service (DoS) attacks. By using machine-learning
methods, the sensor nodes can be able to detect attacks patterns from the normal traffic. As a result,
the sensor nodes can make a right decision instantly on time. The simulated dataset contains 23
features extracted using LEACH routing protocol as shown in Table 1. The Low Energy Aware Cluster
Hierarchy (LEACH) is a routing protocol which uses 23 features to identify the state of each sensor
node in the wireless network. However, only 19 features as well as the class label were included in the
dataset file. These 19 features were Id, Time, Is_CH, who_CH, Dist_To_CH, ADV_S, ADV_R, JOIN_S,
JOIN_R, ADV_SCH_S, ADV_SCH_R, Rank, DATA_S, DATA_R, Data_Sent_BS, Dist_CH_BS, Send_code,
Consumed_Energy, and Attack_Type. The distribution of attacks in the WSN-DS dataset is given in
Figure 2. Furthermore, a number of data samples from this dataset is listed in Table 2.

Table 1. Extracted features of the wireless sensor network-detection system (WSN-DS) Dataset.

NO. Feature Name Symbol Description

1 Node ID Id
It is a unique symbolized number of the sensor node.
For example, the sensor node number 13 in the fourth

round and in the second stage has ID 002004013.

2 Time Time It is the current time of the sensor node state in the
simulation.

3 Is CH? Is_CH It is a flag, which has 1 or 0 value for determining the
node is cluster head (CH), or not.

4 Who CH who_CH It is the ID of the cluster head (CH) in the existing round.

5 Received Signal
Strength Indication RSSI It is the RSSI between a sensor node and its cluster head

in the existing round.

6 Distance to cluster
head Dist_To_CH It is the computed distance between a sensor node and

its cluster head in the existing round.

7 Max distance to
cluster head M_D_CH It is the maximum computed distance between sensor

nodes and its cluster head within the same cluster.

8 Average distance to
cluster head A_D_CH It represents the average distance between sensor nodes

within the cluster and their cluster head.

9 Current energy Current_Energy It is the current energy of the current round for a sensor
node.

10 Energy
consumption Consumed_Energy It is the energy amount consumed by the sensor node in

the previous round.

11 Advertise cluster
head sends ADV_S It is the number of advertise broadcast messages sent

from the cluster head to the sensor nodes.

12 Advertise cluster
head receives ADV_R It represents the number of advertise messages which

are received by the sensor nodes from cluster heads.

13 Join request
messages send JOIN_S It is the number of join request messages, which are sent

by the sensor nodes to the cluster head.

14 Join request
messages receive JOIN_R It is the number of join request messages, which are

received by the cluster head from the sensor nodes.

15 Advertise SCH
sends ADV_SCH_S

It represents the number of advertise broadcast
messages of the Time Division Multiple Access (TDMA)

schedule which are sent to the sensor nodes.

16 Advertise SCH
receives ADV_SCH_R It is the number of advertise broadcast messages for the

TDMA schedule which are received from cluster heads.

17 Rank Rank It represents the order of the sensor node within the
schedule of the TDMA.

18 Data sent Data_S It represents the number of data packets, which are sent
from a sensor node to its cluster head.



Sensors 2019, 19, 4383 10 of 20

Table 1. Cont.

NO. Feature Name Symbol Description

19 Data received Data_R It represents the number of data packets that are
received by a sensor node from cluster head.

20 Data sent to base
station Data_Sent_BS It represents the number of data packets that are sent

from a sensor node to the base station.

21 Distance cluster
head to base station Dist_CH_BS It represents the distance between the cluster head and

the base station.
22 Send Code Send_code It is the sending code of the cluster.

23 Attack Type Attack_Type

It is the class label of the wireless sensor network traffic,
which could be normal, or attack. There are four

categorical types of attacks, namely, flooding, scheduling
(TDMA), grayhole, and blackhole.

Figure 2. Distribution of attacks in the WSN-DS Dataset.



Sensors 2019, 19, 4383 11 of 20

Table 2. Data samples from the WSN-DS dataset [46].

Id Time Is
CH

Who
CH

Dist To
CH

ADV
S

ADV
R

JOIN
S

JOIN
R

SCH
S

SCH
R Rank DATA

S
DATA

R
Data Sent

To BS
Dist CH

To BS
Send
Code

Consumed
Energy

Attack
Type

101000 50 1 101000 0 1 0 0 25 1 0 0 0 1200 48 130.0854 0 2.4694 Normal

101001 50 0 101044 75.32345 0 4 1 0 0 1 2 38 0 0 0 4 0.06957 Normal

101002 50 0 101010 46.95453 0 4 1 0 0 1 19 41 0 0 0 3 0.06898 Normal

101004 50 0 101010 4.83341 0 4 1 0 0 1 25 41 0 0 0 3 0.06534 Normal

2901024 3553 1 2901024 0 1 9 0 0 0 0 0 0 0 1 113.2765 0 0.01237 Grayhole

2901029 3553 1 2901029 0 1 9 0 0 0 0 0 0 0 1 150.3168 0 0.01237 Grayhole

2901073 3553 1 2901100 0 1 9 0 0 0 0 0 0 0 2 96.57363 0 0.01813 Grayhole

501014 1703 1 501100 0 1 26 0 0 0 0 0 0 0 0 0 0 0.00446 Blackhole

501021 1703 1 501100 0 1 26 0 0 0 0 0 0 0 0 0 0 0.00445 Blackhole

501029 1703 1 501100 0 1 26 0 0 0 0 0 0 0 0 0 0 0.00446 Blackhole

501030 1703 1 501100 0 1 26 0 0 0 0 0 0 0 0 0 0 0.00445 Blackhole

404017 2203 1 404100 0 1 9 0 3 3 0 0 0 0 0 0 0 0.18101 TDMA

404018 2203 0 404028 8.59592 0 10 1 0 0 1 1 160 0 0 0 3 0.26334 Normal

404020 2203 0 404100 12.89353 0 10 1 0 0 1 1 181 0 0 0 4 0.29774 Normal

404023 2203 0 404100 19.59164 0 10 1 0 0 1 1 181 0 0 0 1 0.47633 Normal

404025 2203 1 404100 0 1 9 0 1 1 0 0 0 241 241 138.3672 0 2.02545 TDMA

404028 2203 1 404100 0 1 9 0 4 4 0 0 0 0 0 0 0 0.00623 TDMA

404029 2203 0 404100 18.31869 0 10 1 0 0 1 1 206 0 0 0 5 0.33993 Normal

404035 2203 0 404100 15.82954 0 10 1 0 0 1 1 181 0 0 0 1 0.47308 Normal

404050 2203 1 404100 0 1 9 0 2 2 0 0 0 0 0 0 0 0.00624 TDMA

404053 2203 0 404100 19.42763 0 10 1 0 0 1 1 160 0 0 0 3 0.2652 Normal

404060 2203 1 404100 0 1 9 0 2 2 0 0 0 0 0 0 0 1.09609 TDMA

404073 2203 0 404100 14.13972 0 10 1 0 0 1 1 206 0 0 0 5 0.33878 Normal

404078 2203 0 404100 10.54019 0 10 1 0 0 1 1 206 0 0 0 2 1.42778 Normal

404080 2203 1 404100 0 1 9 0 1 1 0 0 0 241 241 176.6235 0 2.5962 TDMA

302096 1153 1 302096 0 6 22 0 0 0 0 0 0 0 13 121.695 0 0.35722 Flooding

401001 1203 1 401001 0 6 20 0 0 0 0 0 0 0 13 136.2575 0 0.2398 Flooding



Sensors 2019, 19, 4383 12 of 20

Table 2. Cont.

Id Time Is
CH

Who
CH

Dist To
CH

ADV
S

ADV
R

JOIN
S

JOIN
R

SCH
S

SCH
R Rank DATA

S
DATA

R
Data Sent

To BS
Dist CH

To BS
Send
Code

Consumed
Energy

Attack
Type

401034 1203 1 401034 0 6 24 0 0 0 0 0 0 0 13 165.4621 0 0.26426 Flooding

401054 1203 1 401054 0 6 20 0 0 0 0 0 0 0 13 142.1079 0 0.24251 Flooding

401069 1203 1 401069 0 6 26 0 0 0 0 0 0 0 13 93.93772 0 0.21994 Flooding

101000 50 1 101000 0 1 0 0 25 1 0 0 0 1200 48 130.0854 0 2.4694 Normal

101001 50 0 101044 75.32345 0 4 1 0 0 1 2 38 0 0 0 4 0.06957 Normal

101004 50 0 101010 4.83341 0 4 1 0 0 1 25 41 0 0 0 3 0.06534 Normal

2901024 3553 1 2901024 0 1 9 0 0 0 0 0 0 0 1 113.2765 0 0.01237 Grayhole

2901029 3553 1 2901029 0 1 9 0 0 0 0 0 0 0 1 150.3168 0 0.01237 Grayhole

2901073 3553 1 2901100 0 1 9 0 0 0 0 0 0 0 2 96.57363 0 0.01813 Grayhole

501014 1703 1 501100 0 1 26 0 0 0 0 0 0 0 0 0 0 0.00446 Blackhole

501029 1703 1 501100 0 1 26 0 0 0 0 0 0 0 0 0 0 0.00446 Blackhole

501030 1703 1 501100 0 1 26 0 0 0 0 0 0 0 0 0 0 0.00445 Blackhole

404017 2203 1 404100 0 1 9 0 3 3 0 0 0 0 0 0 0 0.18101 TDMA



Sensors 2019, 19, 4383 13 of 20

To prepare training and testing sets, the holdout method is used to separate the dataset into 60%
training and 40% testing. The number of instances in these two sets is presented in Table 3.

Table 3. The dataset separated 60% training set and 40% testing set using holdout method.

The Attack Type Training Set (60%) Testing Set (40%)

Blackhole 6029 4020
Grayhole 8758 5838
Flooding 1988 1324

Scheduling 3982 2656
Normal 204,039 136,027

Sum 224,796 149,865

3.2. Evaluation Metrics

A set of evaluation metrics including the accuracy (ACC), precision (PR), recall (RE), and f1-score
are utilized to evaluate and compare the results of proposed intrusion detection model. They were
used because they produced comparable results and frequently used in the machine learning field for
evaluating and comparing its models. These performance evaluation metrics are computed as:

Accuracy (ACC) = (TP + TN) ⁄ (TP + FP + TN + FN) (7)

Precision (PR) or Positive Predictive value (PPV) = TP/(TP + FP) (8)

Recall (RE) (True Positive Rate) (Sensitivity) = TP ⁄ (TP + FN) (9)

F1-Score = 2*((Precision * Recall)/(Precision + Recall)) (10)

Specificity, Selectivity or True Negative Rate (TNR) = TN ⁄ (TN + FP) (11)

False Positive Rate (FPR) = FP/(FP + TN) (12)

False Negative Rate (FNR) = FN/(FN + TP) (13)

where TP, TN, FP, and FN are the true positive, true negative, false positive, and false negative,
computed from the confusion matrix.

3.3. Experimental Results and Comparisons

The subsection describes the experimental results and comparisons with other models and related
works. The results of our experiment are obtained using both 10 fold cross validation and holdout
methods on the simulated WSN-DS dataset [46]. In the 10 fold cross validation, the dataset is divided
into 10 parts, one of them is used for testing for 10 times. Tables 4–8 show the results of the 10 fold
cross validation method.

Table 4. Precision results of the 10 fold cross validation.

Fold No. Normal Flooding Scheduling Grayhole Blackhole

1 1.00 0.96 0.99 0.99 0.99
2 1.00 0.97 0.99 0.99 0.99
3 1.00 0.97 0.99 0.99 0.99
4 1.00 0.95 0.99 0.99 0.99
5 1.00 0.94 0.98 0.99 0.99
6 1.00 0.95 0.98 0.99 0.99
7 1.00 0.97 1.00 0.99 0.99
8 1.00 0.94 0.99 0.99 1.00
9 1.00 0.96 0.99 0.99 0.99
10 1.00 0.97 0.99 0.99 0.99



Sensors 2019, 19, 4383 14 of 20

Table 5. Recall results of the 10 fold cross validation.

Fold No. Normal Flooding Scheduling Grayhole Blackhole

1 1.00 0.99 0.93 0.99 0.99
2 1.00 0.98 0.93 0.99 0.99
3 1.00 0.98 0.93 0.99 1.00
4 1.00 0.99 0.92 0.99 1.00
5 1.00 0.98 0.92 0.99 1.00
6 1.00 0.98 0.94 0.99 0.99
7 1.00 0.98 0.95 0.99 1.00
8 1.00 0.99 0.92 0.99 0.99
9 1.00 0.98 0.93 0.98 0.99
10 1.00 0.98 0.91 0.99 1.00

Table 6. F1-score results of the 10 fold cross validation.

Fold No. Normal Flooding Scheduling Grayhole Blackhole

1 1.00 0.97 0.96 0.99 0.99
2 1.00 0.97 0.96 0.99 0.99
3 1.00 0.97 0.96 0.99 0.99
4 1.00 0.97 0.95 0.99 0.99
5 1.00 0.96 0.95 0.99 0.99
6 1.00 0.96 0.96 0.99 0.99
7 1.00 0.97 0.97 0.99 1.00
8 1.00 0.97 0.96 0.99 1.00
9 1.00 0.97 0.96 0.99 0.99
10 1.00 0.97 0.95 0.99 1.00

Table 7. Positive and negative rates results of the 10 folds cross validation.

Normal Flooding Scheduling Grayhole Blackhole

TPR 0.999 0.982 0.929 0.989 0.995
TNR 0.982 1 1 1 1
FPR 0.018 0 0 0.1 0
FNR 0.001 0.018 0.071 0.011 0.005

Overall Accuracy 0.997

TPR: true positive rate, TNR: true negative rate, FPR: false positive rate, and FNR: false positive rate.

Table 8. Average results of precision, recall, and F1-score, and their weighted average for the 10 fold
cross validation.

Precision Recall F1-Score

Normal 1 1 1
Flooding 0.958 0.983 0.968

Scheduling 0.989 0.928 0.958
Grayhole 0.99 0.989 0.99
Blackhole 0.991 0.995 0.993

Weighted avg. 1 1 1

Figure 3 demonstrates the confusion matrix of intrusion detection for the proposed GXGBoost
model using holdout method on the WSN-DS Dataset.

Table 9 lists the true positive, true negative, false positive, and false negative rates results of the
GXGBoost model using the holdout method. While, the precision, recall, and F1-score results and their
weighted average using the holdout method are shown in Table 10.



Sensors 2019, 19, 4383 15 of 20

Figure 3. Confusion matrix of intrusion detection of the proposed GXGBoost model using holdout
method on the WSN-DS Dataset.

Table 9. Positive and negative rates results of the 10 fold cross validation.

Normal Flooding Scheduling Grayhole Blackhole

TPR 1 0.98 0.93 0.99 0.99
TNR 0.98 1 1 1 1
FPR 0.02 0 0 0 0
FNR 0 0.02 0.07 0.01 0.01

Overall Accuracy 0.997

Table 10. Precision, recall, and F1-score results of the holdout method.

Precision Recall F1-Score

Normal 1 1 1
Flooding 0.96 0.98 0.97

Scheduling 0.99 0.93 0.96
Grayhole 0.99 0.99 0.99
Blackhole 0.99 0.99 0.99

Weighted avg. 1 1 1

3.4. Comparison with other Boosting Algorithms

For comparing the GXGBoost model with original XGBoost and other boosting classifiers models
such as AdaBoost and gradient boosting (GB) classifiers, we used the true positive rate and receiver
operating characteristic (ROC) curve as evaluation metrics to describe their performance. The ROC
curve represents the area under curve (AUC) in which when it has a value close to 1, this confirms that
the model produces better results. Table 11 and Figure 4 demonstrate the experimental results of the
evaluation metrics for the proposed GXGBoost model compared to other boosting models.

Table 11. Comparison results of TPR for GXGBoost against the original XGBoost and other boosting
classifiers models.

TPR

Normal Flooding Scheduling Grayhole Blackhole

AdaBoost 0.9900 0.9700 0.9000 0.8200 0.3800
GB 0.9977 0.9872 0.9239 0.8659 0.8714

XGBoost 0.9976 0.9970 0.9194 0.9409 0.9622
Proposed GXGBoost 1.0000 0.9800 0.9300 0.9900 0.9900



Sensors 2019, 19, 4383 16 of 20

Figure 4. ROC curves for the compared classifiers models: (a) ROC curve of GXGBoost, (b) ROC curve
of XGBoost, (c) ROC curve of GB, and (d) ROC curve of AdaBoost on the WSN-DS Dataset.

To evaluate the efficiency of boosting algorithms for WSNs intrusion detection, the experiments
are conducted on a laptop Intel(R) Core(TM) i7-4510U 2.0 GHz and 8 GB RAM with Windows 10.
The average execution time of classification for the GXGBoot and other boosting models on the testing
dataset is shown in Table 12.



Sensors 2019, 19, 4383 17 of 20

Table 12. Average execution time of classification in seconds (s).

Model Average Classification Time

AdaBoost 10.093 s
GB 3.338 s

XGBoost 2.172 s
Proposed GXGBoost 1.905 s

We can see that the classification time of GXGBoost and XGBoost is close to each other. However,
the average classification time of GXGBoost is lower than XGBoost since it selects appropriate values
for its parameters in the training phase. The AdaBoost has a higher classification time because it tries
to classify all the cases into majority classes without losing the overall accuracy. In general, as seen in
Table 10, the proposed model is efficient for real-time WSNs intrusion detection.

3.5. Comparison with Related Work

To compare our work with the related recent work on the same dataset, the true positive rate (TPR)
is used as a uniform metric to do that. Figure 5 shows the values of TPR for the proposed GXGBoost
compared to the results of related work in Reference [46] using a 10 fold cross validation method.

Figure 5. TPR percentage values of the proposed GXGBoost compared to the results of related work in
Reference [46] using 10 fold cross validation method.

From Figure 5, we can see how the GXGBoost is effective to classify with the minority classes
without significantly affecting the detection rates of the other classes.

4. Conclusions and Future work

A new model for WSN intrusion detection is proposed based on genetic algorithm (GA) and
extreme gradient boosting (XGBoot) classifier, called GXGBoost model. The GXGBoost model was
designed to improve the performance of traditional models to detect minority classes of attacks in
highly imbalanced data traffics of wireless sensor networks. A set of experiments were conducted on
WSN-DS dataset using holdout and 10-folds cross validation techniques. The results of 10-folds cross
validation test revealed that the proposed model outperforms the state-of-the-art models and other
ensemble learning classifiers with high detection rates of 98.2%, 92.9%, 98.9%, and 99.5% for Flooding,
Scheduling, Grayhole, Blackhole attacks, respectively, in addition to 99.9% for Normal traffic. In the



Sensors 2019, 19, 4383 18 of 20

future work, we will apply our model with feature selection methods to reduce the number of features
and enhance the efficiency of intrusion detection in WSN.

Author Contributions: Conceptualization, M.A. and A.G.; data curation, M.A., A.G., H.M. and M.M.B.I.; formal
analysis, M.A. and A.G.; funding acquisition, H.M. and M.M.B.I.; investigation, A.G., H.M. and M.M.B.I.;
methodology, M.A. and A.G.; project administration, H.M. and M.M.B.I.; resources, M.A., A.G., H.M. and M.M.B.I.;
software, M.A. and A.G.; supervision, H.M. and M.M.B.I.; validation, M.A. and A.G.; visualization, M.A. and
A.G.; writing—original draft, M.A. and A.G.; writing—review and editing, M.A. and A.G.

Funding: The authors would like to thank the Deanship of scientific research for funding and supporting this
research through the initiative of DSR Graduate Students Research Support (GSRS).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gungor, V.C.; Lu, B.; Hancke, G.P. Opportunities and challenges of wireless sensor networks in smart grid.
IEEE Trans. Ind. Electron. 2010, 57, 3557–3564. [CrossRef]

2. Rassam, M.A.; Maarof, M.A.; Zainal, A. A survey of intrusion detection schemes in wireless sensor networks.
Am. J. Appl. Sci. 2012, 9, 1636–1652.

3. Zhang, F.; Kodituwakku, H.A.D.E.; Hines, W.; Coble, J.B. Multi-Layer Data-Driven Cyber-Attack Detection
System for Industrial Control Systems Based on Network, System and Process Data. IEEE Trans. Ind. Inform.
2019, 15, 4362–4369. [CrossRef]

4. Mishra, A.; Nadkarni, K.; Patcha, A. Intrusion detection in wireless ad hoc networks. IEEE Wirel. Commun.
2004, 11, 48–60. [CrossRef]

5. Anantvalee, T.; Wu, J.; Anantvalee, T.; Wu, J. A survey on intrusion detection in mobile ad hoc networks.
In Wireless Network Security; Springer: Boston, MA, USA, 2007; pp. 159–180.

6. Kumar, S.; Dutta, K. Intrusion detection in mobile ad hoc networks: Techniques, systems, and future
challenges. Secur. Commun. Netw. 2016, 9, 2484–2556. [CrossRef]

7. Farooqi, A.H.; Khan, F.A. Intrusion detection systems for wireless sensor networks: A survey. In International
Conference on Future Generation Communication and Networking; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 234–241.

8. Abduvaliyev, A.; Pathan, A.K.; Zhou, J.; Roman, R.; Wong, W. On the vital areas of intrusion detection
systems in wireless sensor networks. IEEE Commun. Surv. Tutor. 2013, 15, 1223–1237. [CrossRef]

9. Butun, I.; Morgera, S.D.; Sankar, R. A survey of intrusion detection systems in wireless sensor networks.
IEEE Commun. Surv. Tutor. 2013, 16, 266–282. [CrossRef]

10. Modi, C.; Patel, D.; Borisaniya, B.; Patel, H.; Patel, A.; Rajarajan, M. A survey of intrusion detection techniques
in cloud. J. Netw. Comput. Appl. 2013, 36, 42–57. [CrossRef]

11. Mitchell, R.; Chen, I. A survey of intrusion detection techniques for cyber-physical systems. ACM Comput.
Surv. (CSUR) 2014, 46, 55. [CrossRef]

12. Zarpelao, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of
Things. J. Netw. Comput. Appl. 2017, 84, 25–37. [CrossRef]

13. Tsiropoulou, E.E.; Baras, J.S.; Papavassiliou, S.; Qu, G. On the Mitigation of Interference Imposed by Intruders
in Passive RFID Networks. In International Conference on Decision and Game Theory for Security; Springer:
Cham, Switzerland, 2016; pp. 62–80.

14. Farnaaz, N.; Jabbar, M.A. Random forest modeling for network intrusion detection system.
Procedia Comput. Sci. 2016, 89, 213–217. [CrossRef]

15. Zhang, J.; Zulkernine, M.; Haque, A. Random-forests-based network intrusion detection systems. IEEE Trans.
Syst. Man Cybern. C Appl. Rev. 2008, 38, 649–659. [CrossRef]

16. Li, W.; Yi, P.; Wu, Y.; Pan, L.; Li, J. A new intrusion detection system based on KNN classification algorithm
in wireless sensor network. J. Electr. Comput. Eng. 2014, 2014, 240217. [CrossRef]

17. Sindhu, S.S.S.; Geetha, S.; Kannan, A. Decision tree based light weight intrusion detection using a wrapper
approach. Expert Syst. Appl. 2012, 39, 129–141. [CrossRef]

18. Chung, Y.Y.; Wahid, N. A hybrid network intrusion detection system using simplified swarm optimization
(SSO). Appl. Soft Comput. 2012, 12, 3014–3022. [CrossRef]

http://dx.doi.org/10.1109/TIE.2009.2039455
http://dx.doi.org/10.1109/TII.2019.2891261
http://dx.doi.org/10.1109/MWC.2004.1269717
http://dx.doi.org/10.1002/sec.1484
http://dx.doi.org/10.1109/SURV.2012.121912.00006
http://dx.doi.org/10.1109/SURV.2013.050113.00191
http://dx.doi.org/10.1016/j.jnca.2012.05.003
http://dx.doi.org/10.1145/2542049
http://dx.doi.org/10.1016/j.jnca.2017.02.009
http://dx.doi.org/10.1016/j.procs.2016.06.047
http://dx.doi.org/10.1109/TSMCC.2008.923876
http://dx.doi.org/10.1155/2014/240217
http://dx.doi.org/10.1016/j.eswa.2011.06.013
http://dx.doi.org/10.1016/j.asoc.2012.04.020


Sensors 2019, 19, 4383 19 of 20

19. Reddy, R.R.; Ramadevi, Y.; Sunitha, K.V.N. Effective discriminant function for intrusion detection using
SVM. In Proceedings of the 2016 International Conference on Advances in Computing, Communications
and Informatics (ICACCI), Jaipur, India, 21–24 September 2016; pp. 1148–1153.

20. Li, W. Using genetic algorithm for network intrusion detection. In Proceedings of the United States Department
of Energy Cyber Security Group 2004 Training Conference, Kansas City, KS, USA, 24–27 May 2004; Volume 1,
pp. 1–8.

21. Hoque, M.S.; Mukit, M.A.; Bikas, M.A.N. An implementation of intrusion detection system using genetic
algorithm. arXiv, 2012; arXiv:1204.1336.

22. Kuang, F.; Xu, W.; Zhang, S. A novel hybrid KPCA and SVM with GA model for intrusion detection.
Appl. Soft Comput. 2014, 18, 178–184. [CrossRef]

23. Dhaliwal, S.; Nahid, A.A.; Abbas, R. Effective intrusion detection system using XGBoost. Information
2018, 9, 149. [CrossRef]

24. Chen, Z.; Jiang, F.; Cheng, Y.; Gu, X.; Liu, W.; Peng, J. XGBoost classifier for DDoS attack detection and
analysis in SDN-Based cloud. In Proceedings of the 2018 IEEE International Conference on Big Data and
Smart Computing (BigComp), Shanghai, China, 15–17 Janurary 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 251–256.

25. Bansal, A.; Kaur, S. Extreme Gradient Boosting Based Tuning for Classification in Intrusion Detection
Systems. In Proceedings of the International Conference on Advances in Computing and Data Sciences,
Dehradun, India, 20–21 April 2018; Springer: Singapore, 2018; pp. 372–380.

26. Nema, A. Innovative Approach for Improving Intrusion Detection Using Genetic Algorithm with Layered
Approach. In Securing the Internet of Things: Concepts, Methodologies, Tools, and Applications; IGI Global:
Hershey, PA, USA, 2020; pp. 273–298.

27. Vijayanand, R.; Devaraj, D.; Kannapiran, B. Intrusion detection system for wireless mesh network using
multiple support vector machine classifiers with genetic-algorithm-based feature selection. Comput. Secur.
2018, 77, 304–314. [CrossRef]

28. Hamamoto, A.H.; Carvalho, L.F.; Sampaio, L.D.H.; Abrão, T.; Proença, M.L., Jr. Network anomaly detection
system using genetic algorithm and fuzzy logic. Expert Syst. Appl. 2018, 92, 390–402. [CrossRef]

29. Reddy, S.S.S.; Chatterjee, P.; Mamatha, C. Intrusion Detection in Wireless Network Using Fuzzy Logic
Implemented with Genetic Algorithm. In Computing and Network Sustainability; Springer: Singapore, 2019;
pp. 425–432.

30. Zhang, Y.; Li, P.; Wang, X. Intrusion Detection for IoT Based on Improved Genetic Algorithm and Deep Belief
Network. IEEE Access 2019, 7, 31711–31722. [CrossRef]

31. Azad, C.; Jha, V.K. Decision Tree and Genetic Algorithm Based Intrusion Detection System. In Proceeding
of the Second International Conference on Microelectronics, Computing & Communication Systems (MCCS 2017);
Springer: Singapore, 2019; pp. 141–152.

32. Ren, J.; Guo, J.; Wang, Q.; Huang, Y.; Hao, X.; Hu, J. Building an Effective Intrusion Detection System
by Using Hybrid Data Optimization Based on Machine Learning Algorithms. Secur. Commun. Netw.
2019, 2019, 7130868. [CrossRef]

33. Wood, A.D.; Stankovic, J.A. Denial of service in sensor networks. IEEE Comput. 2002, 35, 54–62. [CrossRef]
34. Li, G.; He, J.; Fu, Y. Group-based intrusion detection system in wireless sensor networks. Comput. Commun.

2008, 31, 4324–4332. [CrossRef]
35. Baig, Z.A. Pattern recognition for detecting distributed node exhaustion at-tacks in wireless sensor networks.

Comput. Commun. 2011, 34, 468–484. [CrossRef]
36. Maleh, Y.; Ezzati, A.; Qasmaoui, Y.; Mbida, M. A Global Hybrid Intrusion Detection System for Wireless

Sensor Networks. Procedia Comput. Sci. 2015, 52, 1047–1052. [CrossRef]
37. Moon, S.Y.; Kim, J.W.; Cho, T.H. An energy efficient routing method with intrusion detection and prevention for

wireless sensor networks. In Proceedings of the 16th International Conference on Advanced Communication
Technology, Pyeongchang, Korea, 16–19 February 2014.

38. Wang, S.S.; Yan, K.; Wang, S.; Liu, C. An integrated intrusion detection system for cluster-based wireless
sensor networks. Expert Syst. Appl. 2011, 38, 15234–15243. [CrossRef]

39. Barbancho, J.; León, C.; Molina, F.J.; Barbancho, A. Using artificial intelligence in routing schemes for wireless
networks. Comput. Commun. 2007, 30, 2802–2811. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2014.01.028
http://dx.doi.org/10.3390/info9070149
http://dx.doi.org/10.1016/j.cose.2018.04.010
http://dx.doi.org/10.1016/j.eswa.2017.09.013
http://dx.doi.org/10.1109/ACCESS.2019.2903723
http://dx.doi.org/10.1155/2019/7130868
http://dx.doi.org/10.1109/MC.2002.1039518
http://dx.doi.org/10.1016/j.comcom.2008.06.020
http://dx.doi.org/10.1016/j.comcom.2010.04.008
http://dx.doi.org/10.1016/j.procs.2015.05.108
http://dx.doi.org/10.1016/j.eswa.2011.05.076
http://dx.doi.org/10.1016/j.comcom.2007.05.023


Sensors 2019, 19, 4383 20 of 20

40. El Mourabit, Y.; Toumanari, A.; Bouirden, A.; Zougagh, H.; Latif, R. Intrusion detection system in Wireless
Sensor Network based on mobile agent. In Proceedings of the 2014 Second World Conference on Complex
Systems (WCCS), Agadir, Morocco, 10–12 November 2014.

41. Shamshirband, S.; Amini, A.; Anuar, N.B.; Kiah, M.L.M.; Furnell, Y.W.T.S. D-FICCA: A density-based fuzzy
imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks. Measurement
2014, 55, 212–226. [CrossRef]

42. Shamshirband, S.; Anuar, N.B.; Kiah, M.L.M.; Rohani, V.A.; Petković, D.; Misra, S.; Khan, A.N. Co-FAIS:
Cooperative fuzzy artificial immune system for detecting intrusion in wireless sensor networks. J. Netw.
Comput. Appl. 2014, 42, 102–117. [CrossRef]

43. Shamshirband, S.; Patel, A.; Anuar, N.B.; Kiah, M.L.M.; Abraham, A. Cooperative game theoretic approach
using fuzzy Q-learning for detecting and preventing intrusions in wireless sensor networks. Eng. Appl.
Artif. Intell. 2014, 32, 228–241. [CrossRef]

44. Kumarage, H.; Khalil, I.; Tari, Z.; Zomaya, A. Distributed anomaly detection for industrial wireless sensor
networks based on fuzzy data modelling. J. Parallel Distrib. Comput. 2013, 73, 790–806. [CrossRef]

45. Pandit, S.S.; Kalpana, D.B. Hybrid Technique for Detection of Denial of Service (DOS) Attack in Wireless
Sensor Network. Int. J. Adv. Netw. Appl. 2015, 7, 2674–2681.

46. Almomani, I.; Al-Kasasbeh, B.; AL-Akhras, M. WSN-DS: A Dataset for Intrusion Detection Systems in
Wireless Sensor Networks. J. Sens. 2016, 2016, 4731953. [CrossRef]

47. Abdullahl, M.A.; Alsolami, B.M.; Alyahya, H.M.; Alotibi, M.H. Intrusion Detection of DoS Attacks in WSNs
Using Classification Techniuqes. J. Fundam. Appl. Sci. 2018, 10, 298–303.

48. Le, T.; Park, T.; Cho, D.; Kim, H. An Effective Classification for DoS Attacks in Wireless Sensor Networks.
In Proceedings of the 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN),
Prague, Czech Republic, 3–6 July 2018; pp. 689–692.

49. Tan, X.; Su, S.; Huang, Z.; Guo, X.; Zuo, Z.; Sun, X.; Li, L. Wireless Sensor Networks Intrusion Detection
Based on SMOTE and the Random Forest Algorithm. Sensors 2019, 19, 203. [CrossRef]

50. Kitjacharoenchai, P.; Ventresca, M.; Moshref-Javadi, M.; Lee, S.; Tanchoco, J.M.A.; Brunese, P.A. Multiple
traveling salesman problem with drones: Mathematical model and heuristic approach. Comput. Ind. Eng.
2019, 129, 14–30. [CrossRef]

51. Zhang, C.; Zhang, Y.; Shi, X.; Almpanidis, G.; Fan, G.; Shen, X. On Incremental Learning for Gradient
Boosting Decision Trees. Neural Process. Lett. 2019, 50, 957–987. [CrossRef]

52. Cao, D.; Xu, Q.; Liang, Y.; Zhang, L.; Li, H. The boosting: A new idea of building models. Chemom. Intell.
Lab. Syst. 2010, 100, 1–11. [CrossRef]

53. Xia, Y.; Liu, C.; Li, Y.; Liu, N. A boosted decision tree approach using Bayesian hyper-parameter optimization
for credit scoring. Expert Syst. Appl. 2017, 78, 225–241. [CrossRef]

54. Al-Rakhami, M.; Gumaei, A.; Alsanad, A.; Alamri, A.; Hassan, M.M. An Ensemble Learning Approach for
Accurate Energy Load Prediction in Residential Buildings. IEEE Access 2019, 7, 48328–48338. [CrossRef]

55. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794.

56. Knuth, D.E. Big Omicron and big Omega and big Theta. SIGACT News 1976, 8, 18–24. [CrossRef]
57. Nopiah, Z.M.; Khairir, M.I.; Abdullah, S.; Baharin, M.N.; Arifin, A. Time complexity analysis of the genetic

algorithm clustering method. In Proceedings of the 9th WSEAS International Conference on Signal Processing,
Robotics and Automation, ISPRA’10, Cambridge, UK, 20–22 February 2010; pp. 171–176.

58. Xu, Z.; Huang, G.; Weinberger, K.Q.; Zheng, A.X. Gradient boosted feature selection. In Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA,
24–27 August 2014; ACM: New York, NY, USA, 2014; pp. 522–531.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.measurement.2014.04.034
http://dx.doi.org/10.1016/j.jnca.2014.03.012
http://dx.doi.org/10.1016/j.engappai.2014.02.001
http://dx.doi.org/10.1016/j.jpdc.2013.02.004
http://dx.doi.org/10.1155/2016/4731953
http://dx.doi.org/10.3390/s19010203
http://dx.doi.org/10.1016/j.cie.2019.01.020
http://dx.doi.org/10.1007/s11063-019-09999-3
http://dx.doi.org/10.1016/j.chemolab.2009.09.002
http://dx.doi.org/10.1016/j.eswa.2017.02.017
http://dx.doi.org/10.1109/ACCESS.2019.2909470
http://dx.doi.org/10.1145/1008328.1008329
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Research Methodology 
	Genetic Algorithm (GA) 
	Gradient Boosting (GB) Model 
	Proposed Genetic-Based Extreme Gradient Boosting (GXGBoot) Model 

	Experiments and Discussion 
	WSN-DS Dataset 
	Evaluation Metrics 
	Experimental Results and Comparisons 
	Comparison with other Boosting Algorithms 
	Comparison with Related Work 

	Conclusions and Future work 
	References

