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It has become evident that chromatin in cell nuclei is organized at multiple
scales. Significant effort has been devoted to understanding the connection
between the nuclear environment and the diverse biological processes taking
place therein. A fundamental question is how cells manage to orchestrate
these reactions, both spatially and temporally. Recent insights into phase-sep-
aratedmembraneless organelles may be the key for answering this. Of the two
models that have been proposed for phase-separated entities, one largely
depends on chromatin–protein interactions and the other on multivalent
protein–protein and/or protein–RNA ones. Each has its own characteristics,
but both would be able to, at least in part, explain chromatin and transcrip-
tional organization. Here, we attempt to give an overview of these two
models and their studied examples to date, before discussing the forces that
could govern phase separation and prevent it from arising unrestrainedly.
1. Nuclear sub-compartmentalization via phase
separation?

The core concept of phase separation itself is not really new. Already in 1899, the
American biologist E. B. Wilson had observed that after squishing starfish eggs,
the spherical formations in the cellular goo were able to fuse with each other,
but only if theywere of the same type [1]. Nowadays, it is known that similar dro-
plets also exist in eukaryotic nuclei, though variable in their sizes, abundance and
properties. Given their dynamic properties, and the fact that nuclear compart-
mentalization cannot be static in order to accommodate and coordinate the
huge variety of biochemical reactions that take place therein, a major question
arising is: how might such phase-separated nuclear entities contribute to the
organization and regulation of chromatin? In the light of recent data on phase sep-
aration-driven compartmentalization, this review aims at providing some insight
on the key characteristics of nuclear phase-separated formations, on how phase
separation may regulate chromatin organization and on the forces that restrain
phase separation from occurring in a non-orchestrated manner.

The development of technologies like whole-genome chromosome confor-
mation capture (Hi-C) allowed for a reappraisal of chromatin organization [2].
As a result of numerous Hi-C studies, we now understand that chromosomes
are generally divided into alternating Mbp-long compartments: the A- (mostly
transcriptionally active) and the B- (mostly transcriptionally inactive) compart-
ment. At the sub-Mbp scale, these A-/B-compartments further consist of ‘loop
domains’ stabilized by the chromatin-bound insulator CTCF and the cohesin
ring protein complex [3,4], and/or of ‘topologically associating domains’
(TADs) harbouring stretches of chromatin that tend to physically interact
with one another more frequently than with chromatin in other TADs [5–7].
Despite the fact that the nucleus appears well compartmentalized in Hi-C data,
this compartmentalization must be dynamically orchestrated and amenable to
acute regulation.
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Figure 1. Phase separation in the cell nucleus. (a) Cartoon depicting different kinds of membraneless entities in mammalian cell nuclei, ranging from the large
nucleolus (blue; 0.2–3.5 µm) to transcription factories (red/pink, including histone locus bodies, ‘HLB’, orange; approx. 0.1 µm), Cajal (green; 0.3–1.0 µm) and
Polycomb bodies (black; 0.2–1.5 µm) or splicing speckles ( yellow; 20–50 nm) and paraspeckles (brown; 0.2–1.0 µm). (b) Nuclear phase-separated entities
such as SICCs or SAHFs, forming on the basis of HP1α (purple in (a); less than 0.5 µm) or CTCF (light purple in (a); 0.5–1.5 µm), become most evident
under conditions of cellular ageing. At the same time, the nucleolus changes in shape and dispersion in chronologically aged or longevity-related conditions.
(c) Persistence of elevated nuclear ATP levels, in conjunction with chromatin/protein modifications and high local RNA titres, aid in the maintenance of supramo-
lecular condensates (factories) by TFs and the general transcription machinery, while low ATP levels, Mg++ cations and additional insofar unknown factors will deter
and/or reverse such phase separation in the nucleoplasm.
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Along these lines, different studies have now proposed that
phase separation might, at least in part, control transcription
[8–10] and, as a result, genome architecture and accessibility
[11,12] via the formation of a large variety of membraneless
nuclear bodies (figure 1a). Two conceptually different mechan-
isms have been proposed to explain how this might be
achieved. On one hand, ‘polymer–polymer phase separation’
(PPPS) can promote the assembly of chromatin globules in
the nucleus via proteins which interlink its different segments;
on the other, ‘liquid–liquid phase separation’ (LLPS) can lead
to droplet formation in the cytoplasm and nucleoplasm,
stabilized by multivalent interactions among the participat-
ing components [13]. In other words, in the case of PPPS,
molecules need not actively bind to one another but are depen-
dent on the availability of chromatin (and most probably
of other contributing factors), while in LLPS, bridging inter-
actions with nucleic acids are not a prerequisite for droplet
formation compared to the interactions between disordered
domains of the contributing proteins (for a comparison of the
two, see table 1).

1.1. PPPS in chromatin organization
Chromatin in cell nuclei is by and large flexible and accessible,
due to the ability of nucleosomes to locally fluctuate [35,36],
hence the 10 nm chromatin fibre [37] acquires a more ‘liquid-
like’ (rather than static) behaviour [38]. In this ‘liquid-like’
state, nucleosomes found in close proximity can induce PPPS
with the contributionof certainbridging interactions. Such inter-
actionsmay, for example, occur among histone tails (and bound
factors thereon). In a decreasing order ofmagnitude, histoneH4
tails seem to participate in interchromosomal interactions,
accompanied by H3 and H2A/B tails, although the latter seem
to mainly help maintain fibre-to-fibre interactions [14]. Cohesin
and condensinhave also been identified asmajor components in
diverse processes of genome folding [39,40]. The cohesin com-
plex (SMC1A, WAPL and NIPBL) binds to chromatin and
mediates its compactionand loopingpresumablyby ‘loopextru-
sion’ [15,41,42]. The CCCTC-binding factor (CTCF) also
critically participates in this process, as it almost invariably co-
localizes with cohesin at TAD boundaries as well as at the
CTCF loop anchors [7,15,16]. Interestingly enough, there exist
strong indications that CTCFs phase separate upon entry of
human primary cells into senescence, a state of irreversible cell
cycle arrest. It appears that these ‘senescence-induced CTCF
clusters’ (SICCs; figure 1a,b) constitute an intermediate between
PPPS and LLPS, as they remain bound to chromatinwhile large
multimeric SICCs are created on top [18]. In support of this
potentialCTCFmodeof clustering, comedataofRNA-mediated
CTCF interactions that also affect the spatial organization of
chromatin in mouse ES cells at the sub-Mbp level [17]. Of
course, many other proteins carrying DNA-binding motifs
alongside disordered domains exist in mammalian cells and
could in theory bridge chromatin and drive PPPS [43], thus
affecting the spatial organization of different genomic compart-
ments. Recent studies [19,20] describe such a role for HP1α,
which marks heterochromatic regions throughout the genome
and, through association with the histone methyltransferase
SUV39H1, can spread along the DNA fibre. HP1α uses its
N-terminal chromodomain to interact with H3K9-methylated
nucleosomes, while self-interacting to other HP1α molecules
via its C-terminal ‘chromo-shadow’ domain [30]. Their cluster-
ing, on the basis of the PPPS model, does not primarily rely
on direct interactions between the participating bridging



Table 1. Major features and components of PPPS and LLPS (relevant references in square brackets).

polymer–polymer phase separation liquid–liquid phase separation

structure chromatin-associated proteins cross-linking different

chromatin fragments

chromatin-associated proteins developing multivalent

interactions with each other

chromatin dependence high; on the number/density of chromatin binding sites low; droplets lacking a chromatin scaffold can also be stable

interaction dependence low need of interactions among bridging proteins abundance of protein interactions within the droplet

fluid microenvironment same composition within and outside of the

compartment

different composition inside and outside of the droplet

implicated proteins and

structures

histone-tail modifications [14]; cohesin complexes

[7,15–17]; CTCF [18]; HP1 proteins [19,20]

P-bodies [21]; stress granules [22]; nucleoli [23];

paraspeckles [24,25]; Cajal bodies, PML bodies, and

transcription factories [25–29]

relevant biological

processes

senescence-induced CTCF clustering [18];

heterochromatic spreading [30,31]; transcriptional

regulation [8–10,32,33]

amyloid formations in Alzheimer’s, Parkinson’s synuclein

plaques and ALS plaques [34]

identification assays 3C-based techniques super-resolution imaging FRAP analysis ultrafast-scanning FCS protein engineering
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factors [31], and each newly established globule contains the
same nucleoplasmic fluid as its microenvironment. Thus, the
human HP1α protein can play, via phase separation, a central
role in B-compartment formation [44].However, it is the fraction
of chromatin each such globule occupies and the exact factors
bound to that chromatin stretch that determines the final proper-
ties and extent of clustering [13]. Interestingly, and perhaps
similar to senescence-induced clustering of CTCFs, gradually
more intense HP1α foci appear in cell nuclei as cells enter repli-
cative [17] or, more strikingly, oncogene-induced senescence,
called ‘senescence-associated heterochromatic foci’ (SAHFs;
figure 1a,b) [45,46]. If one now also considers how chronologi-
cally old nuclei display perturbed nucleolar formations
(figure 1b), and that eukaryotic longevity correlates well with
multiple nucleoli of small sizes [47], it is attractive to speculate
that cellular ageing is also related to regulated phase separation.
1.2. LLPS driving nuclear droplet formation
Cells harbour organelles in their nucleoplasm (and cytoplasm)
that can form and separate from their microenvironment in
the absence of a membrane enclosure [34,48]. Such membrane-
less organelles regularly acquire liquid-like properties like
the ability to fuse, to maintain different consistencies inside
and outside the droplet, and to rapidly exchange components
with their surroundings [13,21]. The formation of these
phase-separated droplets is maintained mostly via multivalent
interactions between the low complexity intrinsically
disordered regions (IDRs) of the proteins participating in the
assembly [49,50]. These low-complexity domains are over-
populated by particular amino acid residues, in arrays of
only a few different residues to long stretches containing just
a single amino acid; this allows the respective proteins to
assume multiple conformations and, thus, to not necessarily
reproduce the same secondary structure every time [51,52].
Recently, evidence was presented of many cases where these
interactions are stabilized with the assistance of RNA
molecules [53–56]. In these RNA–protein droplets in the
cytoplasm (e.g. P-bodies [21], stress granules [22]) or in the
nucleus (with the prototypic example of the nucleolus [23]),
RNA might act as a regulatory element controlling their size
and constitution, as recently reported [57].

The prominent liquid phase-separated nucleolus has been
extensively studied [23,58–60], primarily acts to produce the
ribosomal subunits and is made up of a variety of proteins
and RNA. A later study suggests that due to its phase separ-
ation abilities, the nucleolus could act as a protein quality
control compartment inside the nucleus, especially under
stress conditions [61]. Nucleoli muster many characteristics
of phase-separated droplets, such as rapid signal recovery fol-
lowing FRAP (fluorescence recovery after photobleaching)
analysis, fusion of smaller sized droplets into a larger dro-
plet-like conformation, and extensive exchange of molecules
between the two sides of the separated phase [62]. Given
that nucleolar organizing regions (NORs) from different
chromosomes come together in three-dimensional space to
form nucleoli, it is evident that such structural changes of
this large organelle will invariably impact the relative
positioning and folding of mammalian chromosomes.

Along the same lines, multiple nuclear membraneless for-
mations have been identified that exhibit such characteristics.
For example, paraspeckles are discrete bodies found in nuclei
and created on the basis of protein–protein and protein–RNA
interactions [24,25]. Their assembly is highly dynamic as they
become apparent in human cells only upon differentiation
[24], and DNA is typically absent from the interior of these
liquid-like droplets, while at the same time, there exists evi-
dence of lnRNAs being used as scaffolds for their formation
and maintenance [25,63,64]. Similarly, Cajal bodies (CBs),
histone locus bodies (HLBs) and promyelocytic leukaemia
(PML) bodies are all formations that have been shown to
form phase separated-like droplets in the nucleoplasm
(figure 1a) and have the ability to accumulate multifarious
macromolecules from their surrounding interchromatin
regions [25–29]. However, for all the above-mentioned droplets
a certain thermodynamic threshold has to be reached in order
for them to form, and once these LLPS bodies are large enough,
they can expand without a need for nucleation sites [11,13].
Obviously, the association of all of these bodies with chro-
matin makes them at the same time important for its overall
organization in three-dimensional nuclear space.
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2. Phase separation and transcriptional
regulation

The creation of liquid condensates in nuclei, and the exclusion
of chromatin from many of them after acquiring a certain
size, may markedly restructure the nuclear environment.
The energy stored in the ‘chromatin matrix’ during this
restructuring directly affects the size and distribution of these
droplets [65], which is favoured in lower-density chromatin
regions [11]. This set of preferences in positioning and compart-
mentalization may supervise reorganization of the genome in
response to stimuli and, as a result, gene expression itself.

The regulation of gene expression is based on the ability
of the transcription machinery to assemble at specific genomic
loci. This is administered by transcription factors (TFs) which,
via theirDNA-bindingdomains (DBDs) and activationdomains
(ADs), bind specific positions at enhancers and promoters.
While DBDs are well structured, interestingly, the ADs of
many TFs contain IDRs [66], similar to the ones involved in
the establishment of phase-separated droplets. A variety of TFs
have been shown to interact with similar groups of coactivator
complexes [67,68] and it is proposed that these interactions are
mainly maintained via the ADs. For instance, the AD of GCN4
was shown to interact with the Med15 subunit of the Mediator
complex, in a ‘fuzzy protein–protein complex’ [69]. The large
multi-component Mediator complex interacts with various TFs
and the RNA polymerase II, apparently creating phase-separ-
ated condensates to promote gene activation [32,70,71]. Such
condensates, already discernible using lightmicroscopy, are par-
ticularly strong when involving stretches of multiple strong
enhancers, known as ‘super-enhancers’, and phase separation
can explain their engagement with cognate gene promoters
and the concomitant transcriptional activation [9,72]. This
model offers the advantage, at least for the loci associated with
‘super-enhancers’, that gene expression control becomes less
stochastic and less ‘noisy’ [73–76], while providing a framework
able to explain the synchronous activation of genes regulated by
the same set of enhancers [77].Notably, though, sucha stochastic
yet biophysically tuneable high local concentration of relevant
TFs and RNA polymerases aligns well with the ‘transcription
factory’ model, whereby transcription occurs focally at discrete
nucleoplasmic sites forgene loci transcribedbyeitherRNApoly-
merase II or III [78,79]. Thus, bridging the two concepts now
allows us to use phase separation as the underlying mechanism
that explains the acute, reversible and tuneable formation of
transcription factories, thereby directly impacting the ‘bursting’,
noise and tuneability features of gene transcription itself. More-
over, these merged concepts and mechanisms also put the
relative positioning of enhancers, promoters, silencers and insu-
lators into play to explain how the activation, repression or
insulation of different spatial neighbourhoods (from individual
loops to compartments) is indeed dynamic, highly intercon-
nected and, critically, tuneable in response to the extracellular
cues and challenges a cell faces through its life cycle [80]. But
how is such fine-tuning achieved?
3. Some mechanisms controlling phase
separation

The nuclear environment is crowded, considering the many
thousands of macromolecules cohabitating a space of just a few
μm3. This then raises the following questions. In which way do
cells orchestrate a phenomenon such as phase separation and
prevent it from occurring uncontrollably? And how can this be
rendered reversible? Recent studies suggest that ATP may play
a central role in the regulation of liquid-like condensate
formation [12,60]. The proteins and RNA that participate in
phase-separated droplets are inherently able to form aggregates,
typically dependent on their local concentration, themicroenvir-
onmentand the supplies of energy.Apart frombeing the ‘energy
currency’ of cells, ATP has also been attributed a role as a hydro-
trope able to destabilize protein aggregates [81]. For example,
nucleolar viscosity is a partially ATP-dependent condition [23],
and any given droplet can sustain a more liquid-like interior
[82]. Another observation in support of such a role for nuclear
ATPwas that following hormone-induced chromatin reorganiz-
ation, ATP levelsweremaintained notably high formuch longer
(approx. 30 min) than compared to thechanges inchromatinkin-
etics in response to the stimulus (occurring in a 1–15 min
window) [12,83]. Why does ATP persist in nuclei? According
to this hydrotrope model, mM ATP levels and, at the same
time,markedly lower μΜ–nMKmof cellularATPases can concei-
vably be used to maintain a liquid-like state in the nucleus via
actively preventing aggregation of its components and keeping
this microenvironment out of equilibrium [50] (figure 1c).

At the biochemical level, interactions within droplets are
mostly retained through weak and predominately hydro-
phobic interactions, but also through protein–protein and/or
protein–nucleic acid interactions of electrostatic nature
among residues in IDRs [12]. Post-translational modifications,
like methylation, acetylation or PARylation, have also been
reported to actively participate in the formation and/or
disruption of phase-separated organelles by reinforcing
or destabilizing these interactions [33,84–88] (figure 1c). Each
of these mechanisms will only contribute to a particular
degree to the assembly or disassembly of droplets, and further
studies are required to understand their individual impact,
especially on shaping chromatin.
4. Outlook
Phase separation does present an attractive model by which to
explain nuclear compartmentalization and the regulation of the
many diverse biochemical reactions taking place in cell nuclei.
Despite the fact that most of the liquid condensates described
above had been identified many years ago, it has only now
become possible to mechanistically dissect their dynamics
during different biological processes, ranging from the tran-
scriptional to the translational level. In addition, although not
covered in this review, membraneless organelles have been
shown to have a key role in human pathophysiology [87,89–
95]. Important emerging questions include the following.
Why does only a particular (albeit larger than perhaps initially
assumed) fraction of molecules have the ability to phase separ-
ate? Which are the signalling cues triggering such transitions?
How may the nuclear environment regulate the generation of
biomolecular condensates? These questions do not only
address the role of phase separation in chromatin organization
and regulation, but we believe that such basic knowledge on
this phenomenon is bound to also shed light on how phase-
separated nuclear entities arise and how they are modulated
to exert control over rapid and precisely regulated nuclear pro-
cesses. Still, since the phase separation field is still in its infancy,
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the criteria and methodological approaches used to character-
ize the formation of phase-separated droplets and its outcomes
must be constantly revisited and updated. Nonetheless, our
perception of the cellular interior has been revolutionized,
and this will surely allow a step forward in our efforts towards
the decoding of the functional complexity of cellular processes.
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